

(3s.) **v. 2023 (41)** : 1–10. ISSN-0037-8712 IN PRESS doi:10.5269/bspm.52574

Bi-derivations and Quasi-multipliers on Module Extensions Banach Algebras

Ali Ebadian and Ali Jabbari

ABSTRACT: This paper characterizes two bi-linear maps bi-derivations and quasi-multipliers on the module extension Banach algebra $A \oplus_1 X$, where A is a Banach algebra and X is a Banach A-module. Under some conditions, it is shown that if every bi-derivation on $A \oplus_1 A$ is inner, then the quotient group of bounded bi-derivations and inner bi-derivations, is equal to the space of quasi-multipliers of A. Moreover, it is proved that $QM(A \oplus_1 A) = QM(A) \oplus (QM(A) + QM(A)')$, where $QM(A)' = \{m \in QM(A) : m(0, a) = m(a, 0) = 0\}$.

Key Words: Banach algebra, bi-derivation, derivation, locally compact group, module extension Banach algebra, quasi-multiplier.

Contents

1 Introduction

2 Bi-derivations on $A \oplus_1 X$

3 Quasi-multipliers

1. Introduction

Let A be a Banach algebra and X a Banach A-bimodule. Throughout of this paper, all maps are continuous. A linear map $d: A \longrightarrow X$ is called a derivation if $d(aa') = a \cdot d(a') + d(a) \cdot a'$, for all $a, a' \in A$. The derivation $d: A \longrightarrow X$ is said to be inner, if there exists $x \in X$ such that $d(a) = a \cdot x - x \cdot a$, for every $a \in A$. An interesting generalization of derivations is the notion of bi-derivations, for example it ha a close connection with the second cohomology of Banach algebras. A bi-derivation $D: A \times A \longrightarrow X$ is a bi-linear map that is a derivation respect to both components, i.e.,

$$D(ab,c) = a \cdot D(b,c) + D(a,c) \cdot b$$
 and $D(a,bc) = b \cdot D(a,c) + D(a,b) \cdot c$,

for all $a, b, c \in A$. We define the following algebraic centers as follows

$$Z(A) = \{ a \in A : aa' = a'a, \text{ for all } a' \in A \},\$$

$$Z_A(X) = \{ a \in A : a \cdot x = x \cdot a, \text{ for all } x \in X \},\$$

and

$$Z_X(A) = \{ x \in X : a \cdot x = x \cdot a, \text{ for all } a \in A \}.$$

We say a bi-derivation $D: A \times A \longrightarrow X$ is

- (i) inner, if there exists $x \in Z_X(A)$ such that D(a, a') = x[a, a'], for all $a, a' \in A$, where [a, a'] = aa' a'a.
- (ii) inner respect to the first (second) component, if there exists $x \in X$ ($y \in X$) such that D(a, a') = [a, x] (D(a, a') = [a', y]), for all $a, a' \in A$.
- (iii) componential inner, if it is inner respect to the both components.

1

 $\mathbf{2}$

7

²⁰¹⁰ Mathematics Subject Classification: 35B40, 35L70. Submitted March 07, 2020. Published June 09, 2021

Brešer et al., in [6] showed that all bi-derivations defined on noncommutative prime rings are inner and for the case semiprime rings Brešer in [7] considered bi-derivations on this class of rings. There are many literatures for bi-derivations that are studied by many authors, for example, we refer to [4,10,12,17,30].

Another interesting bi-linear maps defined on Banach algebras are quasi-multipliers; we refer to [2, 21,22], for general information regarding quasi-multipliers. Quasi-multipliers are a generalization of multipliers, where a bi-linear mapping $m : A \times A \longrightarrow A$ is called a quasi-multiplier if

$$m(ab, cd) = am(b, c)d,$$

for all $a, b, c, d \in A$. The set of all quasi-multipliers on A is denoted by QM(A).

Let A be a Banach algebra and X be a Banach A-bimodule. By a module extension Banach algebra corresponding to A and X, we will mean the ℓ^1 -direct sum of A and X i.e., $A \oplus_1 X$ with the following algebra product and norm:

$$(a_1, x_1)(a_2, x_2) = (a_1a_2, a_1 \cdot x_2 + x_1 \cdot a_2),$$

 $\|(a, x)\| = \|a\|_A + \|x\|_X,$

for all $a_1, a_2 \in A$ and $x_1, x_2 \in X$. These algebras were studied initially by Zhang [29]. Some homological, cohomological results, results related to derivations on the second dual and module extension of dual Banach algebras are given in [3,13,23,24]. Triangular Banach algebras are considered extensively by Forrest and Marcoux as examples of module extension Banach algebras [14,15,16]. We refer to [5,11, 19,20,25,26,27], for more results related to homological and cohomological results of triangular Banach algebras. For Banach algebra $A \oplus_1 X$, it is easy to see that

$$Z(A \oplus_1 X) = (Z(A) \cap Z_A(X)) \times Z_X(A).$$
(1.1)

for all $a, b, c, d \in A$.

Let A be a Banach algebra, X and Y two Banach A-bimodules. A linear operator $T: X \longrightarrow Y$ is called an A-bimodule map if $T(\alpha \cdot x \cdot \beta) = \alpha \cdot T(x) \cdot \beta$, for all $\alpha, \beta \in A$ and $x \in X$. We denote the set of all A-bimodule maps from X into Y by $\operatorname{Hom}_A(X, Y)$. If A = X = Y, then $\operatorname{Hom}_A(A, A)$ is the multiplier algebra defined on A which is denoted by M(A) and denote the set of all bounded bi-derivations from $A \times A$ into X, by $\operatorname{BD}(A, X)$ and denote two subsets consist of all inner and componential inner bi-derivations from $A \times A$ into X, by $\operatorname{IBD}(A, X)$ and $\operatorname{IBD}_c(A, X)$, respectively. We define two quotient groups $\operatorname{HBD}(A, X)$ and $\operatorname{HBD}_c(A, X)$ as follows:

$$\operatorname{HBD}(A, X) = \frac{\operatorname{BD}(A, X)}{\operatorname{IBD}(A, X)} \quad \text{and} \quad \operatorname{HBD}_c(A, X) = \frac{\operatorname{BD}(A, X)}{\operatorname{IBD}_c(A, X)}.$$

If A = X, then we write BD(A, A) = BD(A), HBD(A, A) = HBD(A) and $HBD_c(A, A) = HBD_c(A)$.

In this paper, in Section 2, we investigate bi-derivations on the module extensions of Banach algebras and characterize these bi-linear maps. In Section 3, we consider quasi-multipliers on the module extension Banach algebra $A \oplus_1 X$.

2. Bi-derivations on $A \oplus_1 X$

Now by the following result, we characterize bi-derivations on $A \oplus_1 X$.

Theorem 2.1. Let $A \oplus_1 X$ be a module extension Banach algebra, then $\mathcal{D} \in BD(A \oplus_1 X)$ if and only if

$$\mathcal{D}((a,x),(a',x')) = (\mathcal{D}_A(a,a') + \mathcal{D}_{A,X}(x,x'), \mathcal{D}_X(x,x') + \mathcal{D}_{X,A}(a,a')),$$
(2.1)

such that

- (i) $\mathcal{D}_A \in \mathrm{BD}(A)$,
- (*ii*) $\mathcal{D}_{X,A} \in \mathrm{BD}(A,X)$,
- (iii) $\mathcal{D}_{A,X}$ is an A-bimodule map such that $x_1 \cdot \mathcal{D}_{A,X}(x_2, x_3) = -\mathcal{D}_{A,X}(x_1, x_2) \cdot x_3$ and $x_2 \cdot \mathcal{D}_{A,X}(x_1, x_3) = -\mathcal{D}_{A,X}(x_1, x_2) \cdot x_3$, for all $a \in A$ and $x_1, x_2, x_3 \in X$.

(*iv*) $\mathcal{D}_X(a \cdot x_1, x_2) = a \cdot \mathcal{D}_X(x_1, x_2) + \mathcal{D}_A(a, 0) \cdot x_1$ and $\mathcal{D}_X(x_1, x_2 \cdot a) = \mathcal{D}_X(x_1, x_2) \cdot a + x_2 \cdot \mathcal{D}_A(0, a)$, for all $a \in A$ and $x_1, x_2 \in X$.

Moreover,

- (iv) \mathcal{D} is inner if and only if \mathcal{D}_A , $\mathcal{D}_{X,A}$ are inner, $\mathcal{D}_{A,X} = 0$ and $\mathcal{D}_X = 0$.
- (v) \mathcal{D} is inner respect to the first (second) component if and only if \mathcal{D}_A , $\mathcal{D}_{X,A}$ are inner respect to the first (second) component, $\mathcal{D}_{A,X} = 0$ and $\mathcal{D}_X = 0$.
- (vi) \mathcal{D} is componential inner if and only if \mathcal{D}_A , $\mathcal{D}_{X,A}$ are componential inner, $\mathcal{D}_{A,X} = 0$ and $\mathcal{D}_X = 0$.

Proof. Let $\mathcal{D} \in BD(A \oplus_1 X)$. Define the canonical injective maps $i_A : A \times A \longrightarrow (A \oplus_1 X) \times (A \oplus_1 X)$, $i_X : X \times X \longrightarrow (A \oplus_1 X) \times (A \oplus_1 X)$ by $i_A(a, a') = ((a, 0), (a', 0))$, $i_X(x, x') = ((0, x), (0, x'))$, for all $a, a' \in A$, $x, x' \in X$ and projective maps $\pi_A : (A \oplus_1 X) \longrightarrow A$ and $\pi_X : (A \oplus_1 X) \longrightarrow X$. Let $\mathcal{D}_A := \pi_A \circ \mathcal{D} \circ i_A : A \times A \longrightarrow A$, $\mathcal{D}_X := \pi_X \circ \mathcal{D} \circ i_X : X \times X \longrightarrow X$, $\mathcal{D}_{A,X} := \pi_A \circ \mathcal{D} \circ i_X : X \times X \longrightarrow A$ and $\mathcal{D}_{X,A} := \pi_X \circ \mathcal{D} \circ i_A : A \times A \longrightarrow X$. Since, \mathcal{D} is bi-linear, the above-defined maps are bi-linear. Then

$$\mathcal{D}((a,x),(a',x')) = (\mathcal{D}_A(a,a') + \mathcal{D}_{A,X}(x,x'), \mathcal{D}_X(x,x') + \mathcal{D}_{X,A}(a,a')),$$
(2.2)

for all $a, a' \in A$ and $x, x' \in X$. For any $a_1, a_2, a_3 \in A$ and $x_1, x_2, x_3 \in X$, (2.2) implies that

$$\begin{aligned} (a_1, x_1) \cdot \mathcal{D}((a_2, x_2), (a_3, x_3)) &= (a_1, x_1) \cdot (\mathcal{D}_A(a_2, a_3) + \mathcal{D}_{A,X}(x_2, x_3), \mathcal{D}_X(x_2, x_3) + \mathcal{D}_{X,A}(a_2, a_3)) \\ &= (a_1 \mathcal{D}_A(a_2, a_3) + a_1 \mathcal{D}_{A,X}(x_2, x_3), a_1 \cdot \mathcal{D}_X(x_2, x_3) + a_1 \cdot \mathcal{D}_{X,A}(a_2, a_3) \\ &+ x_1 \cdot \mathcal{D}_A(a_2, a_3) + x_1 \cdot \mathcal{D}_{A,X}(x_2, x_3)), \end{aligned}$$
(2.3)

$$\mathcal{D}((a_1, x_1)(a_2, x_2), (a_3, x_3)) = \mathcal{D}((a_1a_2, a_1 \cdot x_2 + x_1 \cdot a_2), (a_3, x_3)) \\
= (\mathcal{D}_A(a_1a_2, a_3) + \mathcal{D}_{A,X}(a_1 \cdot x_2 + x_1 \cdot a_2, x_3), \mathcal{D}_{X,A}(a_1a_2, a_3) \\
+ \mathcal{D}_X(a_1 \cdot x_2 + x_1 \cdot a_2, x_3)),$$
(2.4)

and

$$\mathcal{D}((a_1, x_1), (a_3, x_3)) \cdot (a_2, x_2) = (\mathcal{D}_A(a_1, a_3) + \mathcal{D}_{A,X}(x_1, x_3), \mathcal{D}_X(x_1, x_3) + \mathcal{D}_{X,A}(a_1, a_3)) \cdot (a_2, x_2)
= (\mathcal{D}_A(a_1, a_3)a_2 + \mathcal{D}_{A,X}(x_1, x_3)a_2, \mathcal{D}_X(x_1, x_3) \cdot a_2 + \mathcal{D}_{X,A}(a_1, a_3) \cdot a_2
+ \mathcal{D}_A(a_1, a_3) \cdot x_2 + \mathcal{D}_{A,X}(x_1, x_3) \cdot x_2).$$
(2.5)

Since \mathcal{D} is a bi-derivation,

$$\mathcal{D}((a_1, x_1)(a_2, x_2), (a_3, x_3)) = (a_1, x_1) \cdot \mathcal{D}((a_2, x_2), (a_3, x_3)) + \mathcal{D}((a_1, x_1), (a_3, x_3)) \cdot (a_2, x_2).$$
(2.6)

Putting $x_1 = x_2 = x_3 = 0$, implies that

$$\mathcal{D}_A(a_1a_2, a_3) = a_1 \mathcal{D}_A(a_2, a_3) + \mathcal{D}_A(a_1, a_3)a_2,$$

and

$$\mathcal{D}_{X,A}(a_1a_2, a_3) = a_1 \cdot \mathcal{D}_{X,A}(a_2, a_3) + \mathcal{D}_{X,A}(a_1, a_3) \cdot a_2.$$

Thus, \mathcal{D}_A and $\mathcal{D}_{X,A}$ are derivations respect to the first component. If we put $a_1 = a_3 = 0$, then

$$\mathcal{D}_{A,X}(x_1 \cdot a_2, x_3) = \mathcal{D}_{A,X}(x_1, x_3)a_2, \tag{2.7}$$

and if $a_2 = a_3 = 0$, we have

$$\mathcal{D}_{A,X}(a_1 \cdot x_2 \cdot, x_3) = a_1 \mathcal{D}_{A,X}(x_2, x_3).$$
(2.8)

Thus, by (2.7) and (2.8), $\mathcal{D}_{A,X}$ is an A-bimodule respect to the first component. Letting $a_1 = a_2 = a_3 = 0$ and $x_1 = x_2 = 0$, imply that

$$\mathcal{D}_X(0, x_3) = 0, \qquad (x_3 \in X). \tag{2.9}$$

By assuming $a_1 = a_2 = a_3 = 0$ and by (2.9), we have

 $x_1 \cdot \mathcal{D}_{A,X}(x_2, x_3) = -\mathcal{D}_{A,X}(x_1, x_2) \cdot x_3.$

Taking $a_2 = a_3 = 0$ and $x_1 = 0$, imply that

$$\mathcal{D}_X(a_1 \cdot x_2, x_3) = a_1 \cdot \mathcal{D}_X(x_2, x_3) + \mathcal{D}_A(a_1, 0) \cdot x_2.$$

An argument similar to that in the above, for any $a_1, a_2, a_3 \in A$ and $x_1, x_2, x_3 \in X$, by (2.2), we have

$$\begin{aligned} (a_2, x_2) \cdot \mathcal{D}((a_1, x_1), (a_3, x_3)) &= (a_2, x_2) \cdot (\mathcal{D}_A(a_1, a_3) + \mathcal{D}_{A,X}(x_1, x_3), \mathcal{D}_X(x_1, x_3) + \mathcal{D}_{X,A}(a_1, a_3)) \\ &= (a_2 \mathcal{D}_A(a_1, a_3) + a_2 \mathcal{D}_{A,X}(x_1, x_3), a_2 \cdot \mathcal{D}_X(x_1, x_3) + a_2 \cdot \mathcal{D}_{X,A}(a_1, a_3) \\ &+ x_2 \cdot \mathcal{D}_A(a_1, a_3) + x_2 \cdot \mathcal{D}_{A,X}(x_1, x_3)), \end{aligned}$$
(2.10)

$$\mathcal{D}((a_1, x_1), (a_2, x_2)(a_3, x_3)) = \mathcal{D}((a_1, x_1), (a_2a_3, a_2 \cdot x_3 + x_2 \cdot a_3)) \\
= (\mathcal{D}_A(a_1, a_2a_3) + \mathcal{D}_{A,X}(x_1, a_2 \cdot x_3 + x_2 \cdot a_3), \mathcal{D}_{X,A}(a_1, a_2a_3) \\
+ \mathcal{D}_X(x_1, a_2 \cdot x_3 + x_2 \cdot a_3)),$$
(2.11)

and

$$\mathcal{D}((a_1, x_1), (a_2, x_2)) \cdot (a_3, x_3) = (\mathcal{D}_A(a_1, a_2) + \mathcal{D}_{A,X}(x_1, x_2), \mathcal{D}_X(x_1, x_2) + \mathcal{D}_{X,A}(a_1, a_2)) \cdot (a_3, x_3) \\
= (\mathcal{D}_A(a_1, a_2)a_3 + \mathcal{D}_{A,X}(x_1, x_2)a_3, \mathcal{D}_X(x_1, x_2) \cdot a_3 + \mathcal{D}_{X,A}(a_1, a_2) \cdot a_3 \\
+ \mathcal{D}_A(a_1, a_2) \cdot x_3 + \mathcal{D}_{A,X}(x_1, x_2) \cdot x_3).$$
(2.12)

Since \mathcal{D} is a bi-derivation,

$$\mathcal{D}((a_1, x_1), (a_2, x_2)(a_3, x_3)) = (a_2, x_2) \cdot \mathcal{D}((a_1, x_1), (a_3, x_3)) + \mathcal{D}((a_1, x_1), (a_2, x_2)) \cdot (a_3, x_3).$$
(2.13)

Putting $x_1 = x_2 = x_3 = 0$, implies that

$$\mathcal{D}_A(a_1, a_2 a_3) = a_2 \mathcal{D}_A(a_1, a_3) + \mathcal{D}_A(a_1, a_2) a_3,$$

and

$$\mathcal{D}_{X,A}(a_1, a_2 a_3) = a_2 \cdot \mathcal{D}_{X,A}(a_1, a_3) + \mathcal{D}_{X,A}(a_1, a_2) \cdot a_3$$

Thus, \mathcal{D}_A and $\mathcal{D}_{X,A}$ are derivations respect to the second component. These imply that $\mathcal{D}_A \in BD(A)$ and $\mathcal{D}_{X,A} \in BD(A, X)$. If we put $a_1 = a_2 = 0$, then

$$\mathcal{D}_{A,X}(x_1, x_2 \cdot a_3) = \mathcal{D}_{A,X}(x_1, x_2)a_3, \qquad (2.14)$$

and if $a_1 = a_3 = 0$, we have

$$\mathcal{D}_{A,X}(x_1, a_2 \cdot x_3) = a_2 \mathcal{D}_{A,X}(x_1, x_3).$$
(2.15)

Thus, by (2.14) and (2.15), $\mathcal{D}_{A,X}$ is an A-bimodule respect to the second component. Hence, $\mathcal{D}_{A,X}$ is an A-bimodule. Let $a_1 = a_2 = a_3 = 0$ and $x_2 = x_3 = 0$, then

$$\mathcal{D}_X(0, x_1) = 0, \qquad (x_1 \in X).$$
 (2.16)

This implies that, if we set $a_1 = a_2 = a_3 = 0$, then

$$x_2 \cdot \mathcal{D}_{A,X}(x_1, x_3) = -\mathcal{D}_{A,X}(x_1, x_2) \cdot x_3$$

By letting $a_1 = a_2 = 0$, we have

$$\mathcal{D}_X(x_1, x_2 \cdot a_3) = \mathcal{D}_X(x_1, x_3) \cdot a_+ x_2 \cdot \mathcal{D}_A(0, a_3).$$

This completes the proof and the converse is trivial. Now, suppose that \mathcal{D} is inner, then there exists $(b, y) \in Z(\mathcal{D}_X)$ such that

$$\mathcal{D}((a,x),(a',x')) = (b,y)[(a,x),(a',x')] = (aa'b - ba'a, y \cdot aa' - y \cdot a'a + ba \cdot x' - b \cdot x' \cdot a + b \cdot x \cdot a' - ba' \cdot x) = (\mathcal{D}_A(a,a') + \mathcal{D}_{A,X}(x,x'), \mathcal{D}_X(x,x') + \mathcal{D}_{X,A}(a,a')),$$
(2.17)

for all $(a, x), (a', x') \in A \oplus_1 X$. If x = x' = 0, then $\mathcal{D}_A(a, a') = aa'b - ba'a = b[a, a']$ and $\mathcal{D}_{X,A}(a, a') = y \cdot aa' - y \cdot a'a = y[a, a']$. If a = a' = 0, then

$$\begin{array}{ll} (0,0) & = & \mathcal{D}(0,0) = \mathcal{D}((0,x),(0,x')) \\ & = & (0,\mathcal{D}_X(x,x')), \end{array}$$

for all x, x'X. This implies that $\mathcal{D}_X = 0$ and $\mathcal{D}_{A,X} = 0$. Thus (iv) holds.

(v) Let \mathcal{D} be inner respect to the first component. Thus, there exists $(b, y) \in \mathcal{D}_X$ such that

$$\begin{aligned} \mathcal{D}((a,x),(a',x')) &= (a,x)(b,y) - (b,y)(a,x) \\ &= (ab - ba, a \cdot y - y \cdot a + x \cdot b - b \cdot x) \\ &= (\mathcal{D}_A(a,a') + \mathcal{D}_{A,X}(x,x'), \mathcal{D}_X(x,x') + \mathcal{D}_{X,A}(a,a')), \end{aligned}$$

for all $(a, x), (a', x') \in A \oplus_1 X$. Letting x = x' = 0 implies that \mathcal{D}_A and $\mathcal{D}_{X,A}$ are inner respect to the first component. If a = a' = 0, then $\mathcal{D}_X = 0$ and $\mathcal{D}_{A,X} = 0$. Similarly, we can investigate the above obtained results for the second component.

For (vi) apply (v).

Corollary 2.2. Let $A \oplus_1 X$ be a module extension Banach algebra such that HBD(A) = 0 and HBD(A, X) = 0. Then $HBD(A \oplus_1 X) = 0$

Similarly, we have:

Corollary 2.3. Let $A \oplus_1 X$ be a module extension Banach algebra such that $HBD_c(A) = 0$ and $HBD_c(A, X) = 0$. Then $HBD_c(A \oplus_1 X) = 0$

Corollary 2.4. Let $A \oplus_1 A$ be a module extension Banach algebra such that $HBD_c(A) = 0$. Then $HBD_c(A \oplus_1 A) = 0$

Example 2.5. Let A be a super amenable Banach algebra *i.e.*, every derivation from A into any Banach A-bimodule X is inner (see [28]). Then by Corollary 2.4, we have $\text{HBD}_c(A \oplus_1 A) = 0$.

Proposition 2.6. Let $A \oplus_1 X$ be a module extension Banach algebra and $T \in B^2(X, X)$ be an A-bimodule map. Then $\mathcal{D} : (A \oplus_1 X) \times (A \oplus_1 X) \longrightarrow A \oplus_1 X$ defined by $\mathcal{D}((a, x), (a', x')) = (0, T(x, x'))$, for all $(a, x), (a', x') \in A \oplus_1 X$, is a bi-derivation. Moreover, \mathcal{D} is inner if and only if T = 0.

Proof. Straightforward.

Lemma 2.7. Let $A \oplus_1 X$ be a module extension Banach algebra and $\mathcal{D}_A : A \times A \longrightarrow A$ be an inner bi-derivation. Then there is an inner bi-derivation \mathcal{D} on $A \oplus_1 X$ related to \mathcal{D}_A .

Proof. If \mathcal{D}_A is an inner bi-derivation, then there exists $c \in Z(A)$ such that $\mathcal{D}_A(a, a') = c[a, a']$, for all $a, a' \in A$. Define $\mathcal{D}: (A \oplus_1 X) \times (A \oplus_1 X) \longrightarrow (A \oplus_1 X)$ by

$$\mathcal{D}((a,x),(a',x')) = (\mathcal{D}_A(a,a'), c[a,x'] + c[a',x]),$$
(2.18)

for all $(a, x), (a', x') \in A \oplus_1 X$. Clearly, \mathcal{D} is bounded and bi-linear. We show that there exists $(b, y) \in Z(A \oplus_1 X)$ such that $\mathcal{D}((a, x), (a', x')) = (b, y)[(a, x), (a', x')]$, for all $(a, x), (a', x') \in A \oplus_1 X$. We set (b, y) = (c, 0). Then it is easy to see that $\mathcal{D}((a, x), (a', x')) = (c, 0)[(a, x), (a', x')]$, for all $(a, x), (a', x') \in A \oplus_1 X$.

A. Ebadian and A. Jabbari

We denote the set of all A-bimodule bi-linear maps from a Banach A-bimodule $Y \times Y$ into an other Banach A-bimodule Z by $\mathbb{HOM}_A(Y \times Y, Z)$. We now give an interesting result related to the bi-derivations on module extension algebras.

Theorem 2.8. Let $A \oplus_1 X$ be a module extension Banach algebra, HBD(A) = 0 and let the only Abimodule map $\mathcal{P} \in B^2(X, A)$ satisfies $x_1 \cdot \mathcal{P}(x_2, x_3) + \mathcal{P}(x_1, x_2) \cdot x_3 = 0$, for all $x_1, x_2, x_3 \in X$ be 0, then

$$\operatorname{HBD}(A \oplus_1 X) \cong \operatorname{HBD}(A, X) \oplus \operatorname{HOM}_A(X \times X, X)$$

$$(2.19)$$

as vector spaces.

Proof. Since HBD(A) = 0, for any $\mathcal{D}_A \in BD(A)$ and $a \in A, X \cdot \mathcal{D}_A(0, a) = \mathcal{D}_A(a, 0) \cdot X = 0$. Thus, \mathcal{D}_X is an A-bimodule. Define $\Phi : BD(A, X) \oplus \mathbb{HOM}_A(X \times X, X) \longrightarrow HBD(A \oplus_1 X)$ by $\Phi(R, S) = [\mathcal{D}'_{R,S}]$, where $[\mathcal{D}'_{R,S}]$ is the equivalence class of $\mathcal{D}'_{R,S}$ in HBD $(A \oplus_1 X)$ and $\mathcal{D}'_{R,S}((a, x), (a, x')) = (0, R(x, x') + S(a, a'))$, for all $(a, x), (a, x') \in A \oplus_1 X$. Clearly, Φ is linear. We show that Φ is surjective. Let $\mathcal{D} \in BD(A, X)$, then by Theorem 2.1, \mathcal{D} is as the following form:

$$\mathcal{D}((a,x),(a',x')) = (\mathcal{D}_A(a,a'), \mathcal{D}_X(x,x') + \mathcal{D}_{X,A}(a,a')),$$

for all $(a, x), (a, x') \in A \oplus_1 X$, note that according to the our assumption $\mathcal{D}_{A,X} = 0$. Since HBD(A) = 0, there exists $c \in Z(A)$ such that $\mathcal{D}_A(a, a') = c[a, a']$, for all $a, a' \in A$. Define $T : (A \oplus_1 X) \times (A \oplus_1 X) \longrightarrow X$ by T((a, x), (a', x')) = c[a, x'] + c[a', x] and

$$\mathcal{D}_{R,S}((a,x),(a,x')) = \mathcal{D}'_{\mathcal{D}_X,\mathcal{D}_{X,A}-T}((a,x),(a,x'))$$

= $(0,\mathcal{D}_X(x,x') + \mathcal{D}_{X,A}(a,a') - c[a,x'] - c[a',x]),$ (2.20)

for all $(a, x), (a, x') \in A \oplus_1 X$. Then

$$\mathcal{D}((a,x),(a',x')) - \mathcal{D}'_{\mathcal{D}_X,\mathcal{D}_{X,A}-T}((a,x),(a,x')) = (\mathcal{D}_A(a,a'),c[a,x'] + c[a',x])$$

for all $(a, x), (a', x') \in A \oplus_1 X$. Then by the proof of Lemma 2.7(i), we have $\mathcal{D} - \mathcal{D}'_{\mathcal{D}_X, \mathcal{D}_{X, A-T}}$ is an inner bi-derivation. Thus, $\Phi(R, S) = [\mathcal{D}_{R,S}] = [\mathcal{D}]$. Finally, by Proposition 2.6, we have

$$\ker \Phi = \left\{ (\mathcal{D}_{X,A}, \mathcal{D}_X) \in \mathrm{BD}(A, X) \oplus \mathbb{HOM}_A(X \times X, X) : \mathcal{D}_{\mathcal{D}_{X,A}, \mathcal{D}_X} \text{ is central inner} \right\}$$
$$= \left\{ (\mathcal{D}_{X,A}, \mathcal{D}_X) \in \mathrm{BD}(A, X) \oplus \mathbb{HOM}_A(X \times X, X) : \mathcal{D}_{X,A} \in \mathrm{IBD}(A, X) \text{ and } \mathcal{D}_X = 0 \right\}$$
$$= \mathrm{IBD}(A, X).$$

This implies that (2.19) holds.

Note that in the above Theorem if X = A, then $\mathbb{HOM}_A(A \times A, A) = QM(A)$ and so, by assumptions in Theorem 2.8, we have

$$\operatorname{HBD}(A \oplus_1 X) \cong \operatorname{QM}(A). \tag{2.21}$$

Example 2.9. Let M_n be an algebra consists of all $n \times n$ matrices over \mathbb{C} . Let $\mathfrak{P} \in B^2(M_n, M_n)$ be an M_n -bimodule map such that $A \cdot \mathfrak{P}(B, C) = -\mathfrak{P}(A, B) \cdot C$, for all $A, B, C \in M_n$. Note that there are $A, B \in M_n$ such that $\mathfrak{P}(A, B) \neq -\mathfrak{P}(B, A)$. Suppose that $\mathfrak{P}(A, B) = (\alpha_{ij})_{n \times n}$ and $\mathfrak{P}(B, A) = (\beta_{ij})_{n \times n}$. Let $a \in A$ and set $A = C = (a_{ij})_{n \times n} \in M_n$ such that $a_{ii} = a$ and $a_{ij} = 0$, for all $i \neq j$, where $1 \leq i, j \leq n$. Then

$$(a\beta_{ij})_{n \times n} = A \cdot \mathcal{P}(B, A) = -\mathcal{P}(A, B) \cdot A$$

= $-(\alpha_{ij}a)_{n \times n}.$

This implies that $\alpha_{ij} = -\beta_{ij}$, for all $1 \le i, j \le n$, a contradiction. Thus, $\mathfrak{P} = 0$. By [8, Propositions 1.3.51 and 1.3.52], M_n is a simple algebra and consequently is a prime Banach algebra. From [6, Theorem 3.3], we have $\mathrm{HBD}(M_n) = 0$. Then (2.21) implies that $\mathrm{HBD}(M_n \oplus_1 M_n) \cong \mathrm{QM}(M_n)$.

3. Quasi-multipliers

As we mentioned in the first section, quasi multipliers are a generalization of multipliers. In [9], Daws introduced a module version of multiplies that is another generalization of multipliers. He called a linear map T from a Banach algebra A into a Banach A-bimodule X, a left multiplier of X; if $T(ab) = T(a) \cdot b$, for all $a, b \in A$. Similarly, T is a right multiplier of X; if $T(ab) = a \cdot T(b)$, for all $a, b \in A$. In this section, we say that $m : A \times A \longrightarrow X$ is a quasi-multiplier of X or $m \in QM(A, X)$, if $m(ab, cd) = a \cdot m(b, c) \cdot d$, for all $a, b, c, d \in A$. Our aim in this section is characterizing of quasi-multipliers on the module extensions $A \oplus_1 X$.

Theorem 3.1. Let $A \oplus_1 X$ be a module extension Banach algebra, then $m \in QM(A \oplus_1 X)$ if and only if

$$m((a,x),(a',x')) = (m_A(a,a') + m_{A,X}(x,x'), m_X(x,x') + m_{X,A}(a,a')),$$
(3.1)

such that

- (i) $m_A \in \text{QM}(A)$,
- (*ii*) $m_{X,A} \in QM(A,X)$,
- (iii) $m_{A,X}$ is an A-bimodule map such that $x_1 \cdot m_{A,X}(x_2, x_3) = m_{A,X}(x_1, x_2) \cdot x_3 = 0$.
- (iv) m_X is an A-bimodule map such that $m_X(x,0) = m_X(0,x) = 0$, for every $x \in X$.

Proof. Let $m \in \text{QM}(A \oplus_1 X)$. Suppose that the mappings i_A , i_X , $\pi_A : (A \oplus_1 X) \longrightarrow A$ and $\pi_X : (A \oplus_1 X) \longrightarrow X$ are the same as the proof of Theorem 2.1. Let $m_A := \pi_A \circ m \circ i_A : A \times A \longrightarrow A$, $m_X := \pi_X \circ m \circ i_X : X \times X \longrightarrow X$, $m_{A,X} := \pi_A \circ m \circ i_X : X \times X \longrightarrow A$ and $m_{X,A} := \pi_X \circ m \circ i_A : A \times A \longrightarrow X$. Since, m is bi-linear, the above-defined maps are bi-linear. Then

$$m((a,x),(a',x')) = (m_A(a,a') + m_{A,X}(x,x'), m_X(x,x') + m_{X,A}(a,a')),$$
(3.2)

for all $a, a' \in A$ and $x, x' \in X$. For any $a_1, a_2, a_3 \in A$ and $x_1, x_2, x_3 \in X$, (2.2) implies that

$$(a_1, x_1)m((a_2, x_2), (a_3, x_3)) = (a_1, x_1)(m_A(a_2, a_3) + m_{A,X}(x_2, x_3), m_X(x_2, x_3) + m_{X,A}(a_2, a_3)) = (a_1m_A(a_2, a_3) + a_1m_{A,X}(x_2, x_3), a_1 \cdot m_X(x_2, x_3) + a_1 \cdot m_{X,A}(a_2, a_3) + x_1 \cdot m_A(a_2, a_3) + x_1 \cdot m_{A,X}(x_2, x_3)),$$

$$(3.3)$$

and

$$m((a_{1}, x_{1})(a_{2}, x_{2}), (a_{3}, x_{3})) = m((a_{1}a_{2}, a_{1} \cdot x_{2} + x_{1} \cdot a_{2}), (a_{3}, x_{3}))$$

$$= (m_{A}(a_{1}a_{2}, a_{3}) + m_{A,X}(a_{1} \cdot x_{2} + x_{1} \cdot a_{2}, x_{3}), m_{X,A}(a_{1}a_{2}, a_{3})$$

$$+ m_{X}(a_{1} \cdot x_{2} + x_{1} \cdot a_{2}, x_{3}))$$

$$= (m_{A}(a_{1}a_{2}, a_{3}) + m_{A,X}(a_{1} \cdot x_{2}, x_{3}) + m_{A,X}(x_{1} \cdot a_{2}, x_{3}), m_{X,A}(a_{1}a_{2}, a_{3})$$

$$+ m_{X}(a_{1} \cdot x_{2}, x_{3}) + m_{X}(x_{1} \cdot a_{2}, x_{3}))$$

$$(3.4)$$

Putting $x_1 = x_2 = x_3 = 0$, implies that

$$m_A(a_1a_2, a_3) = a_1 m_A(a_2, a_3), (3.5)$$

and

$$m_{X,A}(a_1a_2, a_3) = a_1 \cdot m_{X,A}(a_2, a_3). \tag{3.6}$$

Moreover, putting $a_1 = a_2 = a_3 = 0$ and $x_1 = 0$, imply that $m_X(0, x_3) = 0$ and for $a_1 = a_2 = a_3 = 0$,

$$x_1 \cdot m_{A,X}(x_2, x_3) = 0. \tag{3.7}$$

By letting $a_2 = a_3 = 0$ and (3.7), we have

$$m_X(a_1 \cdot x_2 \cdot, x_3) = a_1 \cdot m_X(x_2, x_3), \tag{3.8}$$

and

$$m_{A,X}(a_1 \cdot x_2, x_3) = a_1 \cdot m_{A,X}(x_2, x_3).$$
(3.9)

An argument similar to that in the above, for any $a_1, a_2, a_3 \in A$ and $x_1, x_2, x_3 \in X$, by (2.2), we have

$$m((a_1, x_1), (a_2, x_2)(a_3, x_3)) = m((a_1, x_1), (a_2a_3, a_2 \cdot x_3 + x_2 \cdot a_3))$$

= $(m_A(a_1, a_2a_3) + m_{A,X}(x_1, a_2 \cdot x_3 + x_2 \cdot a_3), m_{X,A}(a_1, a_2a_3)$
 $+ m_X(x_1, a_2 \cdot x_3 + x_2 \cdot a_3)),$ (3.10)

and

$$m((a_1, x_1), (a_2, x_2)) \cdot (a_3, x_3) = (m_A(a_1, a_2) + m_{A,X}(x_1, x_2), m_X(x_1, x_2) + m_{X,A}(a_1, a_2)) \cdot (a_3, x_3)$$

= $(m_A(a_1, a_2)a_3 + m_{A,X}(x_1, x_2)a_3, m_X(x_1, x_2) \cdot a_3 + m_{X,A}(a_1, a_2) \cdot a_3 + m_A(a_1, a_2) \cdot x_3 + m_{A,X}(x_1, x_2) \cdot x_3).$ (3.11)

Then, by putting $x_1 = x_2 = x_3 = 0$, we have

$$m_A(a_1, a_2 a_3) = m_A(a_1, a_2) a_3, (3.12)$$

and

$$m_{X,A}(a_1, a_2 a_3) = m_{X,A}(a_1, a_2) \cdot a_3.$$
(3.13)

Thus, (3.5), (3.6), (3.12) and (3.13) imply that $m_A \in \text{QM}(A)$ and $m_{X,A} \in \text{QM}(A, X)$. Set $a_1 = a_2 = a_3 = 0$ and $x_3 = 0$, then $m_X(x_1, 0) = 0$. This implies that, for $a_1 = a_2 = a_3 = 0$,

$$m_{A,X}(x_1, x_2) \cdot x_3 = 0. \tag{3.14}$$

If we put $a_1 = a_2 = 0$, by (3.14),

$$m_X(x_1, x_2 \cdot a_3) = m_X(x_1, x_2) \cdot a_3, \tag{3.15}$$

and if $a_1 = a_3 = 0$, we have

$$m_{A,X}(x_1, x_2 \cdot a_3) = m_{A,X}(x_1, x_3)a_3.$$
(3.16)

Thus, by (3.15) and (3.16), $m_{A,X}$ and m_X are right A-module. Hence, $m_{A,X}$ and m_X are A-bimodule.

Remark 3.2. In the module extension Banach algebra $A \oplus_1 X$, if A = X is one of the following Banach algebra: (1) without of order, i.e., for any $a, b \in A$, ab = 0 implies that a = 0 or b = 0, (2) unital, (3) a Banach algebra with a non-zero idempotent element or (4) a Banach algebra with a left (right) bounded approximate identity, then the map $m_{A,X}$ in Theorem 3.1 is zero. Thus, $m \in QM(A \oplus_1 X)$ if and only if

$$m((a,x),(a',x')) = (m_A(a,a'), m_X(x,x') + m_{X,A}(a,a')),$$
(3.17)

such that

- (i) $m_A \in QM(A)$,
- (*ii*) $m_{X,A} \in QM(A)$,
- (iii) $m_X \in QM(A)$ such that $m_X(x,0) = m_X(0,x) = 0$, for every $x \in A$.

If we denote the set of all quasi-multipliers such as m_X by QM(A)', then we can write

$$QM(A \oplus_1 A) = QM(A) \oplus (QM(A) + QM(A)').$$
(3.18)

Example 3.3. Let G be a locally compact group, $L^1(G)$ and M(G) be the group and the measure algebras on G, respectively. Then by [22] and Remark 3.2, we have

$$QM(L^{1}(G) \oplus_{1} L^{1}(G)) = QM(L^{1}(G)) \oplus (QM(L^{1}(G)) + QM(L^{1}(G))')$$
$$= M(G) \oplus (M(G) + QM(L^{1}(G))').$$

Example 3.4. Let G be a non-compact locally compact abelian group, A(G) and B(G) be the Fourier and the Fourier-Stieltjes algebras on G, respectively. We have $L^1(G) = A(\hat{G})$, where \hat{G} is the dual of G and $M(\hat{G}) \cong B(G)$. Then by Example 3.3, we have

$$QM(A(G) \oplus_1 A(G)) = QM(L^1(G) \oplus_1 L^1(G))$$

= $M(\hat{G}) \oplus (M(\hat{G}) + QM(L^1(\hat{G}))')$
= $B(G) \oplus (B(G) + QM(L^1(G))').$

Let S be a locally compact semigroup and M(S) be the space of all bounded complex regular Borel measures on S. A locally compact semigroup S is called a foundation semigroup if $\bigcup \{ \text{supp}(\mu) : \mu \in M_a(S) \}$ is dense in S, where $M_a(S)$ is a subspace of M(S) contains all $\mu \in M(S)$ such that the maps $s \mapsto \delta_s * |\mu|$ and $s \mapsto |\mu| * \delta_s$ from S into M(S) are continuous (δ_s denotes the Dirac measure at s). A complex-valued bounded function g on S is called $M_a(S)$ -measurable, if it is μ -measurable, for all $\mu \in M_a(S)$. The space of such functions denotes by $L^{\infty}(S, M_a(S))$ and, for every $g \in L^{\infty}(S, M_a(S))$,

$$||g||_{\infty} = \sup\{||g||_{\infty,|\mu|} : \mu \in M_a(S)\},\$$

where $||g||_{\infty,|\mu|}$ denotes the essential supremum norm with respect to $|\mu|$. The semigroup S is called compactly cancellative if for any two compact subsets C and D of S, the following two sets are compact subsets of S

$$CD^{-1} = \{x \in S : xd \in C \text{ for some } d \in D\},\$$
$$DC^{-1} = \{x \in S : cx \in D \text{ for some } c \in D\}.$$

Example 3.5. Let S be a compactly cancellative foundation semigroup with identity. Then by [1, Corollary 3.2], $QM(M_a(S)) = M(S)$. Thus

 $QM(M_a(S) \oplus_1 M_a(S)) = M(S) \oplus (M(S) + QM(M_a(S))').$

Acknowledgments

The authors would like to thank the referees for the careful reading of the paper and for their useful comments.

References

- 1. A. Alinejad and M. Rostami, Quasi-multipliers on Banach algebras related to locally compact semigroups, Semigroup Forum, 100, 651-661, (2020).
- C. A. Akemanna and G. K. Pedersen, Complications of semi-continuity in C*-algebra theory, Duke Math. J. 40, 785-795, (1973).
- A. Bagheri Vakilabad, K. Haghnejad Azar and A. Jabbari, Arens regularity of module actions and weak amenability of Banach algebras, Period. Math. Hung., 71(2), 224-235, (2015).
- 4. D. Benkovič, Biderivations of triangular algebras, Linear Algebra Appl. 431, 1587-1602, (2009).
- A. Bodaghi and A. Jabbari, n-Weak module amenability of triangular Banach algebras, Math. Slovaca, 65(3), 645-666, (2015).
- M. Brešar, W. S. Martindale and C.R. Miers, Centralizing maps in prime rings with involution, J. Algebra, 161, 342-357, (1993).
- 7. M. Brešar, On certain pairs of functions of semiprime rings, Proc. Amer. Math. Soc. 120, 709-713, (1994).
- 8. H. G. Dales, *Banach algebras and Automatic Continuity*, London Math. Society Monographs, Volume 24, Clarendon Press, Oxford, 2000.
- 9. M. Daws, Multipliers, self-induced and dual Banach algebras, Dissert. Math. 470, 1-62, (2010).

A. Ebadian and A. Jabbari

- 10. Y. Du and Y. Wang, Biderivations of generalized matrix algebras, Linear Algebra Appl. 438, 4483-4499, (2013).
- A. Ebadian and A. Jabbari, Weak*-continuous derivations on module extension of dual Banach algebras, Southeast Asian Bull. Math. 39(3), 347-363, (2015).
- A. Erfanian Attar, S. Barootkoob and H.R. Ebrahimi Vishki, On Extension of bi-derivations to the bidual of Banach algebras, Filomat, 30(8), 2261-2267, (2016).
- M. Eshaghi Gordji, F. Habibian and A. Rejali, Module extension of dual Banach algebras, Bull. Korean Math. Soc. 47(4), 663-673, (2010).
- B. E. Forrest and L. W. Marcoux, Derivations of triangular Banach algebras, Indiana Univ. Math. J. 45, 441-462, (1996).
- B. E. Forrest and L. W. Marcoux, Weak amenability of triangular Banach algebras, Trans. Amer. Math. Soc. 354, 1435-1452, (2002).
- B. E. Forrest and L. W. Marcoux, Second order cohomology of triangular Banach algebras, Houston J. Math. 30(4), 1157-1176, (2004).
- 17. N. M. Ghosseiri, On biderivations of upper triangular matrix rings, Linear Algebra Appl. 438, 250-260, (2013).
- A. Ya. Helemskii, The Homology of Banach and Topological Algebras, Translated from the Russian by A. West. Mathematics and its Applications (Soviet Series) 41, Kluwer Academic Publishers Group, Dordrecht, 1989.
- A. Jabbari and H. Hosseinzadeh, Second order (σ, τ)-cohomology of triangular Banach algebras, U. P. B. Sci. Bull., Series A, 75(3), 59-66, (2013).
- 20. M. Khosravi, M. S. Moslehian and A. N. Motlagh, Vanishing of the first (σ, τ) -cohomollogy group of triangular Banach algebras, Meth. Funct. Anal. Top., 14(4), 351-360, (2008).
- 21. K. Mckennon, Continuous convergence and the spectrum of a C*-algebra, General Topology Appl. 5, 249-262, (1975).
- 22. K. Mckennon, Quasi-multipliers, Trans. Amer. Math. Soc. 233, 105-123, (1977).
- A. R. Medghalchi and H. Pourmahmood-Aghababa, On module extension Banach algebras, Bull. Iran. Math. Soc. 37(4), 171-183, (2011).
- A. R. Medghalchi and H. Pourmahmood-Aghababa, The first cohomology group of module extension Banach algebras, Rocky Mount. J. Math., 41(5), 1639-1651, (2011).
- A. R. Medghalchi and M. H. Sattari, Biflatness and biprojectivity of triangular Banach algebras, Bull. Iran. Math. Soc. 34(2), 115-120, (2008).
- A. R. Medghalchi, M. H. Sattari and T. Yazdanpanah, Amenability and weak amenability of triangular Banach algebras, Bull. Iran. Math. Soc., 31(2), 57-69, (2005).
- 27. M. S. Moslehian, On (co)homology of triangular Banach algebras, Banach Center Publ. 67, 271-276, (2005).
- 28. V. Runde, Lectures on Amenability, Lecture Notes in Mathematics, Vol. 1774, Springer-Verlag, Berlin, 2002.
- 29. Y. Zhang, Weak amenability of module extensions of Banach algebras, Trans. Amer. Math. Soc. 354, 4131-4151, (2002).
- Y. Zhao, D. Wang and R. Yao, Biderivations of upper triangular matrix algebras over commutative rings, Int. J. Math. Game Theory Alg. 18, 473-478, (2009).

Ali Ebadian, Department of Mathematics, Faculty of Science, Urmia University, Urmia Iran. E-mail address: ebadian.ali@gmail.com

and

Ali Jabbari, Department of Mathematics, Faculty of Science, Urmia University, Urmia Iran. E-mail address: jabbari_al@yahoo.com