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Upper Bound to Second Hankel Determinant for a family of Bi-Univalent Functions

Abbas Kareem Wanas

ABSTRACT: In the current investigation, we study a certain family of analytic and bi-univalent functions
with respect to symmetric conjugate points defined in the open unit disk U and find an upper bounds for the
second Hankel determinant Hs(2) of the functions belongs to this class.
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1. Introduction

Let A stand for the family of all analytic functions in the open unit disk U = {z € C': |z| < 1} and
having the form:

fz)=z+ Zanz”. (1.1)
n=2

Let S indicate the family of all functions in A which are univalent in U.

One of the significant tools in the theory of univalent functions is Hankel determinant which are utility,
for example, in showing that a function of bounded characteristic in U, i.e., a function which is a ratio of
two bounded analytic functions, with its Laurent series around the origin having integral coefficients, is
rational [8]. Also the Hankel determinant plays an important role in the study of singularities. Noonan
and Thomas [19] defined the ¢'* Hankel determinant of f € A for n > 0 and ¢ > 1 as

p anJrl e anJrqfl
Ap+1 Ap+2 ... An+q
Hy(n) = : : : : (a1 = 1).
An+q—1 Gn+4q .- (n42¢—2
The Hankel determinants
a1 a2 2
Hg(l): ‘ =as — Gy
az ag
and
az as 2
H5(2) = = Qo4 — @
2(2) a5 ay 204 — a3

are well known as Fekete-Szegé and second Hankel determinant functionals, respectively. Fekete and
Szegd [13] consider the further generalized functional ag — pa3, where p is real number. Recently, several
authors established upper bounds for the Hankel determinant of functions belonging to various subclasses
of univalent functions (see [1,3,9,16,17,18]).

According to the Koebe one-quarter theorem [11], every f € S has an inverse function f~! which
satisfies f71(f(2)) = z, (z € U) and f(f 1 (w)) = w, (|w| < ro(f),r0(f) > 1), where

g(w) = fHw) =w — axw® + (243 — a3) w* — (5a3 — basaz + as) w* + - - - . (1.2)
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A function f € A is said to be bi-univalent in U if both f and f~! are univalent in U. Let ¥ denote the
family of bi-univalent functions in U satisfying (1.1). In fact, Srivastava et al. [23] have apparently revived
the study of analytic and bi-univalent functions in recent years. Recently, many authors introduced
various subclasses of the bi-univalent function class 3 and considered estimates on the first two coefficients
|az| and |ag| in the Taylor-Maclaurin series expansion (1.1) (see [2,4,5,7,14,20,22,24,25]). The problem of
finding the coefficient estimates on |a,|(n = 3,4, ---) for functions f € ¥ is still an open problem.

On the other hand, Zaprawa [26,27] extended the study of the Fekete-Szegé problem for some classes
of bi-univalent functions. Very recently, the upper bounds of H3(2) for some classes were discussed by
Deniz et al. [10] (see also [6]).

El-Ashwah and Thomas [12] introduced the class S, of starlike functions with respect to symmetric
conjugate points for f € S and satisfying the following condition:

Re{L(z)_} >0, zel.
f(z) = f(=%2)

This class can be extended to other class in U, namely convex functions with respect to symmetric
conjugate points. Let Cs. denote the class of convex functions with respect to symmetric conjugate
points and satisfy the condition:

(=f'(2))'

Re S
(1) -72)

>0, zel.

To prove our main results, we shall require the following lemmas.

Lemma 1.1. [21] If the function p € P is given by the series p(z) = 1+ p1z + paz? + p3z® + -+, then
the sharp estimate |pr| <2 (k=1,2,3,---) holds.

Lemma 1.2. [15] If the function p € P, then
2po = pi + (4 —pi)

tps=pi+2(4—p})o—p (4-p)2® +2(4-p}) (1-Jal*) %

fore some x,z with |x| <1 and |z| < 1.

2. Main Results

We begin this section by defining the function family N§¢(\, v) as follows:

Definition 2.1. A function f € X is said to be in the family N5¢(A\,v) (0 < A <1,0<~vy<1)ifit
satisfies the conditions:

e N2[1(2) + 2f(2) 7
(1) -TER) +0-3 (F0)-T2) | 2
and
Re Aw?g" (w) + wg' (w) N % ,

zo (9(w) 500+ (1= ) (9(w) - 502

where g = f~1 is given by (1.2).
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Theorem 2.2. Let f € A belongs to the family N3 (X, 7). Then
(1—7)2 2 2
(A+1)((3>\+1)+\/(3>\+1)2+8>\2(>\(2>\73)71)) .
ye|0,1- 2T (N(2A—3)—1) ;
asas — aj| <
(1—)2 (1—7)2(3,\+1)(8A2(2,\—1)—35,\—9)—6(1—»y)(A+1)(6A2+5A+1)—(>\+1)2(4A(3>\+1)+1)
8(A(BA+4)+1) (1—7)22A+1)2(A(22A=3)—1)— (1—) (A+1) (6A2+5X+1) —2X2 (A +1)? ’
(,\+1)((3,\+1)+ \/(3>\+1)2+8(2>\+1)2(A(2>\73)71))
vell- T DA A -3)-1) 1)
Proof. Suppose that f € N3°(\, ). Then there exists p,q € P such that
A2 (2) + 2f (2 vy 1—x
LA =24 (2.1)
A (£2)=T3)) + (-2 (£2) - 7))
and )
Aw?g” (w) + wg' (w 1—
g-tw) ) =1 ) (2.2
X (g(w) = 9(=m)) + (1= (g(w) - 5(-D))
where g = f~! and p, g have the following series representations:
p(z) =14 p1z+p2z° +ps2’ + -
and
q(w) =1+ qw + g’ + gw® + -+ - .
By equating the coefficients in (2.1) and (2.2), we have
-y
(A+1)as = 5 P (2.3)
-7
(2A+1)as = P2, (2.4)
2 (3A+ 1) as — (A2A+3) + 1) azas = ;Vpg, (2.5)
l1—x
—(A+1as = 5 1 (2.6)
1
(2A+1) (243 — a3) = 5 ’qu (2.7)
and )
—2 (83X +1) (5a3 — basas + as) + (A(2X + 3) + 1) (2a3 — az)as = ; 7 g, (2.8)
In view of (2.3) and (2.6), it easy to see that
P1=—q1 (2.9)
and )
T py. (2.10)

2T
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By subtracting (2.4) from (2.7) and using (2.10), we get

(1_7)2 »? 11—y
A0+1)27 T 42 +1)

Also, subtracting (2.5) from (2.8), further computations using (2.10) and (2.11) lead to

(P2 — q2). (2.11)

@A +1)(1-9)" 5(1—7)° 1—~v
= — _— —q3). 2.12
SRETICTETYwTe 16(/\(2/\+3)+1)p1(p2 q2) + 8(3/\+1)(p3 q3) (2.12)
Thus, using (2.10), (2.11) and (2.12), we deduce that
A2A-3) - 1) (1) (1—v)°
agay — ai| = ( 4 200 _
s =i = | D0y DT Bmaar e
(1—9)” (1-7)° 2
— - — . 2.13
+16 GA+4) + 1)101(]93 q3) 1620+ 1) (P2 — q2) (2.13)
According to Lemma 1.2 and (2.9), we write
4—p?) (x—
p2—q2 = (=r)-y) 1)2( v) (2.14)
and
P o (A-p}) (+y) p(4-p7) (@7 +y?)
P3— a3 =% + 9 - 1
A=p) [(1=l2f) 2= (1= |y)*) w

2 )
fore some z,y, z and w with |z| <1, |y| <1, |2] <1 and |w| < 1.
Substituting the calculated values from (2.14) and (2.15) in the right hand side of (2.13), it follows that

PO-2' 0@ -9 -1 (=) (-1 @)
32(3A+1)(A+1)° 64 (20 + 1) (A + 1)
Pt =)+ (d-p) (1= @+y) pA-p) (19" +?)
32(A\BA+4)+1) 64(ABA+4) + 1)
p (A=) = [(1=1al*) 2= (1= ) w] (4= p2)> (1= )2 (@ = 9)?
+ 32(A(BA +4) + 1) N 64 (2) +1)°
="' =3 -1 pA-9+m@-p) (11
32BA+1)(A+1)° 32(A(BA+4)+1)
pA-p)1-9° pH-p)a-9°
642X+ 1) (A+1)°  32(ABA+4)+1)
PA-p)(1-9)° p@-p)01-9)’
64ABA+4) +1)  32(ABA+4)+1)
(4-p)°(1-9)
64 (2\ + 1)

|a2a4 — CL%} =

+

2

+

(I + 1y

2 2
+ (=™ + [yI")

(] + y)* -

Since the function p is in the class P, so |p1| < 2. Choosing p; = p, we can assume without loss of
generality that p € [0,2]. Then, for n, = |z| <1 and n, = |y| < 1, we have

2
lagas — a3| < Ly + La(ny + ) + Ls(mT +n3) + La (ny +15)" = M(n1,1m,),
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where
=l =5 (AE;A_: f) +1) <(1 ) 7)2812 ?); — 1) P 20
Lo = La(p) = g (46;fj)4r(11)_ o ()\(2)\1—:37) 17 3)\2+ 1) =0,
L
L= La(p) = (4-p)°(1-9) -

64 (2X +1)°

We next maximize the function M (n;,n5) on the closed square [0,1] x [0,1]. We must investigate the
maximum of M (n;,7,) according to p € (0,2), p =0 and p = 2 taking into account the sign of M, , -
M,

2
N2M2 (M7}1712) :
Since L3 < 0 and Lg 4+ 2L, > 0 for p € (0,2), we conclude that

2
M7]1711 ’ Mn2n2 - (M7}17]2) <0.

Therefore the function M cannot have a local maximum in the interior of the closed square [0, 1] x [0, 1].
Now, we investigate the maximum M on the boundary of the closed square [0,1] x [0, 1].
When n; =0 and 0 <5, <1 (similarly n, =0 and 0 <n; < 1), we have

M(0,m5) = E(ny) = L1 + Lany + (Ls + La)ns.

(1) The case Lg + L4 > 0:
In this case for 0 < 7y < 1 and any fixed p with 0 < p < 2, it is easily observed that E'(n,) =
Lo +2(Ls + L4)ny > 0. Therefore E(n,) is increasing function and hence, for fixed p € [0,2), the
maximum of E(n,) occurs at 7, = 1 and

maxE(nQ) = E(].) =11+ Lo+ L3+ Ly.

(2) The case Ly + Ly < 0:
Since Lo + 2(L3 + Ly) > 0 for 0 < 1, < 1 and any fixed p with 0 < p < 2, it is easily observed that
Lo+ 2(Ls + Ly) < Lo + 2(Lg + L4)ny < Lo. Therefore E’(n,) > 0 and hence, for fixed p € [0,2),
the maximum of E(7n,) occurs at 7, = 1.

Also, for p = 2, we find

(1—7)? (1-—7)* (@ =3) - 1)
3\+4)+1) ( (A +1)? H)' (2.16)

M(ny,mz) = 2 (\(
Taking into account the value (2.16) and the cases 1 and 2, for 0 < 7, < 1 and any fixed p with 0 < p < 2,
max E(ny) = E(1) = L1 + Lo+ L3 + Ly.
When n; =1 and 0 <, <1 (similarly n, =1 and 0 <n; < 1), we have
M(1,m,) = K(ny) = Ly + Ly + Ls + Ly + (L2 + 2La)ny + (L3 + La)1j3.
Similarly to the above cases of Ls + L4, we find that

max K(T]Q) = K(l) = Ll + 2L2 + 2L3 + 4L4
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Since E(1) < K(1) for p € [0,2], max M (n,,n,) = M(1,1) on the boundary of the closed square [0, 1] x
[0,1]. Hence, the maximum of M occurs at 7, =1 and 1, = 1 in the closed square [0, 1] x [0, 1].
Assume that T": [0,2] — R be defined by

T(p) =max M(ny,ny) = M(1,1) = Ly + 2L+ 2L3 + 4L4. (2.17)

Now, substituting the values of L1, Lo, L3 and Ly in (2.17), we conclude that

B (1-19)° 2 2 v
T(p)_32(3)\+1)(2/\+1)2()\+1)3{[(1 W EADTARA=3 - 1)

—(1=N A+ (63 +5A+1) =22+ 17 A+ 1P +2BA+ ) (A +1)°] p*

FAA+1) [(1 S BAED (@A) +3 @A D)2 (A1) _4(3A+1)(A+1)2}p2
3230+ 1) (A + 1)3}.
Suppose that T'(p) has a maximum value in an interior of p € [0, 2], then

/ o (1_7)2 N2 2 _ _
T(p)_8(3>\+1)(2)\+1)2()\+1)3H(1 WEATREA =S =

—(1=D A+ (60 +5A+1) =22+ 1 A+ 1)° +2BA+ 1) A+ 1)°]

+8(A+1) [(1—7)(3A+1)(2A+1)+3(2A+1)2(A+1)—4(3A+1)(A+1)2}p}.

After some calculations, we consider the following cases:
Casel: Assume that

1= CA+1)°ACA=3) = 1) = (1 =) (A +1) (6% + 51+ 1) — 227 (A +1)* > 0.
Thus

(A+1) ((3/\ 1)+ /BA+ 18X (A2A - 3) — 1))

ve |01 220+ 1) (AM2X—3) — 1)

and so T"(p) > 0 for p € (0,2). Since T is an increasing function in the interval (0, 2), hence the maximum
point of 7' must be on the boundary of p € [0,2]. Then, we have

(1-9)°
GA+D(A+1)

i T(p) = T(2) = -

5 (1= @A =3) = 1)+ (A +1)%).
Case2: Assume that
1= CA+1)°ACA=3) = 1) = (1 =) (A +1) (6A% + 51+ 1) — 227 (A +1)* < 0.

that is,

A+ 1) ((3/\ 1)+ /BA 1) 4802 (A2A - 3) - 1))
e F ) (MN2h—3)— 1)

ye|l—- , 1

Therefore T’(p) = 0 implies the real critical point py, = 0 or

21 =) A+ 1) (6)2 + 51+ 1) + 2 (A + 1)° [4(A(3A+4)+1)—3(2A+1)2}
bo. = (1= A+ 1) (A2A=3) = 1) = (1 =) A+ 1) (6A% + 5 +1) =222 (A +1)*
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When

A+ 1) ((:u 1)+ /BAF D) 8N (M2A - 3) - 1))

A 222+ 1) (A(2)—3) - 1) ’

(A+1) <(3/\ +1)+ \/(3/\ +1)° 4821+ 1)> (A(2X - 3) — 1))
A2 +1) (AM2A=3) —1) ’

1—

we observe that pg, > 2, that is, po, is out of the interval (0,2). Hence the maximum value of T'(p) occurs
at po, = 0 or pp, which contradicts our assumption of having the maximum value at the interior point of
p € ]0,2]. Since T' is an increasing function in the interval (0, 2), so the maximum point of 7" must be on
the boundary of p € [0, 2], that is, p = 2. Therefore, we obtain

(1-19)°
GA+D(A+1)

max T(p) = T(2) = 5 _ ((1 — P A@A=3) — 1)+ (A + 1)2) .

0<p<2

When

A +1) ((3/\ 1)+ /BA+ 1)’ 820+ 1> (A2A—3) - 1))

yel1- 42X +1)(AN2r—3)—1)

) ]‘ )

we observe that that pg, < 2, that is, po, is an interior of the interval [0,2]. Since T" (po,) < 0, so the
maximum value of T'(p) occurs at p = po,. Therefore, we obtain

_ (=
max, T(p) =T (poe) = gy 7 1)

(1—7)°(3A+1) (8BA*(2A —1) =350 = 9) =6(1 —7) (A + 1)(6A* +5A +1) — (A + D2 (4ABA+1)+1)
x A=) A+ 12 A2 A=3) = 1) — (1 =) A+ 1)(6A% +5A+1) — 222 (A +1)?

This completes the proof of our Theorem. O
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