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Complete Transversal and Formal Normal Forms of Vector Fields ∗

Soledad Ramı́rez-Carrasco and Percy Fernández-Sánchez

abstract: Inspired by the complete transversal technique we establish a classification of vector fields by
normal forms. In the case of vector fields with non zero linear part in (C2, 0) and nilpotent vector fields in
(C3, 0), we recover the classical normal forms for these vector fields, and we provide a different formal normal
form from that presented by Takens in dimension 2. We also get the formal normal form for vector fields in
(C, 0) with a fixed multiplicity.
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1. Introduction

The aim of this work is to recover the classical normal forms of the vector fields using a technique
based on the complete transversal.
Zariski, O. was interested in the analytic classification of plane branches belonging to a given equisingu-
larity class. He exposed his research in a course taught at the École Polytechnique (see [19]). Bruce et al.
get the classification of singularities of mappings by the complete transversal (see [1]), later on Hefez, A.
and Hernandes, M. establish the analytic classification of plane branches (see [3]). Due to the relevance
of the complete transversal in the aforementioned classifications, we establish a theorem called Complete
Transversal for vector fields, which will be used to determine the prenormal form of each jet of order k

of the vector field in (Cn, 0), under the action of the Lie group, D̂iffk
1(Cn, 0).

With the technique implemented, in the case of the vector fields in (C, 0), we obtain the normal forms
for vector fields of any multiplicity, and we get formally linearize the vector fields in (C, 0) with non zero
linear part. Paul, E. in [9] and Loray, F. in [6], show the formal linearization of the vector fields in (C, 0),
unlike from Loray, F. (see [6]), in the case of vector fields X̂ ∈ X̂(C, 0) of multiplicity ν ≥ 2, we get a
formal equivalence to a polynomial vector fields of multiplicity ν.

We formally get the classic normal forms of Poincaré ( [11]) and Dulac ( [2]). In this way, we recover
the following normal forms for vector fields X̂ ∈ X̂(C2, 0) with non zero linear part, in the cases described
below.

In this work we consider, the vector fields X̂ ∈ X̂(C2, 0), with non zero linear part such that

j1(X̂) = λ1x1
∂

∂x1
+ λ2x2

∂

∂x2
. (1.1)
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If λ1/λ2 = −q/p ∈ Q−(the negative rationals), then the vector field X̂ is formally orbitally equivalent to
the vector field

x1(1 +A(xp
1x

q
2))

∂

∂x1
−
p

q
x2(1 +B(xp

1x
q
2))

∂

∂x2
(1.2)

where A(t), B(t) ∈ C[[t]] and A(0) = B(0) = 0.

If λ1 = 0 y λ2 , 0, then the vector field X̂ is formally orbitally equivalent to the vector field

x1A(x1)
∂

∂x1
+ x2(1 +B(x1))

∂

∂x2
(1.3)

where A,B ∈ C[[x1]] and A(0) = B(0) = 0.

In (1.2) and (1.3), we have the normal forms due to Dulac, H. (see [2]), in (1.3) the normalization of
vector fields with saddle-node type singularities. Paul, E. shows a prenormalization of vector fields and
for foliations with saddle-node singularities (see [10]). The normal forms described in (1.2) and (1.3) are
found in [7].

We show that, the vector field X̂ ∈ X̂(C2, 0) with j1(X̂) = (x1 +x2) ∂
∂x1

+x2
∂

∂x2
is formally equivalent

to j1(X̂) by a change of coordinates, which is a formal diffeomorphism tangent to the identity. In the
case of vector fields X̂ ∈ X̂(Cn, 0)(n = 2, 3) with nilpotent linear part, we recover the Takens normal form
in dimension 2 (see [13], [14], [17], [18]), and we get another formal normal form in this dimension.

Stróżyna, E. and Żola̧dek, H. in [16], show the non-analyticity of the Takens normal form of certain
vector fields in (C3, 0) with nilpotent Jordan cell as linear part. In addition, they show the generalization
of the non-analyticity of the Takens normal form for dimension greater than or equal to 3.

In this work, we get a normal form for vector fields X̂∈ X̂(C2, 0) with nilpotent linear part x2
∂

∂x1
, by

a diffeomorphism tangent to the identity, which can be written as

x2
∂

∂x1
+
(
a′(x1) + x2b

′(x1)
) ∂

∂x2

where the multiplicities of a′ and b′ in 0 ∈ C, are greater than or equal to 2 and 1 respectively.

We detail the nilpotent case in dimension 3, that is, given the vector field V̂ ∈ X̂(C3, 0) such that
j1(V̂ ) = 2x2

∂
∂x1

+ x3
∂

∂x2
, by a diffeomorphism tangent to the identity, the Takens normal form for the

vector field V̂ is,

(
2x2 + x1F̂1(x1, G2)

) ∂

∂x1
+
(
x3 + x1F̂2(x1, G2)

) ∂

∂x2
+ F̂3(x1, G2)

∂

∂x3

where G2 = x1x3 − x2
2, F̂j is a formal power series in x1 and G2, such that the multiplicity of F̂j for

j = 1, 2 is greater than or equal to 1, and the multiplicity of F̂3 is greater than or equal to 2.

The Takens normal form for any dimension n, can be found in [15] and [16].
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2. Preliminaries

We will use the following notation.

Ôn is the local ring of formal series defined in a neighborhood of 0 ∈ Cn and

M̂ is the maximal ideal of Ôn.

X̂(Cn, 0) is the Ôn module of formal vector fields with singularity in the origin.

X̂
k(Cn, 0) is the space of the k−jet of formal vector fields in X̂(Cn, 0).

R̂k will denote D̂iffk(Cn, 0), that is, the k−jet of the group of formal diffeo-
morphisms in (Cn, 0).

R̂k
1 will denote D̂iffk

1(Cn, 0), that is, the k−jet of the group of formal diffeo-
morphisms in (Cn, 0) tangent to the identity.

Ôn,n is Ôn ⊕ . . .⊕ Ôn the Ôn free module of rank n.

M̂k
n is M̂k ⊕ · · · ⊕ M̂k, k ≥ 1.When k = 1 we indicate M̂1

n = M̂n.

M̂k
n is the direct sum of M̂k n times.When k = 1 we indicate M̂1

n = M̂n.

Jk(n, n) is the space of the k−jet of M̂n.

Considering the coordinates x = (x1, . . . , xn) in a neighborhood of 0 ∈ Cn, we will write a formal
vector field in (Cn, 0) as follows,

X̂ =
n∑

i=1

ai(x)
∂

∂xi

where ai belongs to the ring Ôn.
We will say that the vector field X has multiplicity ν in 0 ∈ Cn, that is, m0(X̂) = ν, if ν =

min{m0(ai)/i = 1, 2, . . . , n}, where m0 (ai) denotes the multiplicity of ai in 0 ∈ Cn.

We will say that X̂ and Ŷ in X̂(Cn, 0) are equivalent if there is h ∈ D̂iff (Cn, 0) such that Ŷ = h∗X̂,

h∗X̂(y) = Dh(h−1(y)).X̂(h−1(y)).

We say that two vector fields X̂ and Ŷ in X̂(Cn, 0) are orbitally equivalent if there is a unit u ∈ Ôn

such that Ŷ = uh∗X̂, in this case, the conjugation h maps the orbits of the first field vector on the orbits
of the second one, without requiring a conjugation of its flows.

A first result that we obtain is the description of the tangent space to the orbits defined by the action
of the Lie groups R̂k and R̂k

1 on X̂k(Cn, 0), we show that the elements of tangent space TXR̂
k.X and

TXR̂
k
1.X, are given depending on the Lie bracket.

We will use the action ϕ of the Lie groups G = R̂k and G = R̂k
1 on X̂k(Cn, 0), given by,

ϕ : G × X̂
k(Cn, 0) −→ X̂

k(Cn, 0)

(jk(h),X) 7−→ ϕ(jk(h),X) = jk(h∗X̂)
(2.1)

where h ∈ D̂iff(Cn, 0) (or h ∈ D̂iff1

(
Cn, 0)

)
and X = jk(X̂) ∈ X̂k(Cn, 0).

2.1. Orbits and Tangent Spaces

To present the Complete Transversal Theorem for vector fields, it is necessary to describe the tangent
space to the orbits R̂k.X and R̂k

1.X where X ∈ X̂k(Cn, 0). The following theorem allows us to describe the
elements of such tangent spaces.
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Theorem 2.1. If X = jk(X̂) ∈ X̂k(Cn, 0) then

1. TXR̂
k.X =

{
jk[X̂, F ] /F =

n∑

j=1

fj

∂

∂xj

, f = (f1, . . . , fn) ∈ Jk(n, n)

}
.

2. TXR̂
k
1.X =

{
jk[X̂, F ] /F =

n∑

j=1

fj

∂

∂xj

, fj ∈ M̂
2

}
.

Proof. 1. We consider the action ϕ of the group R̂k on X̂k(Cn, 0) defined in (2.1).
Let X = jk(X̂) and X̂ =

∑n

i=1ai
∂

∂xi
∈ X̂(Cn, 0),we define

ϕ
X

: R̂k −→ X̂
k.

jk(h) 7−→ ϕ
X

(jk(h)) = jk(h∗X̂)

Since R̂k can be identify with a open set in C-vector space Jk(n, n), we have that TeR̂
k = Jk(n, n), where

e is the identity.
Let jk(f)∈ TeR̂

k and let αk(t) ∈ R̂k for all t ∈ (−ǫ, ǫ) such that αk(0)=e, α′
k(0)=jk(f), where

α(t)(x) := x+ t f(x), for all t ∈ (−ǫ, ǫ),

f(0) = 0 and αk(t) = jk(α(t)).

d

dt

(
ϕ
X

◦αk(t)
)∣∣∣

t=0
=

d

dt
jk

(
α(t)∗X̂

)∣∣∣
t=0

= jk

(
d

dt

(
α(t)∗X̂

)∣∣∣
t=0

)
. (2.2)

Note that d
dt

(ϕ
X

◦αk(t))|t=0 ∈ TXR̂
k.X, and

(
α(t)∗X̂

)
(p) =

n∑

i=1

ai(β(t)(p))
∂

∂pi

+ t

n∑

i=1

n∑

j=1

∂fi

∂xj

(β(t)(p)).aj(β(t)(p))
∂

∂pi

where β(t) = (α(t))−1, f = (f1, . . . , fn). So,

d

dt

(
α(t)∗X̂

)
(p)

∣∣∣
t=0

=

n∑

i=1

Dai(β(0)(p)).β
′
(0)(p)

∂

∂pi

+

n∑

i=1

n∑

j=1

∂fi

∂xj

(β(0)(p)).aj (β(0)(p))
∂

∂pi

. (2.3)

Since α(t).β(t) = e and x=β(t)(x) + t f(β(t)(x)) for all t∈(−ǫ, ǫ), we have that β(0) = e and β′(0) =
−f.

From (2.3), we have

d

dt

(
α(t)∗X̂

)∣∣∣
t=0

=

n∑

i=1

n∑

j=1

(
aj

∂fi

∂xj

−
∂ai

∂xj

fj

)
∂

∂xi

.

In (2.2), we get

d

dt

(
ϕ
X

◦αk(t)
)∣∣∣

t=0
= jk

2∑

i=1

2∑

j=1

(
aj

∂fi

∂xj

−
∂ai

∂xj

fj

)
∂

∂xi

.

Hence,

TXR̂
k.X =

{
jk

n∑

i=1

n∑

j=1

(
aj

∂fi

∂xj

− fj

∂ai

∂xj

)
∂

∂xi

/ f = (f1, . . . , fn) ∈ Jk(n, n)

}
.

Finally, we define the vector field F :=
∑n

j=1 fj
∂

∂xj
, and we get

n∑

i=1

n∑

j=1

(
aj

∂fi

∂xj

− fj

∂ai

∂xj

)
∂

∂xi

= [X̂, F ].
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2. For G = R̂k
1 we proceed in a similar way, recalling that Dαk(t)(0) = e for all t ∈ (−ǫ, ǫ).We have

that Df(0) = 0, then f ∈ M̂2
n. �

We have obtained TXR̂
k.X and TXR̂

k
1.X, in the Theorem that we describe below, the Lie group that

we consider is R̂k
1 , so we are able to apply the Complete Transversal Theorem of [1] for our case. This

theorem will be the main tool to obtain the normal forms of the vector fields.
You can supplement details of this theorem in [12].

Theorem 2.2. (Complete Transversal for vector fields). Let R̂k
1 be the Lie group acting smoothly

on the vector space X̂k(Cn, 0) and W a vector subspace of X̂k(Cn,0) such that

TX+wR̂
k
1.(X + w) = TXR̂

k
1.X

for all X ∈ X̂k(Cn, 0) and all w ∈ W. Then

1. For any X ∈ X̂k(Cn, 0),

X + (TXR̂
k
1.X ∩W ) ⊂ R̂k

1.X ∩ (X +W ).

2. If X = jk(X̂) ∈ X̂k(Cn,0) and T is a vector subspace of W satisfying

W ⊂ T + TXR̂
k
1.X

then for any w ∈ W, there exists h ∈R̂k
1 and t ∈ T such that

h∗(X̂ + w) = X̂ + t (module jet of order k).

To apply the previous theorem, we need to determine a vector subspace W ⊂ X̂k(Cn, 0), satisfying the

hypothesis TX+wR̂
k
1.(X + w) = TXR̂

k
1.X, for all w ∈ W and all X ∈ X̂k(Cn, 0).

Note that, the hypothesis of Complete Transversal Theorem for vector fields, are satisfied with R̂k
1

and W = Hk(n) ⊂ X̂k(Cn, 0), where

Hk(n) =

{
n∑

i=1

P k
i

∂

∂xi

/ P k
i is a homogeneous polynomial of degree k

}
.

By Theorem 2.2, the change of coordinates h ∈R̂k
1 for each k ≥ ν+1, allows us to obtain a prenormal

form of a vector field X̂ with m0(X̂) = ν, so that depending on the subspace T ⊂ W all or some terms
are eliminated of the homogeneous sum of degree k of the vector field. Following this recursive process,
after step k+1 we have that the new vector field preserves the k−jet of the vector field from the previous
step. The composition of all these changes of coordinates will allow us to obtain the formal normal form
of the initial vector field X̂.

We will say formal normal form of the vector field X̂ ∈ X̂(Cn, 0), to a particular representative of the
equivalence class of the vector field X̂, which can be obtained by Theorem 2.2. The subspace T ⊂ W
such that W ⊂ T + TXR̂

k
1.X is not unique, therefore the normal form is also not unique. A concrete

case is when we study the vector fields X̂ ∈ X̂(C2, 0) such that j1(X̂) is nilpotent. This situation will be
detailed in the section devoted to the nilpotent vector fields, precisely in the Theorem 4.1 that describes
the Takens normal form in dimension 2, and in the Theorem 4.3.

The objective of our technique is to find a subspace T of W low-dimensional. The best case is achieved
when T = {0}, that is, when W ⊂ TXR̂

k
1.X. Such is the case of the vector fields X̂ ∈ X̂(C2, 0) whose j1(X̂)

is non zero and has its eigenvalues λ1, λ2 such that λ1/λ2 ∈C \ (Q− ∪ N ∪ 1/N∗), or when the j1(X̂) is
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non diagonalizable, in both cases the normal form of X̂ is its j1(X̂). This will be seen in the Theorem
3.5 and the Theorem 3.7.

It is necessary to observe the following:

If X = jk(X̂) ∈ X̂k(Cn, 0) and W ⊂ T + TXR̂
k
1.X then there exists h∈R̂k

1 and t ∈ T ⊂ W such that

h∗

(
(X̂ −Xk) +Xk

)
= (X̂ −Xk) + t (module jet of order k)

where Xk is the homogeneous sum of degree k of the vector field X̂.

2.2. Formal prenormalization for vector fields

Prenormalization is the process that consists in obtaining a prenormal form for each jet of order
k≥ν + 1, of the vector field X̂ ∈ X̂(Cn, 0) with m0(X̂) = ν ≥ 1. With the Lie group R̂k

1 acting on space
X̂

k(Cn, 0), the main hypothesis of Complete Transversal Theorem for vector fields, is

TX+wR̂
k
1.(X + w) = TXR̂

k
1.X

for all w ∈ W = Hk(n) and all X ∈ X̂k(Cn, 0).

It is important to determine a subspace T ⊂ W such that

W ⊂ T + TXR̂
k
1.X. (2.4)

Therefore, we will analyze the elements of the tangent space TXR̂
k
1.X, which verify the condition (2.4),

this will allow us to define the subspace T, which will determine the prenormal form for each jet of order
k of X̂ ∈ X̂(Cn, 0).

We will describe subspaces T such that
W = T ⊕ S

where S is a subspace such that S ⊂ TXR̂
k
1.X ∩ Hk(n).

As the elements of the TXR̂
k
1.X are of the form jk[X̂, F ], where F =

∑n

i=1 fi
∂

∂xi
, fi ∈M2, in the

following Proposition, considering vector fields X̂ ∈ X̂(Cn, 0) with multiplicity 1, we characterize the

vector fields F such that jk[X̂, F ] ∈ Hk(n) ∩ TXR̂
k
1.X.

Proposition 2.3. For k ≥ 2, jk(F )∈Hk(n) if and only if jk[X̂, F ]∈Hk(n).

Proof. We consider the vector field X̂ =
∑

j≥1 Xj and the vector field F =
∑

j≥2 Fj , where Xj y Fj are
homogeneous vector fields of degree j.

We analyze the jet of order k of Lie bracket of X̂ and F ,

jk
[
X̂, F

]
= jk

[∑
j≥1 Xj ,

∑k

j=2 Fj

]

= jk

{[
X1,

∑k

j=2 Fj

]
+
[
X2,

∑k

j=2 Fj

]
+ · · · +

[
Xk−1,

∑k

j=2 Fj

]}

= [X1, F2] + · · · +
(

[X1, Fk−1] + [X2, Fk−2] + · · · + [Xk−2, F2]
)

+

+
(

[X1, Fk] + [X2, Fk−1] + · · · + [Xk−1, F2]
)
.

If jk(F ) = Fk ∈ Hk(n) then jk[X̂, F ] = [X1, Fk] ∈ Hk(n).



Complete Transversal and Formal Normal Forms of Vector Fields 7

Conversely, if we assume that the vector field F =
∑

j≥2Fj is such that Fj , 0, for some j∈{2, . . . , k−1}

then jk[X̂, F ] < Hk(n). In fact, note that

[X1, F2] ∈ H
2(n), . . . ,

(
[X1, Fk−1] + [X2, Fk−2] + · · · + [Xk−2, F2]

)
∈ H

k−1(n),

(
[X1, Fk] + [X2, Fk−1] + · · · + [Xk−1, F2]

)
∈ Hk(n).

Hence jk(F ) = Fk ∈ Hk(n). �

We will write the vector fields X̂ ∈ X̂(Cn, 0) with multiplicity 1, as X̂ = X1 + X2 + · · · ∈ X̂(Cn, 0),
where Xj denotes the homogeneous sum of degree j of the vector field X̂ .

For each k ≥ 2, we define the map adk
X1

of the space Hk(n) into itself, as follows

adk
X1

(F ) = [X1, F ] (2.5)

where F ∈ Hk(n).

Note that, if m0(X̂) = 1 we have that jk[X̂, F ] = [X1, F ] for F ∈ Hk(n).

Moreover, if m0(X̂) = ν ≥ 2, that is, X̂ = Xν +Xν+1 + · · · ∈ X̂(Cn, 0), we have that jk[X̂, F ] = [Xν , F ]
where F ∈ H(k−ν)+1(n).

For the vector fields X̂ ∈ X̂(Cn, 0) with m0(X̂) = 1, the map defined in (2.5), allows us to obtain the

elements of TXR̂
k
1.X ∩ Hk(n) as elements of Im adk

X1
.

For each k≥2, we can define the decomposition Hk(n) = Bk ⊕ Ck, where Bk =Im (adk
X1

) and Ck is
some complementary space.
In the Complete Transversal Theorem, we will consider W = Bk ⊕ Ck, and the subspace T of W satis-
fying (2.4) it will be Ck. This will give us information of the prenormal form for each jet of order k of
X̂ ∈ X̂(Cn, 0), that is, we refer to the formal prenormalization of the vector field X̂, as Paul, E. refers
in [10]. In the formal prenormalization that Paul refers, he considers a submodule M of the module of
formal vector fields endowed with a graduation by a degree of quasi-homogeneity. For k ≥ 2, we consider
the vectorial space Hk(n) over C, endowed with the homogeneous graduation of degree k.

3. Some Classic Normal Forms

3.1. Normal forms of vector fields in (C, 0)

In this section, using the Complete Transversal Theorem for formal vector fields in (C, 0) with multi-
plicity 1, we get formally linearize, and in the case of the vector fields with multiplicity greater than or
equal to 2, we can establish a formal equivalence to a polynomial vector field, in both cases with a formal
diffeomorphism tangent to the identity.

Paul, E. shows in [9] that any formal vector field with multiplicity 1 is formally linearizable. If the
vector field is analytic, it is analytically linearizable. We stress that our work corresponds to a formal
development. In the following theorem, we present the normal forms for the vector fields in (C, 0) of any
multiplicity.

We will write X̂(C, 0) the Ô1-module of formal vector fields at 0 ∈ C, that is,

X̂(C, 0) =

{
a(x)x

∂

∂x
/a ∈ Ô1

}
.
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Theorem 3.1. For X̂ ∈ X̂(C, 0) with m0(X̂) = ν, we have

1. if ν = 1 then the vector field X̂ is formally linearizable equivalent to j1(X̂).

2. If ν≥2 then the vector field X̂ is formally equivalent to the polynomial vector field

(aνx
ν + a′x2ν−1)

∂

∂x
.

Proof. Given the vector field X̂= b(x)
∂

∂x
∈ X̂(C, 0) and X= jk(X̂) ∈ X̂k(C, 0),we consider the following

two cases:

First case.- b(x) = x(a1 + a2x+ a3x
2 + · · · ), a1 , 0.

Considering f(x) = αkx
k for k ≥ 2, the elements of TXR̂

k
1.X ∩ Hk(1) are given by,

(k − 1)a1αkx
k ∂

∂x
.

So, for each k ≥ 2, we have that Hk(1) = W ⊂ TXR̂
k
1.X + T where T = {0}.

By Theorem 2.2, there exists a change of coordinates tangent to the identity for each k ≥ 2, thereby
the formal normal form for the vector field X̂ is j1(X̂) = a1x

∂
∂x
. That is, the vector field X̂ is formally

linearizable.

Second case.- b(x)= x(aνx
ν−1+ aν+1x

ν + aν+2x
ν+1 + · · · ), aν , 0, ν≥2.

Considering f(x) = α
k−ν+1

xk−ν+1 for k ≥ ν+1, the elements of TXR̂
k
1.X ∩ Hk(1) are given by,

(k+1−2ν)aναk−ν+1
xk ∂

∂x
.

So, for each k ≥ ν + 1, we have that Hk(1) = W ⊂ TXR̂
k
1.X + T .

i) When k ≥ ν+1 but k , 2ν−1 :

Hk(1) = W ⊂ TXR̂
k
1.X and T = {0}.

ii) When k = 2ν−1 :

H2ν−1(1) = W ⊂ TXR̂
2ν−1
1 .X + T , we have T = {a′x2ν−1 ∂

∂x
; a′ ∈ C}.

By Theorem 2.2, there exists a change of coordinates tangent to the identity successively for each
k ≥ ν + 1, so, the formal normal form for the vector field X̂ is

(aνx
ν + a′x2ν−1)

∂

∂x
.

�

3.2. Normal forms of vector fields in (C2, 0)

In this section, we show the formal normal forms for some vector fields X̂ ∈ X̂(C2, 0), those that will
be written in the following way:

X̂ = X1 +
∑

i≥2

Xi

where X1 =j1(X̂) is non zero. By a linear change of coordinates, without loss of generality we can assume
that X1 is given by its Jordan canonical form.

Let λ1, λ2 be the eigenvalues of X1. We consider the following cases, analyzing the rank of X1:
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(a) rank(X1) = 2,

(a.1) λ1/λ2 and λ2/λ1 does not belong to Q−, or to N∗(the naturals greater than or equal to 1)

(see Theorem 3.5-(i)).

(a.2) λ1/λ2 or λ2/λ1 ∈ N (see Theorem 3.5-(ii)).

(a.3) λ1/λ2 ∈ Q− (see Theorem 3.6-(i)).

(a.4) X1 = (λ1x1 +x2) ∂
∂x1

+λ1x2
∂

∂x2
. Without loss of generality we can assume λ1 = 1 (see Theorem

3.7).

(b) rank(X1) = 1,

(b.1) λ1 = 0 (λ2 , 0) (see Theorem 3.6-(ii)).

The case rank (X1) = 1, when X1 = x2
∂

∂x1
will be considered when we treat the nilpotent vector

fields in dimension 2.

To obtain the normal form of the vector field X̂ ∈ X̂(C2, 0), considering the previously mentioned
cases, we stress the importance of the subspace T of W such that W = B ⊕ T, where B =Im (adk

X1
) for

k ≥ 2.

We will use the following notation:

λ = (λ1, λ2) ∈ C2\{0}, I = (i1, i2) ∈ N2, xI = xi1
1 x

i2
2 .

<λ, I>= λ1i1 + λ2i2 , |I| = i1 + i2.

Note that
{
xI ∂

∂x1
, xI ∂

∂x2
/|I| = k

}
is a basis for the space of homogeneous vector fields of degree k in

dimension 2 denoted by Hk(2). In the following statements, we relate the elements of this basis with the
complex numbers (<λ, I> −λi), i = 1, 2.

Proposition 3.2. For X̂ ∈ X̂(C2, 0) with j1(X̂) = X1,we have

jk

[
X̂, xI ∂

∂xi

]
=

[
X1, x

I ∂

∂xi

]

for i = 1, 2 and |I| = k ≥ 2.

Proposition 3.3. Let X̂ = X1 + · · · , where X1 = λ1x1
∂

∂x1
+ λ2x2

∂
∂x2

be a vector field in (C2, 0). Then,

i)

[
X1, x

I ∂

∂xi

]
= (<λ, I> −λi)x

I ∂

∂xi

, for i = 1, 2.

ii) jk

[
X̂, xI ∂

∂xi

]
= (<λ, I> −λi)x

I ∂

∂xi

, for |I| = k ≥ 2.

The proof of the previous propositions is obtained using properties of the Lie bracket, it can also be
revised in [12].

Considering λ1, λ2 ∈ C, we define the complex number

δj,I = λj − i1λ1 − i2λ2, j = 1, 2, and |I| ≥ 2.

With δj,I we can establish the following definition,
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Definition 3.4. The pair (λ1, λ2) ∈ C2 is resonant if there exist I ∈ N2 with |I| ≥ 2 and there exists
j∈{1, 2} such that δj,I = 0. Otherwise, we will say that (λ1, λ2) is a non resonant pair.

Ichikawa, F. in [5], studies the normal forms of the vector fields X̂ ∈ X̂(C2, 0) with j1(X̂) of the form
(1.1), he considers the concept of resonance, even when he does not mention it.

Also, Ichikawa, F. in [4], with respect to the eigenvalues of j1(X̂) of the vector fields X̂ ∈ X̂(Cn, 0), he
establishes definitions such as, the condition of strong eigenvalue, the condition of weak eigenvalue and
a condition of good eigenvalue and characterizes finitely determined vector fields X̂ ∈ X̂(Cn, 0), if j1(X̂)
satisfies the condition of good eigenvalue and does not satisfy the condition of strong eigenvalue.

In the next Theorem, we provide the classical normal forms of vector fields X̂ ∈ X̂(C2, 0) such that
j1(X̂) is of the form (1.1), with non resonant and resonant eigenvalues, studied by Poincaré and Dulac,
respectively.

Theorem 3.5. (Poincaré-Dulac). For X̂ ∈ X̂(C2, 0) with j1(X̂)=λ1x1
∂

∂x1
+ λ2x2

∂
∂x2

, we have

1. if (λ1, λ2) ∈ C2\{0} is a non resonant pair, then the vector field X̂ is formally equivalent to j1(X̂).

2. If (λ1, λ2) ∈ C2 \{0} is a resonant pair such that δ1,(0,m) = 0, then the vector field X̂ is formally
equivalent to the vector field

(λ1x1 + axm

2 )
∂

∂x1
+ λ2x2

∂

∂x2
.

Proof. According to the prenormalization process, we will establish a change of coordinates for each jet
of order k of X̂ ∈ X̂(C2, 0). In this process, for each k ≥ 2, the subspace W = Hk(2) will be considered

as W = T⊕ Im(adk
X1

), where Im(adk
X1

) ⊂ TXR̂
k
1X ∩ Hk(2).

Given F =
∑

|I|=k αI
xI ∂

∂x1
+
∑

|I|=k βI
xI ∂

∂x2
∈ Hk(2) for k ≥ 2, using properties of the Lie bracket, and

the Proposition 3.3, we have that the elements of Im(adk
X1

) are given by

jk[X̂, F ] =
∑

|I|=k

α
I
(<λ, I>−λ1)xI ∂

∂x1
+
∑

|I|=k

β
I
(<λ, I>−λ2)xI ∂

∂x2

=
∑

|I|=k

α
I
(−δ1,I)xI ∂

∂x1
+
∑

|I|=k

β
I
(−δ2,I)xI ∂

∂x2
.

1. If (λ1, λ2) is a non resonant pair then δj,I , 0 for j = 1, 2 and |I| ≥ 2. So, Hk(2) = W ⊂ Im(adk
X1

)

and Im(adk
X1

) ⊂ W, for all k ≥ 2. Therefore, T = {0} for all k ≥ 2.

2. Since (λ1, λ2) is a resonant pair with δ1,(0,m) =0 and δj,I,0 otherwise for j=1, 2. When |I| ≥ 2
and |I| , m we can consider the subspace T = {0} as in the non resonant case.

Considering |I| = m, let us write

w =
∑

|I|=m

c1,Ix
I ∂

∂x1
+
∑

|I|=m

c2,Ix
I ∂

∂x2

so, it is possible to write the elements w ∈ W =Hm(2) as follows,
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w = (c1,(0,m)x
m

2 )
∂

∂x1
+
∑

|I| = m
I , (0, m)

α
I
(−δ1,I)xI ∂

∂x1
+
∑

|I|=m

β
I
(−δ2,I)xI ∂

∂x2

where

(c1,(0,m)x
m

2 )
∂

∂x1
∈ T and

∑

|I| = m
I , (0, m)

α
I
(−δ1,I)xI ∂

∂x1
+
∑

|I|=m

β
I
(−δ2,I)xI ∂

∂x2
∈ Im(adm

X1
).

�

Poincaré and Dulac, establish analytical equivalences of vector fields. By Poincaré, the analytical
equivalence is achieved when λ1/λ2 < R

− and (λ1, λ2) is a non resonant pair. It is necessary to mention
again that our work consists of formal equivalence.

Now, we consider the equivalence relation of foliations, that is, the classification of vector fields up to
a unity.

In the following theorem, we show the formal orbital equivalence considering the following cases:
λ1/λ2 = −q/p ∈ Q− with gcd(q, p) = 1 and the case of singularities saddle-node type, that is, λ1 = 0
andλ2 , 0.

The normal forms described in the following Theorem are due to Dulac (see [2]), such normal forms
are also found in [7].

Theorem 3.6. (Dulac). For X̂ ∈ X̂(C2, 0) such that j1(X̂) = λ1x1
∂

∂x1
+ λ2x2

∂
∂x2

, we have

(i) if λ1/λ2 = −q/p ∈ Q−, then the vector field X̂ is formally orbitally equivalent to the vector field

x1(1 +A(xp
1x

q
2))

∂

∂x1
−
p

q
x2(1 +B(xp

1x
q
2))

∂

∂x2

where A(t), B(t) ∈ C[[t]] and A(0) = B(0) = 0.

(ii) If λ1 = 0 and λ2 , 0, then the vector field X̂ is formally orbitally equivalent to the vector field

x1A(x1)
∂

∂x1
+ x2(1 +B(x1))

∂

∂x2

where A(x1), B(x1) ∈ C[[x1]] and A(0) = B(0) = 0.

Proof. We will obtain the normal form of vector field X̂ ∈ X̂(C2, 0) with the prenormalization process
considered above.

Given F =
∑

|I|=k

αIx
I ∂

∂x1
+
∑

|I|=k

βIx
I ∂

∂x2
∈ Hk(2), we have that

jk[X̂, F ] =
∑

|I|=k

α
I
(−δ1,I)xI ∂

∂x1
+
∑

|I|=k

β
I
(−δ2,I)xI ∂

∂x2
∈ Im (adk

X1
) ∩ Hk(2).

(i) If λ1/λ2 = −q/p ∈ Q−, then prλ1 + qrλ2 = 0, for all r ∈ N∗.
So, δ1,(pr+1,qr) = 0 and δ2,(pr,qr+1) = 0, for all r ∈ N∗.

When k ≥ 2 but k , r(p+ q) + 1 for all r ∈ N∗, we have δj,I , 0 for j = 1, 2 and |I| = k.

So, for such values of k, we have that W ⊂ Im (adk
X1

) and Im (adk
X1

) ⊂ W.
Therefore, T = {0}.

Now, suppose k = r′(p+ q) + 1, for some r′ ∈ N∗.
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Let w =
∑

|I|=k

c1,Ix
I ∂

∂x1
+
∑

|I|=k

c2,Ix
I ∂

∂x2
be an element of W = Hk(2).

So, we can write any element w ∈ W as follows:

w = c1,(pr′+1,qr′)x
pr′+1
1 xqr′

2

∂

∂x1
+ c2,(pr′,qr′+1)x

pr′

1 xqr′+1
2

∂

∂x2
+
∑

I∈Ir′

α
I
(−δ1,I)xI ∂

∂x1
+

+
∑

I∈Jr′

β
I
(−δ1,I)xI ∂

∂x2

where
Ir′ =

{
|I| = k/I , (pr′ + 1, qr′)

}
and Jr′ =

{
|I| = k/I , (pr′, qr′ + 1)

}
.

Therefore,
∑

I∈Ir′

α
I
(−δ1,I)xI ∂

∂x1
+
∑

I∈Jr′

β
I
(−δ1,I)xI ∂

∂x2
∈ Im (adk

X1
) and

c1,(pr′+1,qr′)x
pr′+1
1 xqr′

2

∂

∂x1
+ c2,(pr′,qr′+1)x

pr′

1 xqr′+1
2

∂

∂x2
∈ T.

Hence, from Complete Transversal Theorem, there exists Φ ∈ D̂iff1(C2, 0) such that the vector field
X̂ is formally equivalent to

Φ∗X̂ =

(
λ1x1 + x1

∑

r′≥1

ar′(xp
1x

q
2)r′

)
∂

∂x1
+

(
λ2x2 + x2

∑

r′≥1

br′(xp
1x

q
2)r′

)
∂

∂x2
.

Finally, the vector field X̂ is formally orbitally equivalent to the vector field

(1/λ1)Φ∗X̂ = x1

(
1 +

∑

r′≥1

ar′

λ1
(xp

1xq
2)r′

)
∂

∂x1
+

λ2

λ1
x2

(
1 +

∑

r′≥1

br′

λ2
(xp

1xq
2)r′

)
∂

∂x2
.

(ii) Now, we have X1 = λ2x2
∂

∂x2
. Remark that λ1 = 0 implies that δ1,(i1,0) = 0 for i1 ≥ 2 and

δ2,(i1,1) = 0 for i1 ≥ 1, in another case (0, λ2) is a non resonant pair.

Given F =
∑

|I|=k

αIx
I ∂

∂x1
+
∑

|I|=k

βIx
I ∂

∂x2
∈ H

k(2), we have that

jk[X̂, F ] =
∑

|I| = k

α
I
(−δ1,I)xI ∂

∂x1
+
∑

|I| = k

β
I
(−δ2,I)xI ∂

∂x2
∈ Im (adk

X1
) ∩ H

k(2).

For k≥2, let w=
∑

|I|=k

c1,Ix
I ∂

∂x1
+
∑

|I|=k

c2,Ix
I ∂

∂x2
be an element of W = Hk(2).

So, we can write

w = c1,(k,0)x
k
1

∂

∂x1
+ c2,(k−1,1)x

k−1
1 x2

∂

∂x2
+

+
∑

|I| = k

α
I
(−δ1,I)xI ∂

∂x1
+
∑

|I| = k

β
I
(−δ2,I)xI ∂

∂x2
∈ T ⊕ Im (adk

X1
).

Hence, for each k ≥ 2 we have

c1,(k,0)x
k
1

∂

∂x1
+ c2,(k−1,1)x

k−1
1 x2

∂

∂x2
∈ T ⊂ W = Hk(2).

Hence, from Complete Transversal Theorem, there exists ψ ∈ D̂iff1(C2, 0) such that the vector field
X̂ is formally equivalent to the vector field
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ψ∗X̂ =

(
x1

∑

r≥1

arx
r
1

)
∂

∂x1
+

(
λ2x2 + x2

∑

r≥1

brx
r
1

)
∂

∂x2
.

Finally, the vector field X̂ is formally orbitally equivalent to the vector field

(1/λ2)ψ∗X̂ =

(
x1

∑

r≥1

ar x
r
1

)
∂

∂x1
+ x2

(
1 +

∑

r≥1

br x
r
1

)
∂

∂x2
.

�

Now, we consider X̂ ∈ X̂(C2, 0) with non zero and non diagonal linear part, of the form

j1(X̂) = (x1 + x2)
∂

∂x1
+ x2

∂

∂x2
.

Theorem 3.7. The vector field X̂ ∈ X̂(C2, 0) with j1(X̂)=(x1 + x2) ∂
∂x1

+ x2
∂

∂x2
is formally equivalent

to j1(X̂), by a formal diffeomorphism tangent to the identity.

Proof. For each k ≥ 2, the map defined in (2.5) is surjective.

Given w =
∑

|I|=k

c1,Ix
I ∂

∂x1
+
∑

|I|=k

c2,Ix
I ∂

∂x2
∈ Hk(2), we will show that there exists F ∈ Hk(2) such

that [X1, F ] = w.

Let F =
∑

|I|=k αIx
I ∂

∂x1
+
∑

|I|=k βIx
I ∂

∂x2
an element of Hk(2), then

[X1, F ] =
∑

|I|=k

αI

(
(i1 + i2 − 1)xI + i1x

i1−1
1 xi2+1

2

) ∂

∂x1
+

+
∑

|I|=k

βI

(
− xI ∂

∂x1
+
(

(i1 + i2 − 1)xI + i1x
i1−1
1 xi2+1

2

) ∂

∂x2

)
.

In this way, for each k ≥ 2 we have the following system of equations:

∑

|I|=k

(αI(i1 + i2 − 1) − βI)xI + αI .i1x
i1−1
1 xi2+1

2 =
∑

|I|=k

c1,Ix
I

∑

|I|=k

βI(i1 + i2 − 1)xI + βI .i1x
i1−1
1 xi2+1

2 =
∑

|I|=k

c2,Ix
I

where the unknowns are αI and βI , for |I| = k.

When |I| = k ≥ 2, the system has the following associated matrix:

M =

[
A −I
0 A

]
∈ R2(k+1)×2(k+1)
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where

A =




(k − 1) 0 0 . . . . . . 0 0
k (k − 1) 0 . . . . . . 0 0
0 (k − 1) (k − 1) . . . . . . 0 0

0 0 (k − 2)
. . . 0 0

...
...

. . .
. . .

...
0 0 . . . . . . 1 (k − 1)




.

The matrix M ∈ R2(k+1)×2(k+1) has non zero determinant, which is equal to (k−1)2(k+1). This proves
the surjectivity.

Therefore by the Complete Transversal Theorem, there exists a change of coordinates in R̂k
1 , so that,

for each k ≥ 2, we have that T = {0} ⊂ Hk(2). �

4. Normal Forms of Nilpotent Vector Fields

We will say that a formal vector field X̂ with m0(X̂) = 1 is nilpotent if j1(X̂) is nilpotent. In this
section, we will present normal forms of the nilpotent vector fields in dimension 2 and 3. Using the tech-
nique provided by the Complete Transversal Theorem, we recover the Takens Normal Form (see [18])
and also show a normal form different of the Takens normal form in dimension 2, both normal forms are
obtained with a formal diffeomorphism tangent to the identity.

Proposition 4.1. Let X̂ be the formal vector field in (C2, 0) such that j1(X̂) = x2
∂

∂x1
. Then, the

dimension of Ker(adk
X1

) is 2, for k ≥ 2.

Proof. For k ≥ 2, given F =
∑

|I|=k

αIx
I ∂

∂x1
+
∑

|I|=k

βIx
I ∂

∂x2
∈ Hk(2) we have

[X1, F ] =
∑

|I|=k

(α
I
(i1x

i1−1
1 xi2+1

2 ) − βIx
I)

∂

∂x1
+
∑

|I|=k

β
I
i1x

i1−1
1 xi2+1

2

∂

∂x2
.

If [X1, F ] = 0, then we have the following system of equations:

α
I
(i1x

i1−1
1 xi2+1

2 ) − βIx
I = 0

β
I
i1x

i1−1
1 xi2+1

2 = 0

We have that, αI = βI = 0 for I , (0, k) and α(0,k), β(0,k) ∈ C.

It is also verified that α(1,k−1)x
k
2 − β(0,k)x

k
2 = 0, that is, α(1,k−1) = β(0,k).

So, F = α(0,k)x
k
2

∂
∂x1

+ β(0,k)

(
x1x

k−1
2

∂
∂x1

+ xk
2

∂
∂x2

)
∈ Hk(2). Therefore,

Ker(adk
X1

) =

{
α(0,k)x

k
2

∂

∂x1
+ β(0,k)

(
x1x

k−1
2

∂

∂x1
+ xk

2

∂

∂x2

)/
α(0,k), β(0,k) ∈ C

}
.

Hence dim Ker(adk
X1

) = 2, for k ≥ 2. �
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It follows by Proposition 4.1, that dim Im (adk
X1

) = 2k.

The following theorem give us the Takens normal form for nilpotent vector fields X̂ ∈ X̂(C2, 0).

Theorem 4.2. For X̂ ∈ X̂(C2, 0) with j1(X̂) = x2
∂

∂x1
, there exists a formal change of coordinates

tangent to the identity reducing it to the form

(x2 + a(x1))
∂

∂x1
+ b(x1)

∂

∂x2
(4.1)

where m0(a) ≥ 2 and m0(b) ≥ 2.

Proof. We consider the prenormalization process considered above.

For each k≥2, let Hk(2) = T⊕ Im(adk
X1

) where X1 = j1(X̂) = x2
∂

∂x1
.

We have that dimHk(2) = dimT+ dim Im (adk
X1

) and dimHk(2) = 2(k + 1).

Therefore, dim T = dim Ker(adk
X1

) = 2, for each k ≥ 2.

Given F =
∑

|I|=k

αIx
I ∂

∂x1
+
∑

|I|=k

βIx
I ∂

∂x2
∈ Hk(2), we have that

[X1, F ] =
∑

|I|=k

(α
I
(i1x

i1−1
1 xi2+1

2 ) − βIx
I)

∂

∂x1
+
∑

|I|=k

β
I
i1x

i1−1
1 xi2+1

2

∂

∂x2
∈ Im(adk

X1
).

Let w =
∑

|I|=k

c1,Ix
I ∂

∂x1
+
∑

|I|=k

c2,Ix
I ∂

∂x2
be an element of W = Hk(2). We can write

w = (c1,(k,0) + β(k,0))x
k
1

∂

∂x1
+ c2,(k,0)x

k
1

∂

∂x2
+
(
− β(k,0)x

k
1 + (kα(k,0)−β(k−1,1))x

k−1
1 x2 + · · · +

+(α(1,k−1) − β(0,k))x
k
2

) ∂

∂x1
+
(
kβ(k,0)x

k−1
1 x2 + (k − 1)β(k−1,1)x

k−2
1 x2

2 + · · · + β(1,k−1)x
k
2

) ∂

∂x2

where

(
− β(k,0)x

k
1 + (kα(k,0) − β(k−1,1))x

k−1
1 x2 + · · · + (α(1,k−1) − β(0,k))x

k
2

) ∂

∂x1
+
(
kβ(k,0)x

k−1
1 x2+

+(k − 1)β(k−1,1)x
k−2
1 x2

2 + · · · + β(1,k−1)x
k
2

) ∂

∂x2
∈ Im(adk

X1
).

So, (c1,(k,0) + β(k,0))x
k
1

∂

∂x1
+ c2,(k,0)x

k
1

∂

∂x2
∈ T ⊂ Hk(2).

Therefore, by Complete Transversal Theorem for each jet of order k ≥ 2 of X̂, there exists h(k) ∈ R̂k
1

such that

h(k)∗(X̂) =

(
x2 +

k∑

i=2

aix
i
1

)
∂

∂x1
+

k∑

i=2

bix
i
1

∂

∂x2
.

With this recursive process, we find a formal diffeomorphism tangent to the identity such that X̂ is
equivalent to (4.1), that corresponds to the Takens normal form. �
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Notice that it is possible to write the elements of Im (adk
X1

), in a different way of the expression
described in the proof of the Theorem 4.1. So, we can get many distinct subspace T complementary in
Hk(2), that is, for nilpotent vector fields X̂ ∈ X̂(C2, 0), it is possible to find different normal form. In the
next theorem we illustrate this situation presenting another normal form.

Theorem 4.3. For X̂ ∈ X̂(C2, 0) with j1(X̂) = x2
∂

∂x1
, by a formal diffeomorphism tangent to the identity,

the vector field X̂ is formally equivalent to the vector field

x2
∂

∂x1
+
(
a′(x1) + x2b

′(x1)
) ∂

∂x2
,

where m0(a′) ≥ 2 and m0(b′) ≥ 1.

Proof. Recall that, the elements of Im (adk
X1

) are of the form [X1, F ], where F ∈Hk(2).

Given F =
∑

|I|=k

αIx
I ∂

∂x1
+
∑

|I|=k

βIx
I ∂

∂x2
∈ Hk(2), we have

[X1, F ] =
∑

|I|=k

α
I
(i1x

i1−1
1 xi2+1

2 )
∂

∂x1
+
∑

|I|=k

(
− βIx

I ∂

∂x1
+β

I
(i1x

i1−1
1 xi2+1

2 )
∂

∂x2

)

= α(k,0)kx
k−1
1 x2

∂

∂x1
+ · · · + α(2,k−2)2x1x

k−1
2

∂

∂x1
+ α(1,k−1)x

k
2

∂

∂x1
+

+
(
− β(k,0)x

k
1

∂

∂x1
+ β(k,0)kx

k−1
1 x2

∂

∂x2

)
+ · · · +

+
(
− β(1,k−1)x1x

k−1
2

∂

∂x1
+ β(1,k−1)x

k
2

∂

∂x2

)
+ −β(0,k)x

k
2

∂

∂x1
.

That is,

[X1, F ] = α(k,0)kx
k−1
1 x2

∂

∂x1
+ · · · + α(2,k−2)2x1x

k−1
2

∂

∂x1
+ (α(1,k−1) − β(0,k))x

k
2

∂

∂x1
+

+
(
− β(k,0)x

k
1

∂

∂x1
+ β(k,0)kx

k−1
1 x2

∂

∂x2

)
+ · · · · · · +

+
(
− β(1,k−1)x1x

k−1
2

∂

∂x1
+ β(1,k−1)x

k
2

∂

∂x2

)
∈ Im(adk

X1
).

Let w =
∑

|I|=k

c1,Ix
I ∂

∂x1
+
∑

|I|=k

c2,Ix
I ∂

∂x2
be an element of W = Hk(2). So, we can write

w = c2,(k,0)x
k
1

∂

∂x2
+ (c2,(k−1,1) − kβ(k,0))x

k−1
1 x2

∂

∂x2
+

+
(
− β(k,0)x

k
1 + (kα(k,0) − β(k−1,1))x

k−1
1 x2 +· · ·+ (α(1,k−1) − β(0,k))x

k
2

) ∂

∂x1
+

+
(
kβ(k,0)x

k−1
1 x2 + (k − 1)β(k−1,1)x

k−2
1 x2

2 +· · ·+ β(1,k−1)x
k
2

) ∂

∂x2
∈ T ⊕ Im(adk

X1
)

where c2,(k,0)x
k
1

∂

∂x2
+ (c2,(k−1,1) − kβ(k,0))x

k−1
1 x2

∂

∂x2
∈ T.

Hence, we have another choice for the subspace T and consequently another way of expressing the
normal form for the nilpotent vector fields in dimension 2 that presented in the previous theorem.
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By Complete Transversal Theorem for each jet of order k ≥ 2 of vector field X̂, there exists a
diffeomorphism g

(k)
∈ R̂k

1 such that

g
(k)

∗(X̂) = x2
∂

∂x1
+

(
k∑

i=2

a′
ix

i
1 + x2(b′

ix
i−1
1 )

)
∂

∂x2
.

�

Let us consider the vector fields V̂ ∈ X̂(C3, 0) of the form V̂ = X + h.o.t. where

X = 2x2
∂

∂x1
+ x3

∂

∂x2

is a linear nilpotent vector field.

Our goal is to present the normal form of such vector fields. For this purpose we define the following
linear vector fields

Y = x1
∂

∂x2
+ 2x2

∂

∂x3
, H = −2x1

∂

∂x1
+ 2x3

∂

∂x3
.

The vector fields X and Y treated as a differentiation of the ring C[x] = C[x1, x2, x3] are called locally
nilpotent derivation(see [15]).

For the vector field Y we associate its ring of constants,

C[x]Y = {f ∈ C[x]/Yf = 0}.

We have C[x]Y = C[x1, G2],where G2 = x1x3 − x2
2 (see Remark 2 in [15]).

Note that G2 = x1x3 − x2
2 is also first integral for the vector field X, and therefore first integral for

H = −2x1
∂

∂x1
+ 2x3

∂
∂x3

, since those first integrals for the vector field Y which are also first integrals for
the vector field X are first integrals for the vector field H.

Let C[x]
k

be the subspace of C[x] consisting of homogeneous polynomials of degree k. In the space
C[x]

k
we have,

Ker Y ⊕ Im X = C[x]
k
.

See the proof of this result in [15].

Remark that, we have

Im X = span
{

2i1x
i1−1
1 xi2+1

2 xi3
3 + i2x

i1
1 x

i2−1
2 xi3+1

3 /i1 + i2 + i3 = k
}

⊂ C[x]
k
.

Theorem 4.4. For V̂ ∈ X̂(C3, 0) such that j1(V̂ ) = 2x2
∂

∂x1
+ x3

∂
∂x2

, there exists a formal change of
coordinates tangent to the identity reducing it to the Takens normal form

(
2x2 + x1F̂1(x1, G2)

) ∂

∂x1
+
(
x3 + x1F̂2(x1, G2)

) ∂

∂x2
+ F̂3(x1, G2)

∂

∂x3

where F̂j is a formal power series in x1 and G2 such that m0(F̂j)≥1 for j = 1, 2 and m0(F̂3)≥2.

Proof. We consider W = Hk(3) =
∑3

j=1 Ker Y ⊕ Im X
∂

∂xj
in the prenormalization process for each

k ≥ 2.The prenormal form for each jet of order k of V̂ ∈ X̂(C3, 0), is given by the subspace T such
that W =Im(adk

X) ⊕ T. We calculate Im(adk
X), that is, [X, F ] where F ∈ Hk(3).
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Given F =
∑

|I|=k

αIx
I ∂

∂x1
+
∑

|I|=k

βIx
I ∂

∂x2
+
∑

|I|=k

γIx
I ∂

∂x3
∈ Hk(3), we have that

[X, F ] =
∑

|I|=k

(
− 2βIx

I + αI

(
2i1x

i1−1
1

xi2+1
2

xi3

3
+ i2x

i1

1
xi2−1

2
xi3+1

3

)) ∂

∂x1
+

+
∑

|I|=k

(
− γIx

I + βI

(
2i1x

i1−1
1

xi2+1
2

xi3

3
+ i2x

i1

1
xi2−1

2
xi3+1

3

)) ∂

∂x2
+

+
∑

|I|=k

γI

(
2i1x

i1−1
1

xi2+1
2

xi3

3
+ i2x

i1

1
xi2−1

2
xi3+1

3

) ∂

∂x3
.

Therefore, we have

[X, F ] = (−2F2 + X(F1))
∂

∂x1
+ (−F3 + X(F2))

∂

∂x2
+ X(F3)

∂

∂x3
.

• For k = 2r + 1, for r ∈ N: Ker Y = span
{
x2r+1

1 , x2r−1
1 G2, . . . , x1G

r
2

}
.

Remark that the third component of the action of adk
X on F is X(F3), and KerY is complementary to

X(F3) in the space C[x]
k
. In the same way, KerY is complementary to the first and the second component

of the action of adk
X on F . So, T =

∑3
j=1 Pj(x1, G2) ∂

∂xj
, where Pj ∈ KerY ⊂ C[x]2r+1.

• For k = 2r, for r ∈ N: Ker Y = span
{
x2r

1 , x
2r−2
1 G2, . . . , G

r
2

}
.

We can consider (F3 + F̃3) a homogeneous polynomial of degree k, that is, we can write X(F3) =
X(F3 + γ̃(r,0,r)G

r
2). So, we can proceed an additional cancellation in the second component of the action

of adk
X on (F3 + γ̃(r,0,r)G

r
2), that is, we have (−F3 − γ̃(r,0,r)G

r
2 + X(F2)), and its complement in the space

C[x]
k

is span{x2r
1 , x

2r−2
1 G2, . . . , x

2
1G

r−1
2 }. Similarly we can also consider X(F2) = X(F2 + β̃(r,0,r)G

r
2) to

achieve an additional cancellation in the first component of the action of adk
X on (F2 + β̃(r,0,r)G

r
2).

So, T =
∑3

j=1 Qj(x1, G2) ∂
∂xj

, Qj ∈ span
{
x2r

1 , x
2r−2
1 G2, . . . , x

2
1G

r−1
2

}
, for j ∈ {1, 2} and Q3 ∈ KerY ⊂

C[x]2r .

By Theorem 2.2, there exits a change of coordinates tangent to the identity, successively for each
k ≥ 2 such that we get the Takens normal form in dimension 3. �

Remark 4.5. Our method is in accordance with the method of Stróżyna, E. and Żola̧dek, H. developed
in [15], because they use the complement of Im adk

X, to obtain the Takens normal form. We stress the
relevance of the Complete Transversal Theorem for vector fields, because we get a change of polynomial
coordinates for each jet of order k of the vector field.

Remark 4.6. For the normal form of the vector fields V̂ ∈ X̂(Cn, 0) such that

V̂ = X + h.o.t. (4.2)

where

X = (n− 1)x2
∂

∂x1
+ (n− 2)x3

∂

∂x2
+ · · · + xn

∂

∂xn−1
,

define the following vector fields

Y = x1
∂

∂x2
+ 2x2

∂
∂x3

+ · · · + (n− 1)xn−1
∂

∂xn

H = −(n− 1)x1
∂

∂x1
− (n− 3)x2

∂
∂x2

+ · · · + (n− 1)xn
∂

∂xn
.
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The vector field H defining a quasi-homogeneous graduation in C[x1, . . . , xn], deg
H
xj = 2j−n−1. Stróżyna,

E. y Żola̧dek, H. show in [16] that the Takens normal form is unique for the vector fields (4.2). For n ≥ 2,
we get

X + F1
∂

∂x1
+ · · · + Fn

∂

∂xn

where the series Fj satisfy YFj ≡ 0 and the series F1, . . . , Fn−1 contain only terms with deg
H
< 0.

However, when n = 2 (C[x1, x2]Y = C[x1]), we show in Theorem 4.3, that the Takens normal form, is
not unique because it depends of the subspace T which is complementary to Im(adk

X
) in W =Hk(2).

In the normal form of the vector field V̂ ∈ X̂(C3, 0) given by Theorem 4.4, we use that C[x1, x2, x3]Y =
C[x1, G2], this result allowed us to obtain the Takens normal form for n = 3. For n = 4, the ring of
constants of the derivation Y is not equal the polynomial ring of three polynomials.

Stróżyna, E. and Żola̧dek, H. get an expression for the ring C[x1, . . . , xn]Y, which is used to determine
the Takens normal form of the vector field given in (4.2) for n ≥ 4 (see [15]).
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