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A Note on Closure Spaces Determined by Intersections ∗

Vı́ctor Fernández and Cristian Brunetta

abstract: In this work, we study a kind of closure systems (c.s.) that are defined by means of intersections
of subsets of a support X with a (fixed) closed set T . These systems (which will be indicated by M(T )-spaces)
can be understood as a generalization of the usual relative subspaces. Several results (referred to continuity and
to the ordered structure of families of M(T )-spaces) are shown here. In addition, we study the transference of
properties from the “original closure spaces (X, K)” to the spaces (X, M(T )). Among them, we are interested
mainly in finitariness and in structurality. In this study of transference, we focus our analyisis on the c.s.
usually known as abstract logics, and we show some results for them.
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1. Introduction and Preliminaries

The well-known standard notion of relative subspace Y of a given closure space (CSP) (X, K) (being
K a closure system; c.s.) allows us to obtain another one, of the form (Y, KY ), where KY is defined
as follows: KY = {A ⊆ Y : A = Y ∩ Z for some Z ∈ K}. This notion allows us to characterize many
properties of KY in terms of K. This definition is motivated by the applications of certain topological
spaces and formalizes in an adequate way the definition of (IR, τ) as a subspace of (IR2, τ), for instance.
Note here that, for Y ⊆ X , the c.s. KY has the set Y as its support. So, an interesting question here is
to obtain a natural generalization of the already mentioned idea, in such a way that the “new” closure
system has the own set X as its support . With this motivation, we define the c.s. M(T ) which verifies the
previous requirements. Concretely, given a (fixed) closure space (X, K), and a set T ∈ K, the meet-closure

system M(T ) (determined by (X, K) and T ) is defined in this way: M(T ) = {Y ⊆ X : Y ∩ T ∈ K}. We
will show that (X, M(T )) is a CSP that is naturally related with the CSP (Y, KY ), as it was desired. In
addition, we will give several properties of M(T )-spaces, and we will show several elucidating examples
that motivate our study, already initialized in [7].

Besides that, we will investigate if certain properties of (X, K) (finitariness, structurality) are trans-

ferred to (X, M(T )). By the way, in this study of transference, we will focus our analysis on abstract

logics. That is, closure spaces of the form (A, K), being A any algebra (and, a particular case, when A is
a sentential language of the form A = L(SL)). With this idea, the results of this note can be understood
as a “first step” in the study of transference of properties between closure spaces (abstract logics), that
will be developed in future works.
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We start this paper with a brief reminder of the notion of closure space, since it is the main subject
to be developed here. For that, we are based on [3], [12] and on [14] (classical reference on Abstract
Logic), applying several notational changes which are focused on the self-contention of this work.

Definition 1.1. Let X be a non-empty set:
(a) A closure operator on X (c.o.) is a map Cl : ℘(X) −→ ℘(X) satisfying (for every A, B ⊆ X):
a.1) A ⊆ Cl(A) (Extensiveness)
a.2) Cl(Cl(A)) ⊆ Cl(A) (Idempotency)
a.3) If A ⊆ B, then Cl(A) ⊆ Cl(B) (Monotonicity).
In addition:
(b) A closure relation on X (c.r.) is a relation ⊢ ⊆ ℘(X) × X verifying (for every A, B ⊆ X , x ∈ X):
b.1) If x ∈ A then A ⊢ x

b.2) If B ⊢ x, and A ⊢ y for every y ∈ B, then A ⊢ x.
b.3) If A ⊢ x and A ⊆ B, then B ⊢ x.
Finally:
(c) A closure system on X (c.s.) is a family K ⊆ ℘(X) closed by arbitrary intersections (note that,
by vacuity, X ∈ K for every c.s.).

All the previous notions can be interdefined, as it is well-known.

Proposition 1.2. If Cl is a c.o. on X , then ⊢Cl⊆ ℘(X) × X defined by: A ⊢Cl x iff x ∈ Cl(A) is a c.r.
on X . Reciprocally, if ⊢ is a c.r. on X , the map Cl⊢ : ℘(X) → ℘(X) defined as: Cl(A) = {x ∈ X : A ⊢ x}
is a c.o. on X . Moreover, Cl⊢Cl

= Cl, and ⊢Cl⊢
= ⊢.

Proposition 1.3. If Cl is a c.o. on X , then KCl:={Y ⊆ X : Y = Cl(Y )} is a c.s. on X . Reciprocally,
for every closure system K ⊆ ℘(X), the map ClK : ℘(X) −→ ℘(X) defined as (for every A ⊆ X):

ClK(A) =
⋂

B∈FK

A

B

(where FK
A

:={B ∈ K : A ⊆ B}) is a c.o. on X . Moreover, KClK
= K, and ClKCl

= Cl.

From the previous results, the following definition makes sense:

Definition 1.4. A closure space (CSP) is a pair (X, K), being K a c.s. on X . Equivalently, a CSP is
a pair (X, Cl), or a pair (X, ⊢), without risk of confusion.

Proposition 1.5. Given a CSP (X, K), the pair (K, ⊆) is a complete lattice, with
∧
i∈I

K
Ai =

⋂
i∈I

Ai,

and
∨

i∈I

!Ai = ClK(
⋃

i∈I
Ai). Here, the greatest (lowest) element of the lattice (K, ⊆) is AK

1 = X (AK
0 =

ClK(∅)).

All the notions above indicated will be used several times along this paper, depending of the results to
be discussed (anyway, the more usual formalization of CSP to be considered here is the based on c. s.
(X, K)). Only when we need to indicate if every one of such characterizations is related to another one,
we will denote the CSP by (X, ClK), (X, KCl), (X, ⊢Cl), and so on. Besides that, when we need to relate
two different CSP, they will be distinguished by means of subscripts and/or superscripts.

2. Relative Subspaces and the M(T )-Spaces

The definition of the M(T )-spaces is motivated by the notion of relative closure space, as it was
already indicated. Let us recall a mimimum about it, taking as starting point a fixed CSP (X, K): let
(X, K) be a CSP, and consider Y ⊆ X . The closure space relative to Y (induced by K) is the pair
(Y, KY ), being the c.s. KY defined by: KY :={G ⊆ Y : exists F ∈ K verifying G = F ∩ Y }. The c.o.
(c.r.) respective will be denoted by Cl

KY
( ⊢

KY
).

It is easy to see that the pair (Y, KY ), as defined above, is a CSP, indeed. In this context,
⋂

∅ = Y .
Besides that, many properties about relative spaces are direct adaptation from General Topology (see
[6], for instance):
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Proposition 2.1. Let (X, K) be a c.s., (Y, KY ) a relative subspace and A ⊆ Y . Then:

(1) Cl
KY

(A) = Y ∩ Cl
K

(A).
(2) A ⊢

KY
x iff A ⊢Cl

K
x and x ∈ Y .

(3) If (Y, KY ) is a subspace of (X, K), H ∈ KY and Y ∈ K then H ∈ K.
(4) For every A ⊆ Y , A ∈ KY iff A ∈ K.

Again, we emphasize that the subset Y ⊆ X defines a CSP taking the own set Y as its support. On the
other hand, the last property above indicated will be important to us because it induces the following
problem: it is possible to determine a CSP verifying such property but considering X as its support? In
other words, we wish to solve the following:

Problem 1. Given a CSP (X, K) and T ⊆ X , find another one (X, K ′) such that:

(∗) For every A ⊆ T , A ∈ K iff A ∈ K ′.

The more natural solution to this problem is to consider K
∗

T :=KT ∪ {X}. It is easy to see that K
∗

T

is a c.s., indeed. Moreover, it is the smaller c.s. verifying (∗) (i.e., for every CSP (X, K) verifying such

property, K
∗

T ⊆ K). So, our original motivation can be refined now: ¿What is the higher closure system
(if there exists one) verifying (∗) in Problem 1? The answer (which will depends of the belonging of T to
K) is given in the sequel.

Definition 2.2. Let (X, K) be a c.s., and T ⊆ X . The family M(T ) ⊆ ℘(X) is defined as M(T ) =
{A ⊆ X : A ∩ T ∈ K}. If M(T ) is closed by arbitrary intersections, then the pair (X, M(T )) will be
called the meet-closure space determined by T . By extension, every c.s. (X, K ′) such that there is
T ⊆ X with K ′ = M(T ) will be called informally as an M(T )-space.

Proposition 2.3. The pair (X, M(T )) is a closure space if, and only if, T ∈ K.

Proof. Suppose T ∈ K. Then M(T ) , ∅ (moreover, X ∈ M(T )). Suppose now that {Ai}i∈I ⊆ M(T ).
That is, Ai ∩ T ∈ K, for every i ∈ I. Then, (

⋂
i∈I

Ai) ∩ T =
⋂

i∈I
(Ai ∩ T ) ∈ K. On the other hand, if

M(T ) is a c.s., then X ∈ M(T ), which means that X ∩ T = T ∈ K. �

From the previous result, when we will talk about any CSP (X, M(T )), it will be clear that T ∈ K.
Note that the members of M(T ) are included in X , as it was previously recquired. By the way, it should
be obvious that the name “meet-closure” comes from the fact that we are using intersections to define
M(T ). In addition, note that every c.s. M(T ) should be denoted in a more accurate way indicating the
family K (because the set T can be considered as belonging to different c.s. Ki). Anyway, only in the

case in which the specification of the family K is neccesary, we will denote M(T ) by MK(T ). Finally,
the c.o. (resp. c. r.) determined by M(T ) will be indicated by ClM(T ) (resp. ⊢M(T )), from now on.

Proposition 2.4. Given a closure space (X, K), for every T , T1, T2 ∈ K, it holds:
(a) For every A ⊇ T , A ∈ M(T ).

(b) T1 ⊆ T2 implies M(T2) ⊆ M(T1) (and therefore ClM(T1)(A) ⊆ ClM(T2)(A), for every A ⊆ X).

(c) M(X)=K.
(d) K ⊆ M(T ), for every T ∈ K (and thus, for every A ⊆ X , ClM(T )(A) ⊆ Cl

K
(A)).

(e) For every A ⊆ X , Cl
M(AK

0
)
(A) = A ∪ AK

0 . Therefore, A ∪ AK
0 ⊇ ClM(T )(A).

(f) ClM(T )(A) ⊆ A ∪ T , for every A ⊆ X .
(g) For every A ⊆ T , it holds:

(g.i) A ∈ M(T ) iff A ∈ K.

(g.ii) ClM(T )(A) ⊆ T .

(g.iii) ClM(T )(A) = Cl
K

(A)

(h) The first elements of K and of M(T ) coincide. That is, AK
0 = A

M(T )
0 .
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Proof. Let (X, K) be a CSP fixed. Then: (a), (b) and (c) are obvious. Property (d) is valid from (b) and

(c). To prove (e): since AK
0 = (A ∪ AK

0 ) ∩ AK
0 , we have AK

0 ∪ A ∈ F
M(A

K

0
)

A
. Now, if P ∈ F

M [AK

0
]

A
, then

A ⊆ P , obviously. In addition AK
0 ∩ P ∈ K, which implies AK

0 ⊆ P . Thus, A ∪ AK
0 ⊆ P . All this implies

Cl
M(AK

0
)
(A) = AK

0 ∪ A. On the other hand, (f) is valid because A ∪ T ∈ F
M(T )
A

. With respect to (g):

since T ∈ F
M(T )
A

, (g.i) and (g.ii) are obvious. Let us prove (g.iii) by double inclusion: first of all, since

Cl
K

(A) ∈ K ⊆ M(T ), we have Cl
K

(A) ∈ F
M(T )
A

. Hence, ClM(T )(A) ⊆ Cl
K

(A). On the other hand,

by (g.ii), ClM(T )(A) ⊆ T . So, from (g.i), ClM(T )(A) ∈ FK
A

and, thus, Cl
K

(A) ⊆ ClM(T )(A). Finally,

to prove (h): Let AK
0 (A

M(T )
0 ) be the first element of K (M(T )). On one hand A

M(T )
0 ⊆ AK

0 , since

AK
0 ∈ M(T ), by (d). On the other hand, note that A

M(T )
0 ⊆ T (since T ∈ M(T )), and A

M(T )
0 ∈ M(T ),

obviously. So, by (g.i), A
M(T )
0 ∈ K. Then, AK

0 ⊆ A
M(T )
0 . �

From (g) above, M(T ) share the same closed sets as K “inside T ”. Moreover, M(T ) is the “finest”
c.s. (with support X) that satisfies this property, as it was recquired in Problem 1.

Proposition 2.5. Let (X, K) be a c.s., and let T ∈ K. For every c.s. (X, K) satisfying (∗): For every
A ⊆ T , A ∈ K iff A ∈ K, it holds that K ⊆ M(T ).

Proof. Let A ∈ K. Since T ∈ K too, A ∈ M(T ). �

Note, in addition, that the M(T )-spaces can be related with the “traditional relative subspaces”,
again applying (g) of Proposition 2.4 (and Proposition 2.1):

Proposition 2.6. Consider (X, K) and T ∈ K as before. For every B ⊆ T , (B, KB)=(B, M(T )
B

). In
particular, (T, KT )=(T, M(T )

T
).

We conclude this section characterizing directly ClM(T ) by means of Cl
K

(this result will be useful
in the next sections).

Lemma 2.7. ClM(T )(A) = Cl
K

(A ∩ T ) ∪ A for every A ⊆ X .

Proof. Since A ∩ T ⊆ T ∈ K, Cl
K

(A ∩ T ) ∩ T = Cl
K

(A ∩ T ). From this, (Cl
K

(A ∩ T ) ∪ A) ∩ T =

(Cl
K

(A∩T )∩T )∪(A∩T ) = Cl
K

(A∩T )∪(A∩T ) = Cl
K

(A∩T ) ∈ K. Hence, (Cl
K

(A∩T )∪A) ∈ M(T ).

So, it is obvious that (Cl
K

(A ∩ T ) ∪ A) ∈ F
M(T )
A

. Now, for every B ∈ F
M(T )
A

, A ∩ T ⊆ B ∩ T ∈ K, which
implies Cl

K
(A ∩ T ) ⊆ B and then Cl

K
(A ∩ T ) ∪ A ⊆ B. Apply Proposition 1.3 now. �

3. Ordered Structures referred to M(T )-spaces

The definition of M(T )-spaces suggests some order-theoretic questions to be answered. For that,
let us remember some well-known about the internal lattice-theoretic structure of the closure systems.
First of all, it is obvious (from Proposition 1.5) that (M(T ), ⊆) is a complete lattice, for every T ∈ K.
Moreover, from Lemma 2.7 it follows straightforwardly that (given {Ai}i∈I ⊆ M(T )):
∧
i∈I

M(T )
Ai = [

∧
i∈I

K
(Ai ∩ T )] ∪

⋂
i∈I

Ai;

∨
i∈I

M(T )
Ai = Cl

K
(

⋃
i∈I

(Ai ∩ T )) ∪
⋃

i∈I

Ai = [
∨

i∈I

K
(Ai ∩ T )] ∪

⋃
i∈I

Ai.

That is,
∧
i∈I

M(T )
(

∨
i∈I

M(T )
) can be naturally expressed in terms of

∧
i∈I

K
(

∨
i∈I

K!
).

Some more difficult questions about these order-theoretic relations are based on the lattice of all the

closure systems, with a fixed support X (see [14]).
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Proposition 3.1. Given a fixed set X , ∅, the pair CSP(X):=(CSP (X), ⊆) (considering here CSP (X)

= {K : K is a c.s. of X}) is a complete lattice. In this case,
∧CSP(X){Ki : i ∈ I} =

⋂
i∈I

Ki, meanwhile

that
∨CSP(X){Ki : i ∈ I} =

∧CSP(X){K : Ki ⊆ K, for every i ∈ I} 1.

So, given (X, K), T ∈ K and REL
K

(T ) := {K : K is a c.s. of X satisfying (∗) of Problem 1}, we

have that (REL
K

(T ), ⊆) is a bounded subposet of (CSP(X), ⊆) with first element K
∗

T and greatest element
M(T ). Moreover:

Proposition 3.2. REL
K

(T ) is a complete subsemilattice of CSP(X).

Proof. Straightforward. �

Another subposet of CSP(X) is the system M(K):=(M(K), ⊆), being M(K) defined as follows:
M(K) := {K : K = M(T ), for some T ∈ K}. Again, it is natural here to ask the following question: it
is (M(K), ⊆) a sublattice of (CSP(X), ⊆)? Unfortunately, in this case we have:

Proposition 3.3. (M(K), ⊆) is not a sublattice of (CSP(X), ⊆), in general.

Proof. The following counterexample proofs our claim: Consider X :=[1, 7]N = {x ∈ N : 1 ≤ x ≤ 7}.

It is easy to see that the family K
⋆
:= {{1}, {1, 2}, {1, 3}, {1, 4, 5}, {1, 2, 3, 7}, {1, 2, 6}, X} is a CSP. In

addition, M({1}) = M({1, 2}) = M({1, 3}) = {W ⊆ X : 1 ∈ W }. Consider now T1:={1, 4, 5} and

T2:={1, 2, 3, 7}. Even when M(T1), M(T2) ∈ M(K
⋆
), we have that M(T1)

∧CSP(X)
M(T2) = M(T1) ∩

M(T2) < M(K
⋆
). To prove our claim, let us show (∗): for every T ∈ K

⋆
, M(T ) ,M(T1) ∩ M(T2). First

of all, M({1}) ,M(T1) ∩ M(T2), because {1, 4} ∈ M({1}) \ M(T1). Thus, M(T1) ∩ M(T2) ,M({1, 2}),
and therefore M(T1) ∩ M(T2) , M({1, 3}). In addition, {1, 3, 6} ∈ M(T1) ∩ M(T2) \ M({1, 2, 6}),
{1, 7} ∈ M({1, 4, 5}) \ M(T1) ∩ M(T2), {1, 5} ∈ M({1, 2, 3, 7}) \ M(T1) ∩ M(T2). Finally, M(X) =

K
⋆
,M(T1) ∩ M(T2), obviously. From all these facts together, (∗) is valid. �

Note here that M(K
⋆
), in the previous example, is a lattice itself (indeed, it is isomorphic to the

non-distributive lattice M5: see [3]). So, an interesting open problem motivated by this is the following:
it is the system (M(K), ⊆) (given any closure system K) a lattice itself, independently of (CLS(X), ⊆)?
We will return to this problem in the last section.

4. Continuity in the M(T )-spaces

In this section we will study some properties of continuous functions, when applied to CSP of the
form (X, M(T )). For that, recall first the following basic notions, to unify notation:

Definition 4.1. Let (Xi, Ki) (i = 1, 2) be two CSP. The map f : X1 −→ X2 is a (X1, K2)-(X2, K2) -
continuous function iff, for every E ∈ K2, f−1(E) ∈ K1. When (X1, K1) = (X2, K2) we will say that
f is (X1, K1)-continuous, to simplify notation.

Some well-known equivalent formulations to Definition 4.1 that will be used without explicit mentions
are:

Theorem 4.2. Let (Xi, Ki) (i = 1, 2) be two closure spaces, being Cli (⊢i) their corresponding closure
operators (relations). For every function f : X1 −→ X2, the following affirmations are equivalent:
(a) f is (X1, K1)-(X2, K2)-continuous.
(b) If A ∪ {x} ⊆ X1 and A ⊢1 x, then f(A) ⊢2 f(x).
(c) f(Cl1(A)) ⊆ Cl2(f(A)) for every A ⊆ X1.
(d) Cl1(f−1(B)) ⊆ f−1(Cl2(B)) for every B ⊆ X2.

1 Of course, it is usual to adapt this result to the dual lattice to CSP(X), CSP∗ = (CSP ∗(X), ≤), where CSP ∗(X) =
{Cl : Cl is a c.o. of X}, and Cl1 ≤ Cl2 iff, for every A ⊆ X, Cl1(A) ⊆ Cl2(A). Anyway, in this paper we will only work
with CSP(X).
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We will proceed now to analyze continuity in closure spaces of the form (X, M(T )). For that, we
must distinguish when a given CSP of this kind constitutes the domain or the codomain of the functions
to be analyzed. Let us begin with this obvious fact:

Proposition 4.3. If f is (X1, K1) − (X2, K2)-continuous, then it is (X1, M(T )) − (X2, K2)-continuous,
for every T ∈ K1.

In addition, M(T )-continuity can be characterized by means of the “original” c.s. K (and therefore by
Cl

K
and ⊢

K
), taking into account Lemma 2.7.

Proposition 4.4. Let (X, K) be a CSP and T ∈ K as before. Then:
(a) For every CSP (X

′

, K
′

), f : X → X
′

is a (X, M(T )) − (X
′

, K
′

)-continuous map if and only if, for
every A ⊆ X , f(Cl

K
(A ∩ T ) ∪ A) ⊆ Cl

K
′ (f(A)).

(b) For every CSP (X∗, K∗), f : X∗ → X is a (X∗, K∗) − (X, M(T ))-continuous map if and only if, for
every A ⊆ X , f(ClK∗(A)) ⊆ Cl

K
(f(A) ∩ T ) ∪ f(A).

By the way, in the previous result, (a) can be simplified:

Proposition 4.5. Let (Xi, Ki) i = 1, 2 closure spaces, being Cli (⊢i) their respective c.o. (c.r.). For
every map f : X1 −→ X2, every T ∈ K1, are equivalent:
(a) f is (X1, M(T ))-(X2, K2)-continuous.
(b) For every A ∪ {x} ⊆ X1, A ∩ T ⊢1 x implies f(A ∩ T ) ⊢2 f(x).
(c) f(Cl1(A ∩ T )) ⊆ Cl2(f(A ∩ T )), for every A ⊆ X1.
(d) Cl1(f−1(B) ∩ T ) ⊆ f−1(Cl2(B)) ∩ T , for every B ⊆ X2.

Proof. (a) implies (b): suppose (a) valid and consider A ∪ {x} ∈ X1, with A ∩ T ⊢1 x. We define V :=
Cl2(f(A ∩ T )) ∈ K2. Note that A ∩ T ⊆ f−1(V ), and so A ∩ T ⊆ f−1(V ) ∩ T . Hence, f−1(V ) ∩ T ⊢1 x.
Since f−1(V ) ∩ T ∈ K1, we have f(x) ∈ f(f−1(V )) ⊆ V = Cl2(f(A ∩ T )). That is, f(A ∩ T ) ⊢2 f(x).
(b) implies (c): straightforward.
(c) implies (d): Consider B ⊆ X2. By (c), it is valid that f(Cl1(f−1(B) ∩ T )) ⊆ Cl2(f(f−1(B) ∩ T )) ⊆
Cl2(B ∩ f(T )) ⊆ Cl2(B). Hence, Cl1(f−1(B) ∩ T ) ⊆ f−1(Cl2(B)). Moreover, Cl1(f−1(B) ∩ T ) ⊆ T

(since T ∈ K1). Hence Cl1(f−1(B) ∩ T ) ⊆ f−1(Cl2(B)) ∩ T .
(d) implies (a): Cl1(f−1(B) ∩ T ) ⊆ f−1(Cl2(B)) ∩ T for every B ⊆ X2.
Let E ∈ K2, by hypothesis Cl1(f−1(E) ∩ T ) ⊆ f−1(Cl2(E)) ∩ T = f−1(E) ∩ T , so f−1(E) ∩ T ∈ K1.
That is, E ∈ M(T ), as it was desired. �

Corollary 4.6. For every CSP (X, K), for every T ∈ K, the following conditions are equivalent (for
every function f : X → X):
(a) f is (X, M(T ))-continuous.
(b) For every A ⊆ X , f(Cl

K
(A ∩ T ) ∪ A) ⊆ Cl

K
(f(A) ∩ T ) ∪ f(A).

(c) For every A ⊆ X , f(Cl
K

(A ∩ T )) ⊆ Cl
K

(f(A ∩ T ) ∩ T ) ∪ f(A ∩ T ).

Proof. Conditions (a) and (b) are equivalent by Lemma 2.7 and Theorem 4.2. Conditions (a) and (c) are
equivalent by Proposition 4.5 (c) and Lemma 2.7, again. �

5. Transference of Finitariness and Structurality

The preservation of continuity in the M(T )-spaces (Proposition 4.3) suggests the study of transference
of other properties. In this section we will focused on two special ones, often studied when dealing with
Abstract Logic (see [2]): finitariness and structurality. For that, we will fix some notation. First:

Definition 5.1. A CSP (X, K) is finitary iff, for every Y ⊆ X , Y ∪ {a} ⊆ X such that a ∈ ClK(Y ),
there exists Y0 ⊆ Y , Y0 finite, such that a ∈ ClK(Y0).

Proposition 5.2. If (X, K) is finitary, then (X, M(T )) is finitary too, for every T ∈ K.
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Proof. Suppose (X, K) finitary, and let a ∈ ClM(T )(Y ) = Cl
K

(Y ∩ T ) ∪ Y . If a ∈ Y , then Y0 = {a} ⊆ Y ,
and a ∈ ClM(T )(Y0). If a ∈ Cl

K
(Y ∩ T ), there is Z0 ⊆ Y ∩ T , Z0 finite, such that a ∈ Cl

K
(Z0). Let

Y0:=Z0 in this case: so, a ∈ Cl
K

(Y0) = Cl
K

(Y0 ∩ T ) ⊆ Cl
K

(Y0 ∩ T ) ∪ Y0 = ClM(T )(Y0), with Y0 ⊆ Y , Y0

finite. �

That is, finitariness is preserved under applications of M(T ). As we said, it is an important property
within the context of Abstract Logic (even when it can be studied far away from the scope of Logic,
indeed). However, since the next property to be analyzed (structurality) is fully intrinsic to Abstract
Logic, it is worth to define the basic notions relative to this area. For that, we are based on [1], [9] and
[14]. Also, we will use some notions on [3], with some notational changes:

Definition 5.3. A similarity type is a sequence S = (s1, s2, . . . , sk), with si ∈ ω (1 ≤ i ≤ k) 2. An
abstract algebra of type S (or, briefly, an S-algebra) is a pair A = (A, F ), being A a non-void set
(the support of A) and F = (f1, . . . , fk) is the set of operations of A which are maps such that, for
every 1 ≤ i ≤ k, fi : Asi → A (or, as it is usually said, fi is of arity si). We say that the algebras A1

and A2 are similar if both have the same type S.

Once the idea of abstract algebra has been formalized, the other useful notion in this section is the
following:

Definition 5.4. Let Ai = (Ai, Fi) (i = 1, 2) be two similar algebras. We say that h : A1 → A2

is an homomorphism iff, for every 1 ≤ i ≤ k, h(f1
i
(x1, . . . , xck

)) = f2
i
(h(x1), . . . , h(xck

)) (for every
x1, . . . , xck

∈ A1). If A1 = A2 we say that h is an endomorphism.

The previous notions allow to enrich the basic idea of closure spaces, in the following sense:

Definition 5.5. An abstract logic is, simply, a pair L = (AL, KL), being AL = (AL, FL) an abstract
algebra, and being KL a c.s. over AL.

So, an abstract logic is a “very specific space closure”, since its support is not “merely any set”, but
is related to some algebra. This allows to study some new properties that relate the closure-theoretic
notions with the algebraic ones. One of this kind of properties is actually structurality.

Definition 5.6. We say that an abstract logic L = (AL, KL) is structural iff every endomorphism
defined of AL is a continuous function (recall here Definition 4.1.). That is (by Theorem 4.2), if for every
endomorphism h : AL → AL, for every B ⊆ AL, h(ClKL

(B)) ⊆ ClKL
(h(B)).

It is worth to comment here the following point about notation: the expression “abstract logic” given
in Definition 5.5 is indebted to the first researchers in this area (for that, see [1] or [11]). This name is
motivated because such kind of CSP generalizes the more specific notion of sentential logic, which will
be given in the sequel (because some results/examples about structurality on M(T )-spaces that we will
show later deal with sentential logics, indeed).

Definition 5.7. Let V be a fixed, countable set, whose elements (denoted by p1, p2, p3 . . .) will be called
atomic formulas. Given a similarity type S = (s1, . . . , sk) consider any couple F = (c1, . . . , ck) (with
F ∩ V = ∅), (wherein F is called the set of connectives of L(S)) and define the arity of ci as the
number si. The sentential language L(S), generated by S is the smallest set that verifies:
1) V ⊆ L(S), ci ∈ L(S) for every ci of arity 0.
2) For every ci ∈ F with arity si, for every α1, . . . , αsi

∈ L(S), the “string” ci(α1, . . . , αsi
) ∈ L(S).

The elements of L(S) will be simply called as the formulas of L(S) 3.

2 In the standard representation of similarity type, si ≥ sj for every 1 ≤ i ≤ j ≤ k but, obviously, this is not necessary.
3 The definition of any formula ci(α1, . . . , αsi

) uses, implicitly, another set (of punctuation symbols), whose element are
“(”, “)” and “,”. Anyway it is well-known that this set is not essential.
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Note here that a sentential language (cf. Definition 5.7) can be understood as an S-algebra of the form
L(S) = (L(S), F ), indeed. More technically, L(S) is the absolutely free algebra, generated by S over V,
identifying any connective ci of arity si as an si-ary operation on L(S) 4 (see [1], [14]) . This essential
idea motivates the following:

Definition 5.8. A sentential (abstract) logic is an abstract logic of the form L = (L(SL), KL), being
L(SL) a sentential language.

The previous definition works in an efficent way to deal with the more intuitive notions of logic, with
a convenient formalism. So, for instance, Classical Sentential Logic is CL = (L(SCL), K|=CL

), where FCL

= {¬, ∨, ∧, →} having similarity SCL = (1, 2, 2, 2), and |=CL is the closure relation defined by means of
the well known (classical) two-valued truth-tables (by the way, |=CL determines KCL and ClCL as usual).

In the standard literature, the terminology for sentential logics is often different from the one applied
to a general CSP: given a sentential logic L = (L(SL), KL), the elements of KL are usually called L-

theories. In addition, the c. o. ClKL
is called the consequence operator of L, and the relation ⊢KL

is called
the consequence relation associated to L. Besides that, every endomorphism h : L(S) → L(S) is called
a substitution. Finally, continuous functions are sometimes called translations 5. With this notation, a
sentential logic L is structural iff all its substitutions are translations from L to itself. For instance, every
matrix logic (such as any many-valued ones, including the classical logic) is structural. At a more abstract
level, given any boolean algebra A, if we consider the family K := {F ⊆ A : F is a filter of A}, it holds
that (A, K) is a structural logic. Some examples of non-structural (sentential) logics are Annotated
Paraconsistent Logics (see [5], or [13]), and Halpern Epistemic Logic HKB′ (see [10]).

Remark 5.9.
• Note the following property of sentential languages: for every homomorphism h : L(S) → L(S),
comp(σ̂(α)) ≥ comp(α) (being comp(α) the number of connectives appearing in α). This fact will be
useful in the sequel.
• The notion of sentential logic allows to notice in a nice way why, in the definition of structurality, it is
not needed that (given a logic L = (L(SL), KL)), ClKL

(h(B)) = h(ClKL
(B)) . For instance, consider CL

the classical logic (which is structural), and the map h : V → L(SCL) defined by: h(α) = α∨α (for α ∈ V).

Since L(SCL) is an absolutely free algebra, h can be extended to an endomorphism ĥ : L(SCL) → L(SCL)

in an unique way. Consider now B = {p1 → p2} ⊆ L(SCL): for every γ ∈ ĥ(ClCL(B)), comp(γ) ≥ 2, since

V ∩ ClCL(B) = ∅. Now, let us define γ0:=p1 → p1 ∈ L(SCL). Obviously γ0 ∈ ClCL(∅) ⊆ ClCL(ĥ(B)).

In addition, since comp(γ0) = 1, we have γ0 < ĥ(ClCL(B)). Hence, ClCL(ĥ(B)) * ĥ(KCL(B)).
• However, there is a special case of abstract logic L = (AL, KL) where, for every endomorphism h,
h(ClKL

(B)) = ClKL
(h(B)), for every B ⊆ A: consider any algebra A = (A, F ), and K = {B ⊆ A :

B is a subuniverse of A} . Then ClK(B) = Sg(B), the subuniverse generated by B, and it is possible to
prove that for every endomorphism h : A → A, h(Sg(B)) = Sg(h(B)) 6.

We can analyze the transference of structurality to M(T )-spaces now. Unfortunately, as a first result,
we have:

Proposition 5.10. Structurality is not preserved by means of M(T )-spaces. That is, there are structural
abstract logics (A, K) and sets T ∈ K such that the logic (A, M(T )) is not structural.

Proof. The following counterexample (dealing with classical sentential logic CL again) proves our claim:
first, CL is a structural logic, as it was previously commented. Let T :=ClCL({p1}) ∈ KCL. In additon,

4 By the way, for every pair of absolutely free algebras A1, A2 with the same type of similarity and the same number
of generators (in this case, |V|), A1 is isomorphic to A2 (see [3]). This fact justifies the absence of restrictions for the set
F .

5 In some literature, the notion of translation is actually more general than continuity. See [4], for instance.
6 This result is a particular case of a stronger one, as it is well known: this property is valid for every homomorphism

of algebras h : A1 → A2. See [3], Theorem 6.6.
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consider α:=p1 ∨ p3, and let ĥ the endomorphism univocally determined by h : V → L(SCL) such that:
h(p1) = h(p2) = p2, and h(pi) = p4 for every pi (i ≥ 3). Consider now B := {p1, p2} ∈ L(SCL). Noting

that α ∈ ClCL(B ∩ T ) ⊆ ClM(T )(B) (from Lemma 2.7), we have β = ĥ(α) = p2 ∨ p4 ∈ ĥ(ClM(T )(B)).

On the other hand, ClM(T )(ĥ(B)) = ClM(T )({p2}) = ClCL({p2} ∩ ClCL({p1})) ∪ {p2} = ClCL(∅) ∪ {p2}

So, β < ClM(T )(ĥ(B)). Thus, ĥ(ClM(T )(B)) * ClM(T )(ĥ(B)). That is, (L(SCL), M(T )) is not structural.
�

This result suggests very interesting problems among which we find: what conditions must satisfy a
structural abstract logic L = (A, K) to transfer such property from K to M(T )? A (partial) answer is
given in the following result:

Proposition 5.11. Let L = (A, K) be a logic, and T ∈ K. If T ⊆ h−1(T ) for every endomorphism

h : A → A, then, (A, M(T )) is structural.

Proof. Suppose B ∈ M(T ), and let h : A → A be any endomorphism. Since B ∩T ∈ K, then h−1(B ∩T )
= h−1(B) ∩ h−1(T ) ∈ K. Now, since T ∈ K, we have h−1(B) ∩ h−1(T ) ∩ T ∈ K. Since (by Hypothesis),
h−1(T ) ∩ T = T , we have h−1(B) ∩ T ∈ K, and so h−1(B) ∈ M(T ), as it is desired. �

Corollary 5.12. Let (A, K) be a structural logic with A = (A, F ), and F0:={f ∈ F : f has arity 0}.
Then, for every T ∈ K such that T ⊆ F0, it holds that (A, M(T )) is structural, too.

Proof. Obvious, because T ⊆ F0 implies h(T ) = T for every endomorphism h : A → A. �

This result seems a little strict, but there are cases wherein such a kind of logics appear in a natural
way. For instance:

Example 5.13. Let L = (A, K) be the abstract logic such that A is a Boolean algebra with sup-
port A, and consider F0 := {0, 1} be the set of the standard 0-ary operations of A, and K := {F :
F is a filter of A}. If T = {1}, then (A, M(T )) is a structural logic, since (A, K) is it a structural one,

too. By the way, M(T ) = {D ⊆ A : 1 ∈ D}.

6. Final Conclusions

This note begins the study of a reasonable generalization of the relative closure spaces, as it was
previously mentioned. The main motivation of this is based on the treatment and application of this kind
of CSPs to Abstract (Sentential) Logics, as it is shown in the last section. It is maybe with this purpose
that all the technical results presented in the rest of the sections have been developed. Anyway, some
results here shown suggest different lines of research in the future, even outside of the scope of Abstract
Logic. Among them, we mention:
• Recovering: in which way a given CSP (X, K) can be recovered once a CSP (X, M(T )) is known? That
is: which properties should have a given closure space (X, M(T )) to obtain the “original” space (X, K)?
• About (M(K), ⊆) (see Section 3): despite Proposition 3.3, a very interesting open problem here is to
know if such poset is a lattice itself.
• Continuity: in Section 4 we have obtained a characterization of the continuous maps possessing M(T )-
spaces in its domains (Proposition 4.5). It would be desirable a similar result for continuous maps with
M(T )-spaces in the codomain of such functions.
• M(T )-spaces in the context of Leibniz Hierarchy: continuing with Abstract Logic in a deeper level, it
would be reasonable to study the preservation of the properties that define the so-called Leibniz Hierarchy,
essential in the the subarea known as Abstract Algebraic Logic (see [8] or [9]). That is, for instance: is
protoalgebraizability (equivalentiality, algebraizability) preserved in the M(T )-spaces? It is worth to
note that these properties are usually referred to structural logics. This justify this first approximation
to the preservation of structurality exposed in Section 5. This and all the previous problems exposed
here justify this seminal study of M(T )-spaces under our point of view.
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