(3s.) v. 2023 (41) : 1-10

Bi-derivations and Quasi-multipliers on Module Extensions Banach Algebras

Ali Ebadian and Ali Jabbari

Abstract

This paper characterizes two bi-linear maps bi-derivations and quasi-multipliers on the module extension Banach algebra $A \oplus_{1} X$, where A is a Banach algebra and X is a Banach A-module. Under some conditions, it is shown that if every bi-derivation on $A \oplus_{1} A$ is inner, then the quotient group of bounded bi-derivations and inner bi-derivations, is equal to the space of quasi-multipliers of A. Moreover, it is proved that $\mathrm{QM}\left(A \oplus_{1} A\right)=\mathrm{QM}(A) \oplus\left(\mathrm{QM}(A)+\mathrm{QM}(A)^{\prime}\right)$, where $\mathrm{QM}(A)^{\prime}=\{m \in \mathrm{QM}(A): m(0, a)=m(a, 0)=0\}$.

Key Words: Banach algebra, bi-derivation, derivation, locally compact group, module extension Banach algebra, quasi-multiplier.

Contents

1 Introduction
 1

2 Bi-derivations on $A \oplus_{1} X \quad 2$
3 Quasi-multipliers 7

1. Introduction

Let A be a Banach algebra and X a Banach A-bimodule. Throughout of this paper, all maps are continuous. A linear map $d: A \longrightarrow X$ is called a derivation if $d\left(a a^{\prime}\right)=a \cdot d\left(a^{\prime}\right)+d(a) \cdot a^{\prime}$, for all $a, a^{\prime} \in A$. The derivation $d: A \longrightarrow X$ is said to be inner, if there exists $x \in X$ such that $d(a)=a \cdot x-x \cdot a$, for every $a \in A$. An interesting generalization of derivations is the notion of bi-derivations, for example it ha a close connection with the second cohomology of Banach algebras. A bi-derivation $D: A \times A \longrightarrow X$ is a bi-linear map that is a derivation respect to both components, i.e.,

$$
D(a b, c)=a \cdot D(b, c)+D(a, c) \cdot b \quad \text { and } \quad D(a, b c)=b \cdot D(a, c)+D(a, b) \cdot c,
$$

for all $a, b, c \in A$. We define the following algebraic centers as follows

$$
\begin{aligned}
Z(A) & =\left\{a \in A: a a^{\prime}=a^{\prime} a, \text { for all } a^{\prime} \in A\right\}, \\
Z_{A}(X) & =\{a \in A: a \cdot x=x \cdot a, \text { for all } x \in X\},
\end{aligned}
$$

and

$$
Z_{X}(A)=\{x \in X: a \cdot x=x \cdot a, \text { for all } a \in A\} .
$$

We say a bi-derivation $D: A \times A \longrightarrow X$ is
(i) inner, if there exists $x \in Z_{X}(A)$ such that $D\left(a, a^{\prime}\right)=x\left[a, a^{\prime}\right]$, for all $a, a^{\prime} \in A$, where $\left[a, a^{\prime}\right]=$ $a a^{\prime}-a^{\prime} a$.
(ii) inner respect to the first (second) component, if there exists $x \in X(y \in X)$ such that $D\left(a, a^{\prime}\right)=$ $[a, x]\left(D\left(a, a^{\prime}\right)=\left[a^{\prime}, y\right]\right)$, for all $a, a^{\prime} \in A$.
(iii) componential inner, if it is inner respect to the both components.

[^0]Bres̆er et al., in [6] showed that all bi-derivations defined on noncommutative prime rings are inner and for the case semiprime rings Bres̆er in [7] considered bi-derivations on this class of rings. There are many literatures for bi-derivations that are studied by many authors, for example, we refer to [4,10,12,17,30].

Another interesting bi-linear maps defined on Banach algebras are quasi-multipliers; we refer to [2, 21,22], for general information regarding quasi-multipliers. Quasi-multipliers are a generalization of multipliers, where a bi-linear mapping $m: A \times A \longrightarrow A$ is called a quasi-multiplier if

$$
m(a b, c d)=a m(b, c) d
$$

for all $a, b, c, d \in A$. The set of all quasi-multipliers on A is denoted by $\mathrm{QM}(A)$.
Let A be a Banach algebra and X be a Banach A-bimodule. By a module extension Banach algebra corresponding to A and X, we will mean the ℓ^{1}-direct sum of A and X i.e., $A \oplus_{1} X$ with the following algebra product and norm:

$$
\begin{gathered}
\left(a_{1}, x_{1}\right)\left(a_{2}, x_{2}\right)=\left(a_{1} a_{2}, a_{1} \cdot x_{2}+x_{1} \cdot a_{2}\right) \\
\|(a, x)\|=\|a\|_{A}+\|x\|_{X}
\end{gathered}
$$

for all $a_{1}, a_{2} \in A$ and $x_{1}, x_{2} \in X$. These algebras were studied initially by Zhang [29]. Some homological, cohomological results, results related to derivations on the second dual and module extension of dual Banach algebras are given in [3,13,23,24]. Triangular Banach algebras are considered extensively by Forrest and Marcoux as examples of module extension Banach algebras [14,15,16]. We refer to [5,11, $19,20,25,26,27]$, for more results related to homological and cohomological results of triangular Banach algebras. For Banach algebra $A \oplus_{1} X$, it is easy to see that

$$
\begin{equation*}
Z\left(A \oplus_{1} X\right)=\left(Z(A) \cap Z_{A}(X)\right) \times Z_{X}(A) \tag{1.1}
\end{equation*}
$$

for all $a, b, c, d \in A$.
Let A be a Banach algebra, X and Y two Banach A-bimodules. A linear operator $T: X \longrightarrow Y$ is called an A-bimodule map if $T(\alpha \cdot x \cdot \beta)=\alpha \cdot T(x) \cdot \beta$, for all $\alpha, \beta \in A$ and $x \in X$. We denote the set of all A-bimodule maps from X into $Y \operatorname{by~}_{\operatorname{Hom}}^{A}(X, Y)$. If $A=X=Y$, then $\operatorname{Hom}_{A}(A, A)$ is the multiplier algebra defined on A which is denoted by $M(A)$ and denote the set of all bounded bi-derivations from $A \times A$ into X, by $\mathrm{BD}(A, X)$ and denote two subsets consist of all inner and componential inner bi-derivations from $A \times A$ into X, by $\operatorname{IBD}(A, X)$ and $\operatorname{IBD}_{c}(A, X)$, respectively. We define two quotient groups $\operatorname{HBD}(A, X)$ and $\operatorname{HBD}_{c}(A, X)$ as follows:

$$
\operatorname{HBD}(A, X)=\frac{\operatorname{BD}(A, X)}{\operatorname{IBD}(A, X)} \quad \text { and } \quad \operatorname{HBD}_{c}(A, X)=\frac{\operatorname{BD}(A, X)}{\operatorname{IBD}_{c}(A, X)}
$$

If $A=X$, then we write $\mathrm{BD}(A, A)=\operatorname{BD}(A), \operatorname{HBD}(A, A)=\operatorname{HBD}(A)$ and $\operatorname{HBD}_{c}(A, A)=\operatorname{HBD}_{c}(A)$.
In this paper, in Section 2, we investigate bi-derivations on the module extensions of Banach algebras and characterize these bi-linear maps. In Section 3, we consider quasi-multipliers on the module extension Banach algebra $A \oplus_{1} X$.

2. Bi-derivations on $A \oplus_{1} X$

Now by the following result, we characterize bi-derivations on $A \oplus_{1} X$.
Theorem 2.1. Let $A \oplus_{1} X$ be a module extension Banach algebra, then $\mathcal{D} \in \operatorname{BD}\left(A \oplus_{1} X\right)$ if and only if

$$
\begin{equation*}
\mathcal{D}\left((a, x),\left(a^{\prime}, x^{\prime}\right)\right)=\left(\mathcal{D}_{A}\left(a, a^{\prime}\right)+\mathcal{D}_{A, X}\left(x, x^{\prime}\right), \mathcal{D}_{X}\left(x, x^{\prime}\right)+\mathcal{D}_{X, A}\left(a, a^{\prime}\right)\right) \tag{2.1}
\end{equation*}
$$

such that
(i) $\mathcal{D}_{A} \in \mathrm{BD}(A)$,
(ii) $\mathcal{D}_{X, A} \in \mathrm{BD}(A, X)$,
(iii) $\mathcal{D}_{A, X}$ is an A-bimodule map such that $x_{1} \cdot \mathcal{D}_{A, X}\left(x_{2}, x_{3}\right)=-\mathcal{D}_{A, X}\left(x_{1}, x_{2}\right) \cdot x_{3}$ and $x_{2} \cdot \mathcal{D}_{A, X}\left(x_{1}, x_{3}\right)=$ $-\mathcal{D}_{A, X}\left(x_{1}, x_{2}\right) \cdot x_{3}$, for all $a \in A$ and $x_{1}, x_{2}, x_{3} \in X$.
(iv) $\mathcal{D}_{X}\left(a \cdot x_{1}, x_{2}\right)=a \cdot \mathcal{D}_{X}\left(x_{1}, x_{2}\right)+\mathcal{D}_{A}(a, 0) \cdot x_{1}$ and $\mathcal{D}_{X}\left(x_{1}, x_{2} \cdot a\right)=\mathcal{D}_{X}\left(x_{1}, x_{2}\right) \cdot a+x_{2} \cdot \mathcal{D}_{A}(0, a)$, for all $a \in A$ and $x_{1}, x_{2} \in X$.

Moreover,

(iv) \mathcal{D} is inner if and only if $\mathcal{D}_{A}, \mathcal{D}_{X, A}$ are inner, $\mathcal{D}_{A, X}=0$ and $\mathcal{D}_{X}=0$.
(v) \mathcal{D} is inner respect to the first (second) component if and only if $\mathcal{D}_{A}, \mathcal{D}_{X, A}$ are inner respect to the first (second) component, $\mathcal{D}_{A, X}=0$ and $\mathcal{D}_{X}=0$.
(vi) \mathcal{D} is componential inner if and only if $\mathcal{D}_{A}, \mathcal{D}_{X, A}$ are componential inner, $\mathcal{D}_{A, X}=0$ and $\mathcal{D}_{X}=0$.

Proof. Let $\mathcal{D} \in \operatorname{BD}\left(A \oplus_{1} X\right)$. Define the canonical injective maps $\imath_{A}: A \times A \longrightarrow\left(A \oplus_{1} X\right) \times\left(A \oplus_{1} X\right)$, $\imath_{X}: X \times X \longrightarrow\left(A \oplus_{1} X\right) \times\left(A \oplus_{1} X\right)$ by $\imath_{A}\left(a, a^{\prime}\right)=\left((a, 0),\left(a^{\prime}, 0\right)\right), \imath_{X}\left(x, x^{\prime}\right)=\left((0, x),\left(0, x^{\prime}\right)\right)$, for all $a, a^{\prime} \in A, x, x^{\prime} \in X$ and projective maps $\pi_{A}:\left(A \oplus_{1} X\right) \longrightarrow A$ and $\pi_{X}:\left(A \oplus_{1} X\right) \longrightarrow X$. Let $\mathcal{D}_{A}:=\pi_{A} \circ \mathcal{D} \circ \imath_{A}: A \times A \longrightarrow A, \mathcal{D}_{X}:=\pi_{X} \circ \mathcal{D} \circ \imath_{X}: X \times X \longrightarrow X, \mathcal{D}_{A, X}:=\pi_{A} \circ \mathcal{D} \circ \imath_{X}: X \times X \longrightarrow A$ and $\mathcal{D}_{X, A}:=\pi_{X} \circ \mathcal{D} \circ \imath_{A}: A \times A \longrightarrow X$. Since, \mathcal{D} is bi-linear, the above-defined maps are bi-linear. Then

$$
\begin{equation*}
\mathcal{D}\left((a, x),\left(a^{\prime}, x^{\prime}\right)\right)=\left(\mathcal{D}_{A}\left(a, a^{\prime}\right)+\mathcal{D}_{A, X}\left(x, x^{\prime}\right), \mathcal{D}_{X}\left(x, x^{\prime}\right)+\mathcal{D}_{X, A}\left(a, a^{\prime}\right)\right) \tag{2.2}
\end{equation*}
$$

for all $a, a^{\prime} \in A$ and $x, x^{\prime} \in X$. For any $a_{1}, a_{2}, a_{3} \in A$ and $x_{1}, x_{2}, x_{3} \in X,(2.2)$ implies that

$$
\begin{align*}
\left(a_{1}, x_{1}\right) \cdot \mathcal{D}\left(\left(a_{2}, x_{2}\right),\left(a_{3}, x_{3}\right)\right)= & \left(a_{1}, x_{1}\right) \cdot\left(\mathcal{D}_{A}\left(a_{2}, a_{3}\right)+\mathcal{D}_{A, X}\left(x_{2}, x_{3}\right), \mathcal{D}_{X}\left(x_{2}, x_{3}\right)+\mathcal{D}_{X, A}\left(a_{2}, a_{3}\right)\right) \\
= & \left(a_{1} \mathcal{D}_{A}\left(a_{2}, a_{3}\right)+a_{1} \mathcal{D}_{A, X}\left(x_{2}, x_{3}\right), a_{1} \cdot \mathcal{D}_{X}\left(x_{2}, x_{3}\right)+a_{1} \cdot \mathcal{D}_{X, A}\left(a_{2}, a_{3}\right)\right. \\
& \left.+x_{1} \cdot \mathcal{D}_{A}\left(a_{2}, a_{3}\right)+x_{1} \cdot \mathcal{D}_{A, X}\left(x_{2}, x_{3}\right)\right) \tag{2.3}\\
\mathcal{D}\left(\left(a_{1}, x_{1}\right)\left(a_{2}, x_{2}\right),\left(a_{3}, x_{3}\right)\right)= & \mathcal{D}\left(\left(a_{1} a_{2}, a_{1} \cdot x_{2}+x_{1} \cdot a_{2}\right),\left(a_{3}, x_{3}\right)\right) \\
= & \left(\mathcal{D}_{A}\left(a_{1} a_{2}, a_{3}\right)+\mathcal{D}_{A, X}\left(a_{1} \cdot x_{2}+x_{1} \cdot a_{2}, x_{3}\right), \mathcal{D}_{X, A}\left(a_{1} a_{2}, a_{3}\right)\right. \\
& \left.+\mathcal{D}_{X}\left(a_{1} \cdot x_{2}+x_{1} \cdot a_{2}, x_{3}\right)\right) \tag{2.4}
\end{align*}
$$

and

$$
\begin{align*}
\mathcal{D}\left(\left(a_{1}, x_{1}\right),\left(a_{3}, x_{3}\right)\right) \cdot\left(a_{2}, x_{2}\right)= & \left(\mathcal{D}_{A}\left(a_{1}, a_{3}\right)+\mathcal{D}_{A, X}\left(x_{1}, x_{3}\right), \mathcal{D}_{X}\left(x_{1}, x_{3}\right)+\mathcal{D}_{X, A}\left(a_{1}, a_{3}\right)\right) \cdot\left(a_{2}, x_{2}\right) \\
= & \left(\mathcal{D}_{A}\left(a_{1}, a_{3}\right) a_{2}+\mathcal{D}_{A, X}\left(x_{1}, x_{3}\right) a_{2}, \mathcal{D}_{X}\left(x_{1}, x_{3}\right) \cdot a_{2}+\mathcal{D}_{X, A}\left(a_{1}, a_{3}\right) \cdot a_{2}\right. \\
& \left.+\mathcal{D}_{A}\left(a_{1}, a_{3}\right) \cdot x_{2}+\mathcal{D}_{A, X}\left(x_{1}, x_{3}\right) \cdot x_{2}\right) . \tag{2.5}
\end{align*}
$$

Since \mathcal{D} is a bi-derivation,

$$
\begin{equation*}
\mathcal{D}\left(\left(a_{1}, x_{1}\right)\left(a_{2}, x_{2}\right),\left(a_{3}, x_{3}\right)\right)=\left(a_{1}, x_{1}\right) \cdot \mathcal{D}\left(\left(a_{2}, x_{2}\right),\left(a_{3}, x_{3}\right)\right)+\mathcal{D}\left(\left(a_{1}, x_{1}\right),\left(a_{3}, x_{3}\right)\right) \cdot\left(a_{2}, x_{2}\right) \tag{2.6}
\end{equation*}
$$

Putting $x_{1}=x_{2}=x_{3}=0$, implies that

$$
\mathcal{D}_{A}\left(a_{1} a_{2}, a_{3}\right)=a_{1} \mathcal{D}_{A}\left(a_{2}, a_{3}\right)+\mathcal{D}_{A}\left(a_{1}, a_{3}\right) a_{2}
$$

and

$$
\mathcal{D}_{X, A}\left(a_{1} a_{2}, a_{3}\right)=a_{1} \cdot \mathcal{D}_{X, A}\left(a_{2}, a_{3}\right)+\mathcal{D}_{X, A}\left(a_{1}, a_{3}\right) \cdot a_{2}
$$

Thus, \mathcal{D}_{A} and $\mathcal{D}_{X, A}$ are derivations respect to the first component. If we put $a_{1}=a_{3}=0$, then

$$
\begin{equation*}
\mathcal{D}_{A, X}\left(x_{1} \cdot a_{2}, x_{3}\right)=\mathcal{D}_{A, X}\left(x_{1}, x_{3}\right) a_{2} \tag{2.7}
\end{equation*}
$$

and if $a_{2}=a_{3}=0$, we have

$$
\begin{equation*}
\mathcal{D}_{A, X}\left(a_{1} \cdot x_{2} \cdot x_{3}\right)=a_{1} \mathcal{D}_{A, X}\left(x_{2}, x_{3}\right) \tag{2.8}
\end{equation*}
$$

Thus, by (2.7) and (2.8), $\mathcal{D}_{A, X}$ is an A-bimodule respect to the first component. Letting $a_{1}=a_{2}=$ $a_{3}=0$ and $x_{1}=x_{2}=0$, imply that

$$
\begin{equation*}
\mathcal{D}_{X}\left(0, x_{3}\right)=0, \quad\left(x_{3} \in X\right) . \tag{2.9}
\end{equation*}
$$

By assuming $a_{1}=a_{2}=a_{3}=0$ and by (2.9), we have

$$
x_{1} \cdot \mathcal{D}_{A, X}\left(x_{2}, x_{3}\right)=-\mathcal{D}_{A, X}\left(x_{1}, x_{2}\right) \cdot x_{3} .
$$

Taking $a_{2}=a_{3}=0$ and $x_{1}=0$, imply that

$$
\mathcal{D}_{X}\left(a_{1} \cdot x_{2}, x_{3}\right)=a_{1} \cdot \mathcal{D}_{X}\left(x_{2}, x_{3}\right)+\mathcal{D}_{A}\left(a_{1}, 0\right) \cdot x_{2} .
$$

An argument similar to that in the above, for any $a_{1}, a_{2}, a_{3} \in A$ and $x_{1}, x_{2}, x_{3} \in X$, by (2.2), we have

$$
\begin{align*}
\left(a_{2}, x_{2}\right) \cdot \mathcal{D}\left(\left(a_{1}, x_{1}\right),\left(a_{3}, x_{3}\right)\right)= & \left(a_{2}, x_{2}\right) \cdot\left(\mathcal{D}_{A}\left(a_{1}, a_{3}\right)+\mathcal{D}_{A, X}\left(x_{1}, x_{3}\right), \mathcal{D}_{X}\left(x_{1}, x_{3}\right)+\mathcal{D}_{X, A}\left(a_{1}, a_{3}\right)\right) \\
= & \left(a_{2} \mathcal{D}_{A}\left(a_{1}, a_{3}\right)+a_{2} \mathcal{D}_{A, X}\left(x_{1}, x_{3}\right), a_{2} \cdot \mathcal{D}_{X}\left(x_{1}, x_{3}\right)+a_{2} \cdot \mathcal{D}_{X, A}\left(a_{1}, a_{3}\right)\right. \\
& \left.+x_{2} \cdot \mathcal{D}_{A}\left(a_{1}, a_{3}\right)+x_{2} \cdot \mathcal{D}_{A, X}\left(x_{1}, x_{3}\right)\right), \tag{2.10}\\
\mathcal{D}\left(\left(a_{1}, x_{1}\right),\left(a_{2}, x_{2}\right)\left(a_{3}, x_{3}\right)\right)= & \mathcal{D}\left(\left(a_{1}, x_{1}\right),\left(a_{2} a_{3}, a_{2} \cdot x_{3}+x_{2} \cdot a_{3}\right)\right) \\
= & \left(\mathcal{D}_{A}\left(a_{1}, a_{2} a_{3}\right)+\mathcal{D}_{A, X}\left(x_{1}, a_{2} \cdot x_{3}+x_{2} \cdot a_{3}\right), \mathcal{D}_{X, A}\left(a_{1}, a_{2} a_{3}\right)\right. \\
& \left.+\mathcal{D}_{X}\left(x_{1}, a_{2} \cdot x_{3}+x_{2} \cdot a_{3}\right)\right), \tag{2.11}
\end{align*}
$$

and

$$
\begin{align*}
\mathcal{D}\left(\left(a_{1}, x_{1}\right),\left(a_{2}, x_{2}\right)\right) \cdot\left(a_{3}, x_{3}\right)= & \left(\mathcal{D}_{A}\left(a_{1}, a_{2}\right)+\mathcal{D}_{A, X}\left(x_{1}, x_{2}\right), \mathcal{D}_{X}\left(x_{1}, x_{2}\right)+\mathcal{D}_{X, A}\left(a_{1}, a_{2}\right)\right) \cdot\left(a_{3}, x_{3}\right) \\
= & \left(\mathcal{D}_{A}\left(a_{1}, a_{2}\right) a_{3}+\mathcal{D}_{A, X}\left(x_{1}, x_{2}\right) a_{3}, \mathcal{D}_{X}\left(x_{1}, x_{2}\right) \cdot a_{3}+\mathcal{D}_{X, A}\left(a_{1}, a_{2}\right) \cdot a_{3}\right. \\
& \left.+\mathcal{D}_{A}\left(a_{1}, a_{2}\right) \cdot x_{3}+\mathcal{D}_{A, X}\left(x_{1}, x_{2}\right) \cdot x_{3}\right) . \tag{2.12}
\end{align*}
$$

Since \mathcal{D} is a bi-derivation,

$$
\begin{equation*}
\mathcal{D}\left(\left(a_{1}, x_{1}\right),\left(a_{2}, x_{2}\right)\left(a_{3}, x_{3}\right)\right)=\left(a_{2}, x_{2}\right) \cdot \mathcal{D}\left(\left(a_{1}, x_{1}\right),\left(a_{3}, x_{3}\right)\right)+\mathcal{D}\left(\left(a_{1}, x_{1}\right),\left(a_{2}, x_{2}\right)\right) \cdot\left(a_{3}, x_{3}\right) . \tag{2.13}
\end{equation*}
$$

Putting $x_{1}=x_{2}=x_{3}=0$, implies that

$$
\mathcal{D}_{A}\left(a_{1}, a_{2} a_{3}\right)=a_{2} \mathcal{D}_{A}\left(a_{1}, a_{3}\right)+\mathcal{D}_{A}\left(a_{1}, a_{2}\right) a_{3},
$$

and

$$
\mathcal{D}_{X, A}\left(a_{1}, a_{2} a_{3}\right)=a_{2} \cdot \mathcal{D}_{X, A}\left(a_{1}, a_{3}\right)+\mathcal{D}_{X, A}\left(a_{1}, a_{2}\right) \cdot a_{3} .
$$

Thus, \mathcal{D}_{A} and $\mathcal{D}_{X, A}$ are derivations respect to the second component. These imply that $\mathcal{D}_{A} \in \operatorname{BD}(A)$ and $\mathcal{D}_{X, A} \in \operatorname{BD}(A, X)$. If we put $a_{1}=a_{2}=0$, then

$$
\begin{equation*}
\mathcal{D}_{A, X}\left(x_{1}, x_{2} \cdot a_{3}\right)=\mathcal{D}_{A, X}\left(x_{1}, x_{2}\right) a_{3}, \tag{2.14}
\end{equation*}
$$

and if $a_{1}=a_{3}=0$, we have

$$
\begin{equation*}
\mathcal{D}_{A, X}\left(x_{1}, a_{2} \cdot x_{3}\right)=a_{2} \mathcal{D}_{A, X}\left(x_{1}, x_{3}\right) . \tag{2.15}
\end{equation*}
$$

Thus, by (2.14) and (2.15), $\mathcal{D}_{A, X}$ is an A-bimodule respect to the second component. Hence, $\mathcal{D}_{A, X}$ is an A-bimodule. Let $a_{1}=a_{2}=a_{3}=0$ and $x_{2}=x_{3}=0$, then

$$
\begin{equation*}
\mathcal{D}_{X}\left(0, x_{1}\right)=0, \quad\left(x_{1} \in X\right) . \tag{2.16}
\end{equation*}
$$

This implies that, if we set $a_{1}=a_{2}=a_{3}=0$, then

$$
x_{2} \cdot \mathcal{D}_{A, X}\left(x_{1}, x_{3}\right)=-\mathcal{D}_{A, X}\left(x_{1}, x_{2}\right) \cdot x_{3} .
$$

By letting $a_{1}=a_{2}=0$, we have

$$
\mathcal{D}_{X}\left(x_{1}, x_{2} \cdot a_{3}\right)=\mathcal{D}_{X}\left(x_{1}, x_{3}\right) \cdot a_{+} x_{2} \cdot \mathcal{D}_{A}\left(0, a_{3}\right) .
$$

This completes the proof and the converse is trivial. Now, suppose that \mathcal{D} is inner, then there exists $(b, y) \in Z\left(\mathcal{D}_{X}\right)$ such that

$$
\begin{align*}
\mathcal{D}\left((a, x),\left(a^{\prime}, x^{\prime}\right)\right) & =(b, y)\left[(a, x),\left(a^{\prime}, x^{\prime}\right)\right] \\
& =\left(a a^{\prime} b-b a^{\prime} a, y \cdot a a^{\prime}-y \cdot a^{\prime} a+b a \cdot x^{\prime}-b \cdot x^{\prime} \cdot a+b \cdot x \cdot a^{\prime}-b a^{\prime} \cdot x\right) \\
& =\left(\mathcal{D}_{A}\left(a, a^{\prime}\right)+\mathcal{D}_{A, X}\left(x, x^{\prime}\right), \mathcal{D}_{X}\left(x, x^{\prime}\right)+\mathcal{D}_{X, A}\left(a, a^{\prime}\right)\right) \tag{2.17}
\end{align*}
$$

for all $(a, x),\left(a^{\prime}, x^{\prime}\right) \in A \oplus_{1} X$. If $x=x^{\prime}=0$, then $\mathcal{D}_{A}\left(a, a^{\prime}\right)=a a^{\prime} b-b a^{\prime} a=b\left[a, a^{\prime}\right]$ and $\mathcal{D}_{X, A}\left(a, a^{\prime}\right)=$ $y \cdot a a^{\prime}-y \cdot a^{\prime} a=y\left[a, a^{\prime}\right]$. If $a=a^{\prime}=0$, then

$$
\begin{aligned}
(0,0) & =\mathcal{D}(0,0)=\mathcal{D}\left((0, x),\left(0, x^{\prime}\right)\right) \\
& =\left(0, \mathcal{D}_{X}\left(x, x^{\prime}\right)\right)
\end{aligned}
$$

for all $x, x^{\prime} X$. This implies that $\mathcal{D}_{X}=0$ and $\mathcal{D}_{A, X}=0$. Thus (iv) holds.
(v) Let \mathcal{D} be inner respect to the first component. Thus, there exists $(b, y) \in \mathcal{D}_{X}$ such that

$$
\begin{aligned}
\mathcal{D}\left((a, x),\left(a^{\prime}, x^{\prime}\right)\right) & =(a, x)(b, y)-(b, y)(a, x) \\
& =(a b-b a, a \cdot y-y \cdot a+x \cdot b-b \cdot x) \\
& =\left(\mathcal{D}_{A}\left(a, a^{\prime}\right)+\mathcal{D}_{A, X}\left(x, x^{\prime}\right), \mathcal{D}_{X}\left(x, x^{\prime}\right)+\mathcal{D}_{X, A}\left(a, a^{\prime}\right)\right)
\end{aligned}
$$

for all $(a, x),\left(a^{\prime}, x^{\prime}\right) \in A \oplus_{1} X$. Letting $x=x^{\prime}=0$ implies that \mathcal{D}_{A} and $\mathcal{D}_{X, A}$ are inner respect to the first component. If $a=a^{\prime}=0$, then $\mathcal{D}_{X}=0$ and $\mathcal{D}_{A, X}=0$. Similarly, we can investigate the above obtained results for the second component.

For (vi) apply (v).
Corollary 2.2. Let $A \oplus_{1} X$ be a module extension Banach algebra such that $\operatorname{HBD}(A)=0$ and $\operatorname{HBD}(A, X)=0$. Then $\operatorname{HBD}\left(A \oplus_{1} X\right)=0$

Similarly, we have:
Corollary 2.3. Let $A \oplus_{1} X$ be a module extension Banach algebra such that $\operatorname{HBD}_{c}(A)=0$ and $\operatorname{HBD}_{c}(A, X)=0$. Then $\operatorname{HBD}_{c}\left(A \oplus_{1} X\right)=0$

Corollary 2.4. Let $A \oplus_{1} A$ be a module extension Banach algebra such that $\operatorname{HBD}_{c}(A)=0$. Then $\operatorname{HBD}_{c}\left(A \oplus_{1} A\right)=0$

Example 2.5. Let A be a super amenable Banach algebra i.e., every derivation from A into any Banach A-bimodule X is inner (see [28]). Then by Corollary 2.4, we have $\operatorname{HBD}_{c}\left(A \oplus_{1} A\right)=0$.
Proposition 2.6. Let $A \oplus_{1} X$ be a module extension Banach algebra and $T \in B^{2}(X, X)$ be an A-bimodule map. Then $\mathcal{D}:\left(A \oplus_{1} X\right) \times\left(A \oplus_{1} X\right) \longrightarrow A \oplus_{1} X$ defined by $\mathcal{D}\left((a, x),\left(a^{\prime}, x^{\prime}\right)\right)=\left(0, T\left(x, x^{\prime}\right)\right)$, for all $(a, x),\left(a^{\prime}, x^{\prime}\right) \in A \oplus_{1} X$, is a bi-derivation. Moreover, \mathcal{D} is inner if and only if $T=0$.

Proof. Straightforward.
Lemma 2.7. Let $A \oplus_{1} X$ be a module extension Banach algebra and $\mathcal{D}_{A}: A \times A \longrightarrow A$ be an inner bi-derivation. Then there is an inner bi-derivation \mathcal{D} on $A \oplus_{1} X$ related to \mathcal{D}_{A}.
Proof. If \mathcal{D}_{A} is an inner bi-derivation, then there exists $c \in Z(A)$ such that $\mathcal{D}_{A}\left(a, a^{\prime}\right)=c\left[a, a^{\prime}\right]$, for all $a, a^{\prime} \in A$. Define $\mathcal{D}:\left(A \oplus_{1} X\right) \times\left(A \oplus_{1} X\right) \longrightarrow\left(A \oplus_{1} X\right)$ by

$$
\begin{equation*}
\mathcal{D}\left((a, x),\left(a^{\prime}, x^{\prime}\right)\right)=\left(\mathcal{D}_{A}\left(a, a^{\prime}\right), c\left[a, x^{\prime}\right]+c\left[a^{\prime}, x\right]\right) \tag{2.18}
\end{equation*}
$$

for all $(a, x),\left(a^{\prime}, x^{\prime}\right) \in A \oplus_{1} X$. Clearly, \mathcal{D} is bounded and bi-linear. We show that there exists $(b, y) \in$ $Z\left(A \oplus_{1} X\right)$ such that $\mathcal{D}\left((a, x),\left(a^{\prime}, x^{\prime}\right)\right)=(b, y)\left[(a, x),\left(a^{\prime}, x^{\prime}\right)\right]$, for all $(a, x),\left(a^{\prime}, x^{\prime}\right) \in A \oplus_{1} X$. We set $(b, y)=(c, 0)$. Then it is easy to see that $\mathcal{D}\left((a, x),\left(a^{\prime}, x^{\prime}\right)\right)=(c, 0)\left[(a, x),\left(a^{\prime}, x^{\prime}\right)\right]$, for all $(a, x),\left(a^{\prime}, x^{\prime}\right) \in$ $A \oplus_{1} X$.

We denote the set of all A-bimodule bi-linear maps from a Banach A-bimodule $Y \times Y$ into an other Banach A-bimodule Z by $\mathbb{H O M}_{A}(Y \times Y, Z)$. We now give an interesting result related to the bi-derivations on module extension algebras.

Theorem 2.8. Let $A \oplus_{1} X$ be a module extension Banach algebra, $\operatorname{HBD}(A)=0$ and let the only Abimodule map $\mathcal{P} \in B^{2}(X, A)$ satisfies $x_{1} \cdot \mathcal{P}\left(x_{2}, x_{3}\right)+\mathcal{P}\left(x_{1}, x_{2}\right) \cdot x_{3}=0$, for all $x_{1}, x_{2}, x_{3} \in X$ be 0 , then

$$
\begin{equation*}
\operatorname{HBD}\left(A \oplus_{1} X\right) \cong \operatorname{HBD}(A, X) \oplus \mathbb{H O M}_{A}(X \times X, X) \tag{2.19}
\end{equation*}
$$

as vector spaces.
Proof. Since $\operatorname{HBD}(A)=0$, for any $\mathcal{D}_{A} \in \operatorname{BD}(A)$ and $a \in A, X \cdot \mathcal{D}_{A}(0, a)=\mathcal{D}_{A}(a, 0) \cdot X=0$. Thus, \mathcal{D}_{X} is an A-bimodule. Define $\Phi: \operatorname{BD}(A, X) \oplus \mathbb{H O M}_{A}(X \times X, X) \longrightarrow \operatorname{HBD}\left(A \oplus_{1} X\right)$ by $\Phi(R, S)=\left[\mathcal{D}_{R, S}^{\prime}\right]$, where $\left[\mathcal{D}_{R, S}^{\prime}\right]$ is the equivalence class of $\mathcal{D}_{R, S}^{\prime}$ in $\operatorname{HBD}\left(A \oplus_{1} X\right)$ and $\mathcal{D}_{R, S}^{\prime}\left((a, x),\left(a, x^{\prime}\right)\right)=\left(0, R\left(x, x^{\prime}\right)+S\left(a, a^{\prime}\right)\right)$, for all $(a, x),\left(a, x^{\prime}\right) \in A \oplus_{1} X$. Clearly, Φ is linear. We show that Φ is surjective. Let $\mathcal{D} \in \operatorname{BD}(A, X)$, then by Theorem 2.1, \mathcal{D} is as the following form:

$$
\mathcal{D}\left((a, x),\left(a^{\prime}, x^{\prime}\right)\right)=\left(\mathcal{D}_{A}\left(a, a^{\prime}\right), \mathcal{D}_{X}\left(x, x^{\prime}\right)+\mathcal{D}_{X, A}\left(a, a^{\prime}\right)\right)
$$

for all $(a, x),\left(a, x^{\prime}\right) \in A \oplus_{1} X$, note that according to the our assumption $\mathcal{D}_{A, X}=0$. Since $\operatorname{HBD}(A)=0$, there exists $c \in Z(A)$ such that $\mathcal{D}_{A}\left(a, a^{\prime}\right)=c\left[a, a^{\prime}\right]$, for all $a, a^{\prime} \in A$. Define $T:\left(A \oplus_{1} X\right) \times\left(A \oplus_{1} X\right) \longrightarrow X$ by $T\left((a, x),\left(a^{\prime}, x^{\prime}\right)\right)=c\left[a, x^{\prime}\right]+c\left[a^{\prime}, x\right]$ and

$$
\begin{align*}
\mathcal{D}_{R, S}\left((a, x),\left(a, x^{\prime}\right)\right) & =\mathcal{D}_{\mathcal{D}_{X}, \mathcal{D}_{X, A}-T}\left((a, x),\left(a, x^{\prime}\right)\right) \\
& =\left(0, \mathcal{D}_{X}\left(x, x^{\prime}\right)+\mathcal{D}_{X, A}\left(a, a^{\prime}\right)-c\left[a, x^{\prime}\right]-c\left[a^{\prime}, x\right]\right) \tag{2.20}
\end{align*}
$$

for all $(a, x),\left(a, x^{\prime}\right) \in A \oplus_{1} X$. Then

$$
\mathcal{D}\left((a, x),\left(a^{\prime}, x^{\prime}\right)\right)-\mathcal{D}_{\mathcal{D}_{X}, \mathcal{D}_{X, A}-T}^{\prime}\left((a, x),\left(a, x^{\prime}\right)\right)=\left(\mathcal{D}_{A}\left(a, a^{\prime}\right), c\left[a, x^{\prime}\right]+c\left[a^{\prime}, x\right]\right)
$$

for all $(a, x),\left(a^{\prime}, x^{\prime}\right) \in A \oplus_{1} X$. Then by the proof of Lemma 2.7(i), we have $\mathcal{D}-\mathcal{D}_{\mathcal{D}_{X}, \mathcal{D}_{X, A}-T}^{\prime}$ is an inner bi-derivation. Thus, $\Phi(R, S)=\left[\mathcal{D}_{R, S}\right]=[\mathcal{D}]$. Finally, by Proposition 2.6, we have

$$
\begin{aligned}
\operatorname{ker} \Phi & =\left\{\left(\mathcal{D}_{X, A}, \mathcal{D}_{X}\right) \in \operatorname{BD}(A, X) \oplus \mathbb{H O}_{\mathbb{M}_{A}}(X \times X, X): \mathcal{D}_{\mathcal{D}_{X, A}, \mathcal{D}_{X}} \text { is central inner }\right\} \\
& =\left\{\left(\mathcal{D}_{X, A}, \mathcal{D}_{X}\right) \in \operatorname{BD}(A, X) \oplus \mathbb{H O M}_{A}(X \times X, X): \mathcal{D}_{X, A} \in \operatorname{IBD}(A, X) \text { and } \mathcal{D}_{X}=0\right\} \\
& =\operatorname{IBD}(A, X)
\end{aligned}
$$

This implies that (2.19) holds.

Note that in the above Theorem if $X=A$, then $\mathbb{H O M}_{A}(A \times A, A)=\operatorname{QM}(A)$ and so, by assumptions in Theorem 2.8, we have

$$
\begin{equation*}
\operatorname{HBD}\left(A \oplus_{1} X\right) \cong \operatorname{QM}(A) \tag{2.21}
\end{equation*}
$$

Example 2.9. Let M_{n} be an algebra consists of all $n \times n$ matrices over \mathbb{C}. Let $\mathcal{P} \in B^{2}\left(M_{n}, M_{n}\right)$ be an M_{n}-bimodule map such that $A \cdot \mathcal{P}(B, C)=-\mathcal{P}(A, B) \cdot C$, for all $A, B, C \in M_{n}$. Note that there are $A, B \in M_{n}$ such that $\mathcal{P}(A, B) \neq-\mathcal{P}(B, A)$. Suppose that $\mathcal{P}(A, B)=\left(\alpha_{i j}\right)_{n \times n}$ and $\mathcal{P}(B, A)=\left(\beta_{i j}\right)_{n \times n}$. Let $a \in A$ and set $A=C=\left(a_{i j}\right)_{n \times n} \in M_{n}$ such that $a_{i i}=a$ and $a_{i j}=0$, for all $i \neq j$, where $1 \leq i, j \leq n$. Then

$$
\begin{aligned}
\left(a \beta_{i j}\right)_{n \times n} & =A \cdot \mathcal{P}(B, A)=-\mathcal{P}(A, B) \cdot A \\
& =-\left(\alpha_{i j} a\right)_{n \times n}
\end{aligned}
$$

This implies that $\alpha_{i j}=-\beta_{i j}$, for all $1 \leq i, j \leq n$, a contradiction. Thus, $\mathcal{P}=0$. By [8, Propositions 1.3.51 and 1.3.52], M_{n} is a simple algebra and consequently is a prime Banach algebra. From [6, Theorem 3.3], we have $\operatorname{HBD}\left(M_{n}\right)=0$. Then (2.21) implies that $\operatorname{HBD}\left(M_{n} \oplus_{1} M_{n}\right) \cong \operatorname{QM}\left(M_{n}\right)$.

3. Quasi-multipliers

As we mentioned in the first section, quasi multipliers are a generalization of multipliers. In [9], Daws introduced a module version of multiplies that is another generalization of multipliers. He called a linear map T from a Banach algebra A into a Banach A-bimodule X, a left multiplier of X; if $T(a b)=T(a) \cdot b$, for all $a, b \in A$. Similarly, T is a right multiplier of X; if $T(a b)=a \cdot T(b)$, for all $a, b \in A$. In this section, we say that $m: A \times A \longrightarrow X$ is a quasi-multiplier of X or $m \in \mathrm{QM}(A, X)$, if $m(a b, c d)=a \cdot m(b, c) \cdot d$, for all $a, b, c, d \in A$. Our aim in this section is characterizing of quasi-multipliers on the module extensions $A \oplus_{1} X$.

Theorem 3.1. Let $A \oplus_{1} X$ be a module extension Banach algebra, then $m \in \operatorname{QM}\left(A \oplus_{1} X\right)$ if and only if

$$
\begin{equation*}
m\left((a, x),\left(a^{\prime}, x^{\prime}\right)\right)=\left(m_{A}\left(a, a^{\prime}\right)+m_{A, X}\left(x, x^{\prime}\right), m_{X}\left(x, x^{\prime}\right)+m_{X, A}\left(a, a^{\prime}\right)\right) \tag{3.1}
\end{equation*}
$$

such that
(i) $m_{A} \in \operatorname{QM}(A)$,
(ii) $m_{X, A} \in \operatorname{QM}(A, X)$,
(iii) $m_{A, X}$ is an A-bimodule map such that $x_{1} \cdot m_{A, X}\left(x_{2}, x_{3}\right)=m_{A, X}\left(x_{1}, x_{2}\right) \cdot x_{3}=0$.
(iv) m_{X} is an A-bimodule map such that $m_{X}(x, 0)=m_{X}(0, x)=0$, for every $x \in X$.

Proof. Let $m \in \mathrm{QM}\left(A \oplus_{1} X\right)$. Suppose that the mappings $\imath_{A}, \imath_{X}, \pi_{A}:\left(A \oplus_{1} X\right) \longrightarrow A$ and π_{X} : $\left(A \oplus_{1} X\right) \longrightarrow X$ are the same as the proof of Theorem 2.1. Let $m_{A}:=\pi_{A} \circ m \circ \imath_{A}: A \times A \longrightarrow A, m_{X}:=$ $\pi_{X} \circ m \circ \imath_{X}: X \times X \longrightarrow X, m_{A, X}:=\pi_{A} \circ m \circ \imath_{X}: X \times X \longrightarrow A$ and $m_{X, A}:=\pi_{X} \circ m \circ \imath_{A}: A \times A \longrightarrow X$. Since, m is bi-linear, the above-defined maps are bi-linear. Then

$$
\begin{equation*}
m\left((a, x),\left(a^{\prime}, x^{\prime}\right)\right)=\left(m_{A}\left(a, a^{\prime}\right)+m_{A, X}\left(x, x^{\prime}\right), m_{X}\left(x, x^{\prime}\right)+m_{X, A}\left(a, a^{\prime}\right)\right) \tag{3.2}
\end{equation*}
$$

for all $a, a^{\prime} \in A$ and $x, x^{\prime} \in X$. For any $a_{1}, a_{2}, a_{3} \in A$ and $x_{1}, x_{2}, x_{3} \in X,(2.2)$ implies that

$$
\begin{align*}
\left(a_{1}, x_{1}\right) m\left(\left(a_{2}, x_{2}\right),\left(a_{3}, x_{3}\right)\right)= & \left(a_{1}, x_{1}\right)\left(m_{A}\left(a_{2}, a_{3}\right)+m_{A, X}\left(x_{2}, x_{3}\right), m_{X}\left(x_{2}, x_{3}\right)+m_{X, A}\left(a_{2}, a_{3}\right)\right) \\
= & \left(a_{1} m_{A}\left(a_{2}, a_{3}\right)+a_{1} m_{A, X}\left(x_{2}, x_{3}\right), a_{1} \cdot m_{X}\left(x_{2}, x_{3}\right)+a_{1} \cdot m_{X, A}\left(a_{2}, a_{3}\right)\right. \\
& \left.+x_{1} \cdot m_{A}\left(a_{2}, a_{3}\right)+x_{1} \cdot m_{A, X}\left(x_{2}, x_{3}\right)\right) \tag{3.3}
\end{align*}
$$

and

$$
\begin{align*}
m\left(\left(a_{1}, x_{1}\right)\left(a_{2}, x_{2}\right),\left(a_{3}, x_{3}\right)\right)= & m\left(\left(a_{1} a_{2}, a_{1} \cdot x_{2}+x_{1} \cdot a_{2}\right),\left(a_{3}, x_{3}\right)\right) \\
= & \left(m_{A}\left(a_{1} a_{2}, a_{3}\right)+m_{A, X}\left(a_{1} \cdot x_{2}+x_{1} \cdot a_{2}, x_{3}\right), m_{X, A}\left(a_{1} a_{2}, a_{3}\right)\right. \\
& \left.+m_{X}\left(a_{1} \cdot x_{2}+x_{1} \cdot a_{2}, x_{3}\right)\right) \\
= & \left(m_{A}\left(a_{1} a_{2}, a_{3}\right)+m_{A, X}\left(a_{1} \cdot x_{2}, x_{3}\right)+m_{A, X}\left(x_{1} \cdot a_{2}, x_{3}\right), m_{X, A}\left(a_{1} a_{2}, a_{3}\right)\right. \\
& \left.+m_{X}\left(a_{1} \cdot x_{2}, x_{3}\right)+m_{X}\left(x_{1} \cdot a_{2}, x_{3}\right)\right) \tag{3.4}
\end{align*}
$$

Putting $x_{1}=x_{2}=x_{3}=0$, implies that

$$
\begin{equation*}
m_{A}\left(a_{1} a_{2}, a_{3}\right)=a_{1} m_{A}\left(a_{2}, a_{3}\right) \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
m_{X, A}\left(a_{1} a_{2}, a_{3}\right)=a_{1} \cdot m_{X, A}\left(a_{2}, a_{3}\right) \tag{3.6}
\end{equation*}
$$

Moreover, putting $a_{1}=a_{2}=a_{3}=0$ and $x_{1}=0$, imply that $m_{X}\left(0, x_{3}\right)=0$ and for $a_{1}=a_{2}=a_{3}=0$,

$$
\begin{equation*}
x_{1} \cdot m_{A, X}\left(x_{2}, x_{3}\right)=0 \tag{3.7}
\end{equation*}
$$

By letting $a_{2}=a_{3}=0$ and (3.7), we have

$$
\begin{equation*}
m_{X}\left(a_{1} \cdot x_{2} \cdot, x_{3}\right)=a_{1} \cdot m_{X}\left(x_{2}, x_{3}\right) \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
m_{A, X}\left(a_{1} \cdot x_{2}, x_{3}\right)=a_{1} \cdot m_{A, X}\left(x_{2}, x_{3}\right) \tag{3.9}
\end{equation*}
$$

An argument similar to that in the above, for any $a_{1}, a_{2}, a_{3} \in A$ and $x_{1}, x_{2}, x_{3} \in X$, by (2.2), we have

$$
\begin{align*}
m\left(\left(a_{1}, x_{1}\right),\left(a_{2}, x_{2}\right)\left(a_{3}, x_{3}\right)\right)= & m\left(\left(a_{1}, x_{1}\right),\left(a_{2} a_{3}, a_{2} \cdot x_{3}+x_{2} \cdot a_{3}\right)\right) \\
= & \left(m_{A}\left(a_{1}, a_{2} a_{3}\right)+m_{A, X}\left(x_{1}, a_{2} \cdot x_{3}+x_{2} \cdot a_{3}\right), m_{X, A}\left(a_{1}, a_{2} a_{3}\right)\right. \\
& \left.+m_{X}\left(x_{1}, a_{2} \cdot x_{3}+x_{2} \cdot a_{3}\right)\right), \tag{3.10}
\end{align*}
$$

and

$$
\begin{align*}
m\left(\left(a_{1}, x_{1}\right),\left(a_{2}, x_{2}\right)\right) \cdot\left(a_{3}, x_{3}\right)= & \left(m_{A}\left(a_{1}, a_{2}\right)+m_{A, X}\left(x_{1}, x_{2}\right), m_{X}\left(x_{1}, x_{2}\right)+m_{X, A}\left(a_{1}, a_{2}\right)\right) \cdot\left(a_{3}, x_{3}\right) \\
= & \left(m_{A}\left(a_{1}, a_{2}\right) a_{3}+m_{A, X}\left(x_{1}, x_{2}\right) a_{3}, m_{X}\left(x_{1}, x_{2}\right) \cdot a_{3}+m_{X, A}\left(a_{1}, a_{2}\right) \cdot a_{3}\right. \\
& \left.+m_{A}\left(a_{1}, a_{2}\right) \cdot x_{3}+m_{A, X}\left(x_{1}, x_{2}\right) \cdot x_{3}\right) . \tag{3.11}
\end{align*}
$$

Then, by putting $x_{1}=x_{2}=x_{3}=0$, we have

$$
\begin{equation*}
m_{A}\left(a_{1}, a_{2} a_{3}\right)=m_{A}\left(a_{1}, a_{2}\right) a_{3} \tag{3.12}
\end{equation*}
$$

and

$$
\begin{equation*}
m_{X, A}\left(a_{1}, a_{2} a_{3}\right)=m_{X, A}\left(a_{1}, a_{2}\right) \cdot a_{3} \tag{3.13}
\end{equation*}
$$

Thus, (3.5), (3.6), (3.12) and (3.13) imply that $m_{A} \in \operatorname{QM}(A)$ and $m_{X, A} \in \mathrm{QM}(A, X)$. Set $a_{1}=a_{2}=$ $a_{3}=0$ and $x_{3}=0$, then $m_{X}\left(x_{1}, 0\right)=0$. This implies that, for $a_{1}=a_{2}=a_{3}=0$,

$$
\begin{equation*}
m_{A, X}\left(x_{1}, x_{2}\right) \cdot x_{3}=0 \tag{3.14}
\end{equation*}
$$

If we put $a_{1}=a_{2}=0$, by (3.14),

$$
\begin{equation*}
m_{X}\left(x_{1}, x_{2} \cdot a_{3}\right)=m_{X}\left(x_{1}, x_{2}\right) \cdot a_{3}, \tag{3.15}
\end{equation*}
$$

and if $a_{1}=a_{3}=0$, we have

$$
\begin{equation*}
m_{A, X}\left(x_{1}, x_{2} \cdot a_{3}\right)=m_{A, X}\left(x_{1}, x_{3}\right) a_{3} \tag{3.16}
\end{equation*}
$$

Thus, by (3.15) and (3.16), $m_{A, X}$ and m_{X} are right A-module. Hence, $m_{A, X}$ and m_{X} are A-bimodule.

Remark 3.2. In the module extension Banach algebra $A \oplus_{1} X$, if $A=X$ is one of the following Banach algebra: (1) without of order, i.e., for any $a, b \in A, a b=0$ implies that $a=0$ or $b=0$, (2) unital, (3) a Banach algebra with a non-zero idempotent element or (4) a Banach algebra with a left (right) bounded approximate identity, then the map $m_{A, X}$ in Theorem 3.1 is zero. Thus, $m \in \operatorname{QM}\left(A \oplus_{1} X\right)$ if and only if

$$
\begin{equation*}
m\left((a, x),\left(a^{\prime}, x^{\prime}\right)\right)=\left(m_{A}\left(a, a^{\prime}\right), m_{X}\left(x, x^{\prime}\right)+m_{X, A}\left(a, a^{\prime}\right)\right) \tag{3.17}
\end{equation*}
$$

such that
(i) $m_{A} \in \operatorname{QM}(A)$,
(ii) $m_{X, A} \in \operatorname{QM}(A)$,
(iii) $m_{X} \in \operatorname{QM}(A)$ such that $m_{X}(x, 0)=m_{X}(0, x)=0$, for every $x \in A$.

If we denote the set of all quasi-multipliers such as m_{X} by $\operatorname{QM}(A)^{\prime}$, then we can write

$$
\begin{equation*}
\operatorname{QM}\left(A \oplus_{1} A\right)=\operatorname{QM}(A) \oplus\left(\operatorname{QM}(A)+\operatorname{QM}(A)^{\prime}\right) \tag{3.18}
\end{equation*}
$$

Example 3.3. Let G be a locally compact group, $L^{1}(G)$ and $M(G)$ be the group and the measure algebras on G, respectively. Then by [22] and Remark 3.2, we have

$$
\begin{aligned}
\operatorname{QM}\left(L^{1}(G) \oplus_{1} L^{1}(G)\right) & =\operatorname{QM}\left(L^{1}(G)\right) \oplus\left(\operatorname{QM}\left(L^{1}(G)\right)+\operatorname{QM}\left(L^{1}(G)\right)^{\prime}\right) \\
& =M(G) \oplus\left(M(G)+\operatorname{QM}\left(L^{1}(G)\right)^{\prime}\right)
\end{aligned}
$$

Example 3.4. Let G be a non-compact locally compact abelian group, $A(G)$ and $B(G)$ be the Fourier and the Fourier-Stieltjes algebras on G, respectively. We have $L^{1}(G)=A(\hat{G})$, where \hat{G} is the dual of G and $M(\hat{G}) \cong B(G)$. Then by Example 3.3, we have

$$
\begin{aligned}
\operatorname{QM}\left(A(G) \oplus_{1} A(G)\right) & =\operatorname{QM}\left(L^{1}(\hat{G}) \oplus_{1} L^{1}(\hat{G})\right) \\
& =M(\hat{G}) \oplus\left(M(\hat{G})+\operatorname{QM}\left(L^{1}(\hat{G})\right)^{\prime}\right) \\
& =B(G) \oplus\left(B(G)+\operatorname{QM}\left(L^{1}(G)\right)^{\prime}\right)
\end{aligned}
$$

Let S be a locally compact semigroup and $M(S)$ be the space of all bounded complex regular Borel measures on S. A locally compact semigroup S is called a foundation semigroup if $\bigcup\{\operatorname{supp}(\mu): \mu \in$ $\left.M_{a}(S)\right\}$ is dense in S, where $M_{a}(S)$ is a subspace of $M(S)$ contains all $\mu \in M(S)$ such that the maps $s \mapsto \delta_{s} *|\mu|$ and $s \mapsto|\mu| * \delta_{s}$ from S into $M(S)$ are continuous (δ_{s} denotes the Dirac measure at s). A complex-valued bounded function g on S is called $M_{a}(S)$-measurable, if it is μ-measurable, for all $\mu \in M_{a}(S)$. The space of such functions denotes by $L^{\infty}\left(S, M_{a}(S)\right)$ and, for every $g \in L^{\infty}\left(S, M_{a}(S)\right)$,

$$
\|g\|_{\infty}=\sup \left\{\|g\|_{\infty,|\mu|}: \mu \in M_{a}(S)\right\}
$$

where $\|g\|_{\infty,|\mu|}$ denotes the essential supremum norm with respect to $|\mu|$. The semigroup S is called compactly cancellative if for any two compact subsets C and D of S, the following two sets are compact subsets of S

$$
\begin{aligned}
C D^{-1} & =\{x \in S: x d \in C \text { for some } d \in D\} \\
D C^{-1} & =\{x \in S: c x \in D \text { for some } c \in D\}
\end{aligned}
$$

Example 3.5. Let S be a compactly cancellative foundation semigroup with identity. Then by [1, Corollary 3.2], $\operatorname{QM}\left(M_{a}(S)\right)=M(S)$. Thus

$$
\operatorname{QM}\left(M_{a}(S) \oplus_{1} M_{a}(S)\right)=M(S) \oplus\left(M(S)+\operatorname{QM}\left(M_{a}(S)\right)^{\prime}\right)
$$

Acknowledgments

The authors would like to thank the referees for the careful reading of the paper and for their useful comments.

References

1. A. Alinejad and M. Rostami, Quasi-multipliers on Banach algebras related to locally compact semigroups, Semigroup Forum, 100, 651-661, (2020).
2. C. A. Akemanna and G. K. Pedersen, Complications of semi-continuity in C^{*}-algebra theory, Duke Math. J. 40, 785-795, (1973).
3. A. Bagheri Vakilabad, K. Haghnejad Azar and A. Jabbari, Arens regularity of module actions and weak amenability of Banach algebras, Period. Math. Hung., 71(2), 224-235, (2015).
4. D. Benkovič, Biderivations of triangular algebras, Linear Algebra Appl. 431, 1587-1602, (2009).
5. A. Bodaghi and A. Jabbari, n-Weak module amenability of triangular Banach algebras, Math. Slovaca, 65(3), 645-666, (2015).
6. M. Bres̆ar, W. S. Martindale and C.R. Miers, Centralizing maps in prime rings with involution, J. Algebra, 161, 342-357, (1993).
7. M. Bres̆ar, On certain pairs of functions of semiprime rings, Proc. Amer. Math. Soc. 120, 709-713, (1994).
8. H. G. Dales, Banach algebras and Automatic Continuity, London Math. Society Monographs, Volume 24, Clarendon Press, Oxford, 2000.
9. M. Daws, Multipliers, self-induced and dual Banach algebras, Dissert. Math. 470, 1-62, (2010).
10. Y. Du and Y. Wang, Biderivations of generalized matrix algebras, Linear Algebra Appl. 438, 4483-4499, (2013).
11. A. Ebadian and A. Jabbari, Weak*-continuous derivations on module extension of dual Banach algebras, Southeast Asian Bull. Math. 39(3), 347-363, (2015).
12. A. Erfanian Attar, S. Barootkoob and H.R. Ebrahimi Vishki, On Extension of bi-derivations to the bidual of Banach algebras, Filomat, 30(8), 2261-2267, (2016).
13. M. Eshaghi Gordji, F. Habibian and A. Rejali, Module extension of dual Banach algebras, Bull. Korean Math. Soc. 47(4), 663-673, (2010).
14. B. E. Forrest and L. W. Marcoux, Derivations of triangular Banach algebras, Indiana Univ. Math. J. 45, 441-462, (1996).
15. B. E. Forrest and L. W. Marcoux, Weak amenability of triangular Banach algebras, Trans. Amer. Math. Soc. 354, 1435-1452, (2002).
16. B. E. Forrest and L. W. Marcoux, Second order cohomology of triangular Banach algebras, Houston J. Math. 30(4), 1157-1176, (2004).
17. N. M. Ghosseiri, On biderivations of upper triangular matrix rings, Linear Algebra Appl. 438, 250-260, (2013).
18. A. Ya. Helemskii, The Homology of Banach and Topological Algebras, Translated from the Russian by A. West. Mathematics and its Applications (Soviet Series) 41, Kluwer Academic Publishers Group, Dordrecht, 1989.
19. A. Jabbari and H. Hosseinzadeh, Second order (σ, τ)-cohomology of triangular Banach algebras, U. P. B. Sci. Bull., Series A, 75(3), 59-66, (2013).
20. M. Khosravi, M. S. Moslehian and A. N. Motlagh, Vanishing of the first (σ, τ)-cohomollogy group of triangular Banach algebras, Meth. Funct. Anal. Top., 14(4), 351-360, (2008).
21. K. Mckennon, Continuous convergence and the spectrum of a C^{*}-algebra, General Topology Appl. 5, 249-262, (1975).
22. K. Mckennon, Quasi-multipliers, Trans. Amer. Math. Soc. 233, 105-123, (1977).
23. A. R. Medghalchi and H. Pourmahmood-Aghababa, On module extension Banach algebras, Bull. Iran. Math. Soc. 37(4), 171-183, (2011).
24. A. R. Medghalchi and H. Pourmahmood-Aghababa, The first cohomology group of module extension Banach algebras, Rocky Mount. J. Math., 41(5), 1639-1651, (2011).
25. A. R. Medghalchi and M. H. Sattari, Biflatness and biprojectivity of triangular Banach algebras, Bull. Iran. Math. Soc. 34(2), 115-120, (2008).
26. A. R. Medghalchi, M. H. Sattari and T. Yazdanpanah, Amenability and weak amenability of triangular Banach algebras, Bull. Iran. Math. Soc., 31(2), 57-69, (2005).
27. M. S. Moslehian, On (co)homology of triangular Banach algebras, Banach Center Publ. 67, 271-276, (2005).
28. V. Runde, Lectures on Amenability, Lecture Notes in Mathematics, Vol. 1774, Springer-Verlag, Berlin, 2002.
29. Y. Zhang, Weak amenability of module extensions of Banach algebras, Trans. Amer. Math. Soc. 354, 4131-4151, (2002).
30. Y. Zhao, D. Wang and R. Yao, Biderivations of upper triangular matrix algebras over commutative rings, Int. J. Math. Game Theory Alg. 18, 473-478, (2009).
[^1]
[^0]: 2010 Mathematics Subject Classification: 35B40, 35L70.
 Submitted March 07, 2020. Published June 09, 2021

[^1]: Ali Ebadian,
 Department of Mathematics, Faculty of Science, Urmia University, Urmia
 Iran.
 E-mail address: ebadian.ali@gmail.com
 and
 Ali Jabbari,
 Department of Mathematics, Faculty of Science, Urmia University, Urmia Iran.
 E-mail address: jabbari_al@yahoo.com

