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Infinitely Many Solutions for a Class of Fractional Boundary Value Problem with

p-Laplacian with Impulsive Effects

M. Abolghasemi and S. Moradi

abstract: The existence of infinitely many solutions for a class of impulsive fractional boundary value prob-
lems with p-Laplacian with Neumann conditions is established. Our approach is based on recent variational
methods for smooth functionals defined on reflexive Banach spaces. One example is presented to demonstrate
the application of our main results.
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1. Introduction

The aim of this paper is to investigate the existence of infinitely many classical solutions for the
following nonlinear impulsive fractional boundary value problem (BVP, for short):







Dα
−T Φp(cDα

0+u(t)) + |u(t)|p−2u(t) = λf(t, u(t)) + µg(t, u(t)), t , tj , t ∈ (0, T ),
∆(Dα−1

−T Φp(cDα
0+u))(tj) = Ij(u(tj))

u(0) = u(T ) = 0
(1.1)

where α ∈ ( 1
p
, 1], p > 1, Φp(s) = |s|p−2s (s , 0), Dα

−T represents the right Riemann–Liouville fractional
derivative of order α and cDα

0+

represents the left Caputo fractional derivative of order α,

∆(Dα−1
−T Φp(cDα

0+u))(tj) = Dα−1
−T Φp(cDα

0+u)(t+
j ) − Dα−1

−T Φp(cDα
0+u)(t−

j ),

Dα−1
−T Φp(cDα

0+u)(t+
j ) = lim

t→t+

j

Dα−1
−T Φp(cDα

0+u)(t),

Dα−1
−T Φp(cDα

0+u)(t−
j ) = lim

t→t−
j

Dα−1
−T Φp(cDα

0+u)(t),

λ > 0, µ ≥ 0, f, g : [0, T ] × R → R are L1-Carathéodory functions, 0 = t0 < t1 < · · · < tn < tn+1 = T

and Ij : R→ R, j = 1, . . . , m are Lipschitz continuous functions with the Lipschitz constants Lj > 0, i.e

|Ij(x2) − Ij(x1)| ≤ Lj|x2 − x1|

for every x1, x2 ∈ R and Ij(0) = 0.
In [32], Risken introduced an advection-dispersion equation to describe the Brownian motion of

particles
∂C(x, t)

∂t
=

[

−v
∂

∂x
+ D

∂2

∂x2

]

C(x, t)
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where C(x, t) is a concentration field of space variable x at time t, D > 0 is the diffusion coefficient and
v > 0 is the drift coefficient. Many laboratory data [3,4] and numerical experiments [12] indicate that
solutes moving through a highly heterogeneous aquifer violate the basic assumptions of the local second
order theories because of the large deviations due to the stochastic process of Brownian motion. According
to [3], an anomalous dispersion process should be described by the following advection-dispersion equation
containing the left and the right fractional differential operators

∂C(x, t)

∂t
= −v

∂C(x, t)

∂x
+ Dj

∂γC(x, t)

∂xγ
+ D(1 − j)

∂γC(x, t)

∂(−x)γ
(1.2)

where C is the expected concentration field of space variable x at time t, v is a constant mean velocity,
x is the distance in the direction of the mean velocity, D is a constant dispersion coefficient, 0 ≤ j ≤ 1
describes the skewness of the transport process, and γ is the order of left and right fractional differential
operators (see [3, Appendix] for details about left and right fractional differential operators). Especially,
if γ = 2, the dispersion operator reduces to the classical advection-dispersion operator and (1.2) becomes

the classical advection-dispersion equation. On the other hand, if j =
1

2
, (1.2) describes symmetric

transitions. Define an equivalent Riesz potential symmetric operator [33]

2∇γ ≡ D
γ
+ + D

γ
−,

which gives the mass balance equation for the symmetric fractional advection dispersion

∂C(x, t)

∂t
= −v∇C(x, t) + D∇γC(x, t).

Fractional differential equations (FDEs) have recently proved to be valuable tools in the modeling of
many phenomena in various fields of science and engineering. Indeed, we can find numerous applications
in viscoelasticity, electrochemistry, control, porous media, electromagnetic, etc, for instance see [11,24,27]
and the references therein. Recently, the existence of solutions to boundary value problems for FDEs
have been studied in many papers and we refer the reader to the papers [1,2,14,16,17,23,26,28,37] and the
references therein. For example, [37] Zhang et al. by establishing a variational structure and using the
critical point theory, investigated the existence of multiple solutions for a class of fractional advection-
dispersion equations arising from a symmetric transition of the mass flux. In [17] based on critical point
theory and variational methods, the existence of infinitely many solutions for the following perturbed
fractional boundary value problem











− d

dt

(

0
Dα−1

t (c
0Dα

t u(t)) +t Dα−1
T (c

tDα
T u(t))

)

= λf(t, u(t)) + µg(t, u(t)) = 0, a.e. t ∈ [0, T ],
u(0) = u(T ) = 0

where T > 0, λ > 0, µ ≥ 0, 1
2 < α ≤ 1, 0Dα−1

t and tD
α−1
T are the left and right Riemann-Liouville

fractional derivatives of order 1 − α, respectively, f, g : [0, T ] × R → R are continuous functions, was
discussed. Jiang et al. in [26] by using of Avery-Peterson fixed point theorem, obtained the existence of
positive solutions for the two-point boundary value problem of fractional differential equations. Galewski
and Molica Bisci in [14] by using variational methods, proved that a suitable class of one-dimensional
fractional problems admits at least one non-trivial solution under an asymptotical behaviour of the
nonlinear datum at zero, their the problem was as the following

{

d
dt

(

0
Dα−1

t (c
0Dα

t u(t)) − tD
α−1
T (c

tDα
T u(t))

)

+ f(t, u(t)) = 0, a.e. t ∈ [0, T ],
u(0) = u(T ) = 0

where α ∈ (1
2 , 1], 0Dα−1

t and tD
α−1
T are the left and right Riemann-Liouville fractional derivatives of

order 1 − α, respectively, c
0Dα

t and c
tDα

T are the left and right Caputo fractional derivatives of order α
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respectively, and f : R→ R is a continuous function. In [23] the existence of at least one weak solution
for the following fractional differential system

{

tD
αi

T (ai(t)0Dαi

t ui(t)) = Fui
(t, u1, . . . , un) + hi(ui(t)), t ∈ (0, T ),

ui(0) = ui(T ) = 0

for 1 ≤ i ≤ n, where F : [0, T ] × Rn → R is measurable with respect to t, for all u ∈ Rn, continuously
differentiable in u, for almost every t ∈ [0, T ] such that F (t, 0, . . . , 0) = 0 for every t ∈ [0, T ] and
hi : R→ R is a Lipschitz continuous function, was studied.

Nonlinear boundary value problems involving p-Laplacian operator ∆p occur in a variety of physi-
cal phenomena, such as: non-Newtonian fluids, reaction-diffusion problems, petroleum extraction, flow
through porous media, etc. Thus, the study of such problems and their far reaching generalizations have
attracted several mathematicians in recent years. We refer the reader to [5,6,10,13,30] and the references
therein.

Impulsive differential equations have become more important in recent years in some mathematical
models of real processes and phenomena studied in physics, chemical technology, population dynam-
ics, biotechnology, and economics. We mention, for instance, the books [29,34] dealing with impulsive
differential equations.

Recently, many researchers pay their attention to impulsive differential equations by variational
method and critical point theory, to the best our knowledge, we refer the reader to [22,23,35] and
references cited therein.

The study of impulsive fractional boundary value problem has already been extended to the case
involving the p-Laplacian. For details, see [19,20,21,36,38] and the references therein. For example,
Wang et al. in [36] based on a variant fountain theorem, the existence of infinitely many nontrivial high
or small energy solutions for the problem (1.1). Zhao and Tang in [38] by employing critical point theory
and variational methods to study, the existence and multiplicity of solutions for the problem (1.1). In
[19,21] based on variational methods and critical point theory the existence of multiple solutions for the
problem (1.1) in the case µ = 0, was studied. Also in [20] by using variational methods, the existence
three classical solutions for the problem (1.1), was discussed.

A special case of our main result, is the following theorem in the case p = 2.

Theorem 1.1. Assume that

(A1) F (t, x) ≥ 0 for each (t, x) ∈ [0, T ] × [0, +∞);

(A2)

lim inf
ξ→+∞

∫ T

0

sup
|x|≤ξ

F (t, x)dt

ξ2 <
1 − LT k̄2

k̄2(1 + LT k̄2)
lim sup
ξ→+∞

∫ T

0
F (t, ξ)dt

ξ2

where k̄ =
T α− 1

2

Γ(α)(2α − 1)
1
2

. Then, for each

λ ∈







1

2
1+LT k̄2

lim supξ→+∞

∫

T

0
F (t,ξ)dt

ξ2

,
1 − LT k̄2

2k̄2 lim infξ→+∞

∫

T

0
sup|x|≤ξ F (t,x)dt

ξ2







for every non-negative arbitrary function g : [0, T ] × R → R which is measurable in [0, T ] and of class
C1(R) satisfying the condition

g∞ := lim sup
ξ→+∞

∫ T

0
sup|x|≤ξ G(t, x)dt

ξ2 < +∞
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and for every µ ∈ [0, µg[ where

µg :=
1 − LT k̄2

2k̄2g∞











1 − λ
2k̄2

1 − LT k̄2
lim inf
ξ→+∞

∫ T

0

sup
|x|≤ξ

F (t, x)dt

ξ2











,

the problem







Dα
−T (cDα

0+u(t)) + u(t) = λf(t, u(t)) + µg(t, u(t)), t , tj , t ∈ (0, T ),
∆(Dα−1

−T (cDα
0+u))(tj) = Ij(u(tj))

u(0) = u(T ) = 0

has an unbounded sequence of weak solutions in E
α,2
0 .

Motivated by the above works, in the present paper, employing a smooth version of [8, Theorem 2.1],
under an appropriate oscillating behaviour of the nonlinear term f , we determine the exact collections
of the parameter λ in which the problem (1.1) for every non-negative arbitrary function g : [0, T ] × R→
R which is measurable in [0, T ] and of class C1(R) satisfying a certain growth at infinity, choosing
µ sufficiently small, admits infinitely many weak solutions (Theorem 3.1). Replacing the oscillating
behaviour condition at infinity, by a similar one at zero, we achieve a sequence of pairwise distinct weak
solutions which converges to zero (Theorem 3.6). We also list some consequences the main results. The
applicability of our results is illustrated by an example.

The present paper is arranged as follows. In Section 2 we recall some basic definitions and preliminary
results, while Section 3 is devoted to the existence of multiple weak solutions for the double eigenvalue
problem (1.1).

2. Preliminaries

In this section, we formulate our main results on the existence infinitely many weak solutions for the
problem (1.1). Our main tool to ensure the results is a smooth version of Theorem 2.1 of [8] which is a
more precise version of Ricceri’s Variational Principle [31, Theorem 2.5] that we now recall here.

Theorem 2.1. Let X be a reflexive real Banach space, let Φ, Ψ : X −→ R be two Gâteaux differentiable
functionals such that Φ is sequentially weakly lower semicontinuous, strongly continuous, and coercive
and Ψ is sequentially weakly upper semicontinuous. For every r > infX Φ, let us put

ϕ(r) := inf
u∈Φ−1(−∞,r)

supu∈Φ−1(−∞,r) Ψ(u) − Ψ(u)

r − Φ(u)

and
θ := lim inf

r→+∞
ϕ(r), δ := lim inf

r→(infX Φ)+
ϕ(r).

Then, one has

(a) for every r > infX Φ and every λ ∈]0, 1
ϕ(r) [, the restriction of the functional Iλ = Φ − λΨ to

Φ−1(] − ∞, r[) admits a global minimum, which is a critical point (local minimum) of Iλ in X.

(b) If θ < +∞ then, for each λ ∈]0, 1
θ
[, the following alternative holds: either

(b1) Iλ possesses a global minimum,

or

(b2) there is a sequence {un} of critical points (local minima) of Iλ such that

lim
n→+∞

Φ(un) = +∞.
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(c) If δ < +∞ then, for each λ ∈]0, 1
δ
[, the following alternative holds:

(c1) there is a global minimum of Φ which is a local minimum of Iλ,

(c2) there is a sequence of pairwise distinct critical points (local minima) of Iλ which weakly converges
to a global minimum of Φ.

We refer the interested reader to the paper [7,9,15,18] in which Theorem 2.1 has been successfully
employed to the existence of infinitely many solutions for boundary value problems.

This section is devoted to introduce some basic notations and results which will be used in the proofs
of our main results.

Let AC[a, b] be the space of absolutely continuous functions on [a, b].

Definition 2.2. [25] Let f be a function defined on [a, b] and 0 < α ≤ 1. The left and right Riemann-
Liouville fractional integrals of order α for the function f are defined by

D−α
a+ f(t) =

1

Γ(α)

∫ t

a

(t − s)α−1f(s)ds, t ∈ [a, b],

D−α
b− f(t) =

1

Γ(α)

∫ b

t

(s − t)α−1f(s)ds, t ∈ [a, b]

provided the right-hand sides are pointwise defined on [a, b] where Γ(α) is the standard gamma function
given by

Γ(α) =

∫ +∞

0

zα−1e−zdz.

Definition 2.3. [25] Let f be a function defined on [a, b] and 0 < α ≤ 1. The left and right Riemann-
Liouville fractional integrals of order α for the function f are defined by

Dα
a+f(t) =

d

dt
Dα−1

a+ f(t) =
1

Γ(1 − α)

d

dt

∫ t

a

(t − s)−αf(s)ds, t ∈ [a, b],

Dα
b−f(t) = − d

dt
Dα−1

b− f(t) = − 1

Γ(1 − α)

d

dt

∫ b

t

(s − t)−αf(s)ds, t ∈ [a, b].

Definition 2.4. [25] Let f be a function defined on [a, b] and 0 < α ≤ 1. The left and right Riemann-
Liouville fractional integrals of order α for the function f are defined by

cDα
a+f(t) = Dα−1

a+ f(t) =
1

Γ(1 − α)

∫ t

a

(t − s)−αf ′(s)ds, t ∈ [a, b],

cDα
b−f(t) = −Dα−1

b− f(t) = − 1

Γ(1 − α)

∫ b

t

(s − t)−αf ′(s)ds, t ∈ [a, b].

In particular, when α = 1, we have cD1
a+f(t) = f ′(t) and cD1

b−f(t) = −f ′(t).

Proposition 2.5. [39]

(1) If u ∈ Lp([0, T ],R), v ∈ Lq([0, T ],R) and p ≥ 1, q ≥ 1, 1
p

+ 1
q

≤ 1 + θ or p , 1, q , 1, 1
p

+ 1
q

= 1 + θ,
then we have

∫ b

a

[D−θ
t u(t)]v(t)dt =

∫ b

a

[v(t)D−θ
b ]u(t)dt, θ > 0.

(2) If 0 < α ≤ 1, u ∈ AC[a, b], and v ∈ Lp[a, b] (1 ≤ p < ∞), then

∫ b

a

u(t)(cDα
a+f(t))dt = Dα−1

b u(t)v(t) |t=b
t=a +

∫ b

a

Dα
b u(t)v(t)dt.
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Let C∞
0 ([0, T ],RN) be the set of all functions u ∈ C∞([0, T ],RN ) with u(a) = u(b) = 0 and the norm

‖u‖∞ = max
t∈[a,b]

|u(t)|.

Denote the norm of the space Lp([0, T ],RN) for 1 ≤ p < ∞ by

‖u‖Lp =
(

∫ b

a

|u(s)|pds
)

1
p

.

The following lemma yields the boundedness of the Riemann-Liouville fractional integral operators from
the space Lp([a, b],RN ) to the space Lp([a, b],RN ) where 1 ≤ p < ∞.

Definition 2.6. Let 0 < α ≤ 1, 1 < p < ∞. The fractional derivative space E
α,p
0 is defined by the

closure C∞
0 ([0, T ],R), that is

E
α,p
0 = C∞

0 ([0, T ],R)

with respect to the weighted norm

‖u‖E
α,p
0

=
(

∫ T

0

|cDα
0+u(t)|pdt +

∫ T

0

|u(t)|pdt
)

1
p

(2.1)

for every u ∈ E
α,p
0 .

Remark 2.7. It is obvious that the fractional derivative space E
α,p
0 is the space of functions u ∈

L2([0, T ],R) having an α-order Riemann-Loiuville fractional derivative cDα
t u ∈ L2([0, T ],R) and u(0) =

u(T ) = 0 for 1 ≤ i ≤ n. From [25, Propostion 3.1], we know for 0 < α ≤ 1, the space E
α,p
0 is a reflexive

and separable Banach space.

Lemma 2.8. [39] Let 0 < α ≤ 1 and 1 < p < ∞. For any u ∈ E
α,p
0 , we have

‖u‖Lp ≤ T α

Γ(α + 1)
‖cDα

0+u(t)‖Lp . (2.2)

In addition, for
1

p
< α ≤ 1 and

1

p
+

1

q
= 1, we have

‖u‖∞ ≤ k‖cDα
0+u(t)‖Lp (2.3)

where k =
T α− 1

2

Γ(α)(αq − q + 1)
1
q

.

Remark 2.9. According to Lemma 2.8, it is easy to see that the norm of E
α,p
0 defined in (2.1) is equivalent

to the following norm:

‖u‖α,p =
(

∫ T

0

|cDα
0+u(t)|pdt

)
1
p

. (2.4)

Lemma 2.10. Let 1
p

< α ≤ 1. If the sequence {uk} converges weakly to u in E
α,p
0 , i.e., uk ⇀ u, then

uk −→ u in C[0, T ], i.e., ‖u − uk‖∞ −→ 0 as k −→ ∞.

Lemma 2.11. A function

u ∈
{

u ∈ AC[0, T ] :

(

∫ tj+1

tj

|(cDα
0+u(t)|p + |u(t)|p)dt

)

< ∞, j = 1, 2, . . . , m

}

is called a classical solution of BVP (1.1) if

(1) u satisfies (1.1).
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(2) The limits Dα−1
T − Φp(cDα

0+u)(t+
j ), Dα−1

T − Φp(cDα
0+u)(t−

j ) exist.

Definition 2.12. We mean by a (weak) solution of the BVP (1.1), any function u ∈ E
α,p
0 such that

∫ T

0

|cDα
0+u(t)|p−2(cDα

0+u(t))(cDα
0+v(t))dt +

∫ T

0

|u(t)|p−2u(t)v(t)dt

+

m
∑

j=1

Ij(u(tj))v(tj) − λ

∫ T

0

f(t, u(t))v(t)dt − µ

∫ T

0

g(t, u(t))v(t)dt = 0

for every v ∈ E
α,p
0 .

Lemma 2.13. [38] If u ∈ E
α,p
0 is a weak solution of BVP (1.1), then u is a classical solution of BVP

(1.1)

Corresponding to the functions f and g, we introduce the functions F : [0, T ] × R → R and G :
[0, T ] × R→ R, respectively, as follow

F (t, ξ) =

∫ ξ

0

f(t, x)dx for all (t, ξ) ∈ [0, T ] × R

and

G(t, ξ) =

∫ ξ

0

g(t, x)dx for all (t, ξ) ∈ [0, T ] × R.

We assume throughout and without further mention, that the following condition holds:

(H) 1 > LT kp

where L =
∑n

j=1 Lj .

3. Main Results

In this section, we will state and prove our main results.

For convenience, put

A = lim inf
ξ→+∞

∫ T

0

sup
|x|≤ξ

F (t, x)dt

ξp ,

B =
p

1 + LT kp
lim sup
ξ→+∞

∫ T

0
F (t, ξ)dt

ξp ,

λ1 =
1

B

and

λ2 =
1 − LT kp

pkpA
.

Theorem 3.1. Assume that

(A1) F (t, x) ≥ 0 for each (t, x) ∈ [0, T ] × [0, +∞);

(A2)

A <
1 − LT kp

pkp
B.
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Then, for each λ ∈]λ1, λ2[ for every non-negative arbitrary function g : [0, T ]×R→ R which is measurable
in [0, T ] and of class C1(R) satisfying the condition

g∞ := lim sup
ξ→+∞

∫ T

0
sup|x|≤ξ G(t, x)dt

ξp < +∞ (3.1)

and for every µ ∈ [0, µg,λ[ where

µg,λ :=
1 − LT kp

pkpg∞

(

1 − λ
pkp

1 − LT kp
A

)

, (3.2)

the problem (1.1) has an unbounded sequence of classical solutions in E
α,p
0 .

Proof. Our aim is to apply Theorem 2.1 to the problem (1.1). Take X = E
α,p
0 . Let the functionals Φ, Ψ

for every u ∈ X , defined by

Φ(u) =
1

p
‖u‖p

α,p −
m
∑

j=1

∫ u(tj )

0

Ij(s)ds (3.3)

and

Ψ(u) =

∫ T

0

F (t, u(t))dt +
µ

λ

∫ T

0

G(t, u(t))dt.

Let us prove that the functionals Φ and Ψ satisfy the required conditions in Theorem 2.1. It is well
known that Ψ is a differentiable functional whose differential at the point u ∈ X is

Ψ′(u)(v) =

∫ T

0

f(t, u(t))v(t)dt +
µ

λ

∫ T

0

g(t, u(t))v(t)dt

for every v ∈ X , as well as is sequentially weakly upper semicontinuous. Now from the facts −Lj |ξ| ≤
Ij(ξ) ≤ Lj |ξ| for every ξ ∈ R, j = 1, . . . , n, and taking (2.3) into account, for every u ∈ X , we have

1 − LT kp

p
‖u‖p

α,p ≤ 1

p
‖u‖p

α,p − LT kp

p
‖u‖p

α,p ≤ Φ(u)

≤ 1

p
‖u‖p

α,p +
LT kp

p
‖u‖p

α,p ≤ 1 + LT kp

p
‖u‖p

α,p, (3.4)

by using the condition (H) and the first inequality in (3.4), it follows lim‖u‖→+∞ Φ(u) = +∞, namely Φ
is coercive. Moreover, Φ is continuously differentiable whose differential at the point u ∈ X is

Φ′(u)(v) =

∫ T

0

|cDα
0+u(t)|p−2(cDα

0+u(t))(cDα
0+v(t))dt

+

∫ T

0

|u(t)|p−2u(t)v(t)dt +

m
∑

j=1

Ij(u(tj))v(tj)

for every v ∈ X . Moreover, Φ is sequentially weakly lower semicontinuous. Therefore, we observe that
the regularity assumptions on Φ and Ψ, as requested in Theorem 2.1, are verified.

Let {ξn} be a real sequence of positive numbers such that limn→+∞ ξn = +∞, and

A = lim
n→+∞

∫ T

0

sup
|x|≤ξn

F (t, x)dt

ξp
n

.

Put

rn =
1 − LT kp

pkp
ξp

n.
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From the definition of Φ and considering equations (2.3), (3.3) and (3.4) for every rn > 0, one has

Φ−1(−∞, rn) = {u ∈ X ; Φ(u) < rn} ⊆ {u ∈ X ; |u| ≤ ξn} . (3.5)

Therefore, since 0 ∈ Φ−1(−∞, rn) and Φ(0) = Ψ(0) = 0, one has

ϕ(rn) = inf
u∈Φ−1(−∞,rn)

(supu∈Φ−1(−∞,rn) Ψ(u)) − Ψ(u)

rn − Φ(u)
≤

supu∈Φ−1(−∞,rn) Ψ(u)

rn

=

sup
u∈Φ−1(−∞,rn)

∫ T

0

[

F (t, u(t)) +
µ

λ
G(t, u(t))

]

dt

rn

≤

∫ T

0

sup
|x|≤ξn

F (t, x)dt

rn

+

µ

λ

∫ T

0

sup
|x|≤ξn

G(t, x)dt

rn

=
pkp

1 − LT kp

∫ T

0

sup
|x|≤ξn

F (t, x)dt

ξp
n

+
µ

λ

pkp

1 − LT kp

∫ T

0

sup
|x|≤ξn

G(t, x)dt

ξp
n

for all n ∈ N. Therefore, from assumption (A2) and the condition (3.1) one has

θ ≤ lim inf
n→+∞

ϕ(rn) ≤ pkp

1 − LT kp
(A +

µ

λ
g∞) < +∞.

Now, let {ηn} be positive real sequences and for all n ∈ N, and

lim
n→+∞

ηn = +∞.

Define wn by setting

wn(t) =







0, if t = 0,

ηn, if t ∈ (0, T ),
0, if t = 0.

Clearly, wn ∈ X , from (3.3) and (3.4), we have

1 − LT kp

p
ηp

n ≤ Φ(wn) ≤ 1 + LT kp

p
ηp

n. (3.6)

On the other hand, since g is nonnegative and bearing the assumption (A1) in mind, from (3.3) one has

Ψ(wn) =

∫ T

0

F (t, ηn)dt +
µ

λ

∫ T

0

G(t, ηn)dt

≥
∫ T

0

F (t, ηn)dt.

Then,

Iλ(wn) = Φ(wn) − λΨ(wn) ≤ 1 + LT kp

p
ηp

n − λ

∫ T

0

F (t, ηn)dt.

Now, consider the following cases.
If B < +∞, let ǫ ∈]0, B − 1

λ
[. There exists νǫ such that

∫ T

0

F (t, ηn)dt > (B − ǫ)
1 + LT kp

p
ηp

n
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for all n > νǫ, and so

Iλ(wn) <
1 + LT kp

p
ηp

n − λ

∫ T

0

F (t, wn(t))dt

=
1 + LT kp

p
ηp

n(1 − λ(B − ǫ)).

Since 1 − λ(B − ǫ) < 0, and taking into account (3.4) and (3.6) one has

lim
n→+∞

Iλ(wn) = −∞.

If B = +∞, fix N > 1
λ

. There exists νN such that

∫ T

0

F (t, ηn)dt > N
1 + LT kp

p
ηp

n

for all n > νN , and moreover,

Iλ(wn) <
1 + LT kp

p
ηp

n(1 − λN).

Since 1 − λN < 0, and arguing as before, we have

lim
n→+∞

Iλ(wn) = −∞.

Taking into account that
]

1

B
,

σ

2MA

[

⊂
]

0,
1

θ

[

,

and that Iλ does not possess a global minimum, from part (b) of Theorem 2.1, there exists an unbounded
sequence {un} of critical points which are the classical solutions of (1.1). So, our conclusion is achieved.
�

We present an example to illustrate Theorem 3.1.

Example 3.2. Consider the following problem






Dα
−1Φ4(cDα

0+u(t)) + |u(t)|2u(t) = λf(u) + µg(u), t , 1
2 , t ∈ (0, 1),

∆(Dα−1
−1 Φ4(cDα

0+u))(1
2 ) = I1(u(1

2 ))
u(0) = u(1) = 0

(3.7)

where α = 5
6 , I(ζ) =

7Γ4(5
6 )

6
sin(ζ) for every ζ ∈ R, f(ξ) = 4ξ3 + 80ξ3 sin2(ξ) + 40ξ4 sin(ξ) cos(ξ) and

g(ξ) = 5
2

√

ξ3 for every ξ ∈ R. By the expressions of f and g, we have F (ξ) = ξ4(1 + 20 sin2(ξ)) and

G(ξ) =
√

ξ5 for every ξ ∈ R. By simple calculations, we obtain k =
4
√

3

Γ(5
6 )

4
√

7
. By simple calculations,

we see that

lim inf
ξ→+∞

sup|x|≤ξ F (x)

ξ4 = 1,

lim sup
ξ→+∞

F (ξ)

ξ4 = 21

and

g∞ := lim sup
ξ→+∞

sup|x|≤ξ G(x)

ξ4 = 0 < +∞.

We clearly see that all assumptions of Theorem 3.1 are satisfied. Then, for every λ ∈ (
1

56
,

7Γ4(5
6 )

24
) and

for each µ ∈ [0, +∞) the problem (3.7) admits a sequence of classical solutions which is unbounded in

E
5
6

,4
0 .
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Remark 3.3. Under the conditions A = 0 and B = +∞, Theorem 3.1 concludes that for every λ > 0
and for each

µ ∈
[

0,
σ

2Mg∞

[

the problem (1.1) admits infinitely many classical solutions in X. Moreover, if g∞ = 0, the result holds
for every λ > 0 and µ ≥ 0.

Remark 3.4. Put
λ̂1 = λ1

and

λ̂2 =
1

limn→+∞

∫

T

0
sup|x|≤cn

F (t,x)dt−
∫

T

0
F (t,bn)dt

1−LT kp

pkp c
p
n− 1+LT kp

p
b

p
n

.

We explicitly observe that the assumption (A2) in Theorem 3.1 could be replaced by the following more
general condition
(A3) there exist two sequence {cn} with {bn} for all n ∈ N and

bp
n <

1 − LT kp

kp(1 + LT kp)
cp

n

for every n ∈ N and limn→+∞ cn = +∞ such that

lim
n→+∞

∫ T

0
sup|x|≤cn

F (t, x)dt −
∫ T

0
F (t, bn)dt

1−LT kp

pkp c
p
n − 1+LT kp

p
b

p
n

<
p

1 + LT kp
lim sup
n→+∞

∫ T

0 F (t, ηn)dt

η
p
n

.

Obviously, from (A3) we obtain (A2), by choosing bn = 0 for all n ∈ N. Moreover, if we assume (A3)
instead of (A2) and set

rn =
1 − LT kp

pkp
cp

n.

for all n ∈ N, by the same arguing as inside in Theorem 3.1, we obtain

ϕ(rn) = inf
u∈Φ−1(−∞,rn)

(supu∈Φ−1(−∞,rn) Ψ(u)) − Ψ(u)

rn − Φ(u)

≤
sup

u∈Φ−1(−∞,rn)

Ψ(u) −
[

∫ T

0

F (t, u(t))dt +
µ

λ

∫ T

0

G(t, u(t))dt

]

rn − Φ(u)

≤
∫ T

0 sup|x|≤cn
F (t, x)dt −

∫ T

0 F (t, bn)dt

1−LT kp

pkp c
p
n − 1+LT kp

p
b

p
n

.

We have the same conclusion as in Theorem 3.1 with Λ replaced by Λ′ :=]λ̂2, λ̂2[.

Here we point out the following consequence of Theorem 3.1.

Corollary 3.5. Assume that (A1) holds and

(A4) lim infξ→+∞

∫

T

0
sup|x|≤ξ F (t,x)dt

ξp < 1−LT kp

pkp ;

(A5) lim supξ→+∞

∫

T

0
F (t,ξ)dt

ξp > 1+LT kp

p
.
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Then, for every non-negative arbitrary function g : [0, T ] × R → R which is measurable in [0, T ] and of
class C1(R) satisfying the condition (3.1) and for every µ ∈ [0, µg,1[ where

µg,1 :=
1 − LT kp

pkpg∞

(

1 − pkp

1 − LT kp
A

)

,

the problem

{

tD
αi

T (ai(t)0Dαi

t ui(t)) = Fui
(t, u) + µGui

(t, u) + hi(ui(t)), t ∈ (0, T ),
ui(0) = ui(T ) = 0

for 1 ≤ i ≤ n, has an unbounded sequence of classical solutions in X.

In the same way as in the proof of Theorem 3.1 but using conclusion (c) of Theorem 2.1 instead of
(b), we will obtain the following result.

Theorem 3.6. Assume that all the hypotheses of Theorem 3.1 hold except for Assumption (A2). Suppose
that

(B1)

Ā <
1 − LT kp

kp(1 + LT kp)
B̄

where

Ā = lim inf
ξ→0+

∫ T

0

sup
|x|≤ξ

F (t, x)dt

ξp

and

B̄ =
p

1 + LT kp
lim sup

ξ→0+

∫ T

0
F (t, ξ)dt

ξp .

Then, for each λ ∈]λ3, λ4[ where

λ3 :=
1

B̄

and

λ4 :=
1 − LT kp

pkpĀ

for every nonnegative arbitrary function g : [0, T ] × R → R which is measurable in [0, T ] and of class
C1(R) satisfying the condition

g0 := lim sup
ξ→0+

∫ T

0
sup|x|≤ξ G(t, x)dt

ξp < +∞ (3.8)

and for every µ ∈ [0, µg0,λ[ where

µg0,λ :=
1 − LT kp

pkpg0

(

1 − λ
pkp

1 − LT kp
lim inf
ξ→0+

∫ T

0
sup|x|≤ξ F (t, x)dt

ξp

)

, (3.9)

the problem (1.1) has a sequence of pairwise distinct classical solutions which strongly converges to 0 in
X.
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Proof. We take Φ and Ψ as in the proof of Theorem 3.1 and put Iλ̄(u) = Φ(u) − λ̄Ψ(u) for u ∈ X . Since

∫ T

0

sup
|x|≤ξ

[F (t, x) +
µ̄

λ̄
G(t, x)]dt

ξp

≤

∫ T

0

sup
|x|≤ξ

F (t, x)dt

ξp +
µ̄

λ̄

∫ T

0

sup
|x|≤ξ

G(t, x)dt

ξp ,

taking into account (3.8) one has

lim inf
ξ→0+

∫ T

0

sup
|x|≤ξ

[F (t, u(t)) +
µ̄

λ̄
G(t, u(t))]dt

ξp

≤ lim inf
ξ→0+

∫ T

0

sup
|x|≤ξ

F (t, x)dt

ξp +
µ̄

λ̄
G0.

We verify that δ < +∞. For this, let {ξn} be a sequence of positive numbers such that ξn → 0+ as
n → +∞ and

lim
n→+∞

∫ T

0

sup
|x|≤ξn

[

F (t, x) +
µ̄

λ̄
G(t, x)

]

dt

ξp
n

< +∞.

Put

Ā = lim
n→+∞

∫ T

0

sup
|x|≤ξn

F (t, x)dt

ξp
n

and

rn =
1 − LT kp

pkp
ξp

n

for n ∈ N. Therefore, from assumption (B1) and the condition (3.8) one has

δ ≤ lim inf
n→+∞

ϕ(rn) ≤ pkp

1 − LT kp
(Ā +

µ̄

λ̄
g0) < +∞.

Let us show that the functional Iλ̄ does not have a local minimum at zero. For this, let {ηn} be a sequence
of positive such that ηn → 0+ as n → +∞. Put

B̄ =
p

1 + LT kp
lim

n→0+

∫ T

0 F (t, ηn)dt

η
p
n

. (3.10)

Let {wn} be a sequence in X with wn defined in (3). Moreover, since g is non-negative, from the
assumption (A1) we obtain

Ψ(wn) =

∫ T

0

F (t, ηn)dt +
µ̄

λ̄

∫ T

0

G(t, ηn)dt

≥
∫ T

0

F (t, ηn)dt.

Then,
Iλ̄(wn) = Φ(wn) − λ̄Ψ(wn)
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≤ 1 + LT kp

p
ηp

n − λ̄

∫ T

0

F (t, ηn)dt.

Consider the following cases.
If B̄ < +∞, let ε ∈]0, B̄ − 1

λ̄
[. By (3.10), there exists νε such that

∫ T

0

F (t, ηn)dt > (B̄ − ε)
1 + LT kp

p
ηp

n

for all n > νε, hence

Iλ(wn) <
1 + LT kp

p
ηp

n − λ̄(B̄ − ε)

∫ T

0

F (t, wn(t))dt

=
1 + LT kp

p
ηp

n(1 − λ̄(B̄ − ε)).

Since 1 − λ̄(B̄ − ε) < 0, and by considering (3.4), one has

lim
n→+∞

Iλ̄(wn) = 0.

If B̄ = +∞, fix N0 > 1
λ̄

. There exists νN0
such that

∫ T

0

F (t, ηn)dt > N0
1 + LT kp

p
ηp

n

for all n > νN0
, and moreover,

Iλ̄(wn) <
1 + LT kp

p
ηp

n(1 − λ̄N0).

Since 1 − λ̄N0 < 0, and as above, we can say

lim
n→+∞

Iλ̄(wn) = 0.

Since Iλ̄ = 0, this implies that the functional Iλ̄ does not have a local minimum at zero. Hence, part (c)
of Theorem 2.1 ensures that there exists a sequence {un} in X of critical points of Iλ̄ such that ‖un‖ → 0
as n → ∞, and the proof is complete. �
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