

Bol. Soc. Paran. Mat. ©SPM -ISSN-2175-1188 ON LINE SPM: www.spm.uem.br/bspm (3s.) **v. 2023 (41)** : 1–7. ISSN-0037-8712 IN PRESS doi:10.5269/bspm.51771

Some Fixed Point Theorems in Generalized M-Fuzzy Metric Space

Binod Chandra Tripathy, Sudipta Paul and Nanda Ram Das

ABSTRACT: In this paper, we define the expansive mapping in G-metric space and we prove some fixed point theorems in generalized M-fuzzy (GM-fuzzy) metric space.

Key Words: Fuzzy metric space, G-metric space, GM-fuzzy metric space, expansive mapping.

Contents

1	Introduction	1
2	Preliminaries and Definitions	1
3	Main Results	3

1. Introduction

The theory of fuzzy sets was introduced by Zadeh [18]. Thereafter the introduced notion has evolved in many directions of science and technology, where mathematics has a role. It has been studied by Tripathy and Borgohain [11], Tripathy and Duta [12] for studying the properties of sequences of fuzzy numbers, Tripathy and Ray [16] for studying fuzzy topological spaces, Deb and Saha [1], Dhange [2], Mustafa et. al [5], Sedghi et.al. [9], Sun and Yang [10], Tripathy et. al ([13], [14], [15]), Wang [17] and others for studying fixed point theory in fuzzy settings. Different researcher have interpreted and introduced the concept of fuzzy metric space in different ways. George and Veeramani [3] modified the concept of a fuzzy metric space introduced by Kramosil and Michalek [4] and defined a Hausdorff topology on this fuzzy metric space.

The study of fixed points of a function satisfying certain contractive conditions has been at the center of rigorous research activity. Mustafa and Sims [7] generalized the concept of a metric space. Based on the notion of generalized metric spaces, Mustafa et. al [8] obtained some fixed point theorems for mappings satisfying different contractive conditions.

2. Preliminaries and Definitions

Definition 2.1 A fuzzy set M on an arbitrary set X is a function with domain X and range in [0,1].

Definition 2.2 A binary operation $*: [0, 1] \times [0, 1] \rightarrow [0, 1]$ is called a continuous *t*-norm if ([0, 1], *) is an abelian topological monoid with unit 1 such that $a_1 * b_1 \leq a_2 * b_2$ whenever $a_1 \leq a_2, b_1 \leq b_2$ for all $a_1, a_2, b_1, b_2 \in [0, 1]$.

Examples of *t*-norm

(1) Minimum *t*-norm $(*M) : *M(x, y) = min\{x, y\}.$

(2) Product *t*-norm (*P) : *P(x, y) = x.y.

(3) Lukasiewicz *t*-norm $(*L) : *L(x, y) = max\{x + y - 1, 0\}.$

Definition 2.3 Let X be a non-empty set and let $G: X \times X \times X \to R^+$, be a function satisfying the following properties:

 $(G_1)G(x, x, y) > 0$, for all $x, y \in X$, with $x \neq y$; $(G_2)G(x, y, z) = 0$, if x = y = z;

²⁰¹⁰ Mathematics Subject Classification: 47H10, 54H25. Submitted January 12, 2020. Published July 15, 2020

 $(G_3)G(x, x, y) \leq G(x, y, z) \text{ for all } x, y, z \in X \text{ with } z = y;$ $(G_4)G(x, y, z) = G(x, z, y) = G(y, z, x) = \cdots;$ (Symmetry in all three variables) $(G_5) : G(x, y, z) \leq G(x, a, a) + G(a, y, z) \text{ for all } x, y, z, a \in X;$ (rectangle inequality).

Then the function G is called Generalized metric or more specifically G-metric on X, and the pair (X, G) is called a G-metric space.

Definition 2.4 The 3-tuple (X, M, *) is called a fuzzy metric space if X is an arbitrary set, * is a continuous t-norm and M is a fuzzy set in $X^2 \times (0, \infty)$ satisfying the following conditions, for all $x, y, z \in X$ and $t_1, t_2, t > 0$,

(1) M(x, y, 0) = 0;(2) M(x, y, t) = 1 if and only if x = y;(3) M(x, y, t) = M(y, x, t);(4) $M(x, y, t_1 + t_2) \ge M(x, z, t_1) * M(z, y, t_2);$ (5) $M(x, y, .) : (0, \infty) \to [0, 1]$ is continuous.

Then M is called fuzzy metric on X and (X, M, *) is called fuzzy metric space and M(x, y, t) denotes the degree of nearness between x and y.

Definition 2.5 A 3-tuple (X, M, *) is said to be a Generalized M(GM)-fuzzy metric space if X is an arbitrary non-empty set, * is a continuous t-norm and M is a fuzzy set on $X^3 \times (0, \infty)$ satisfying the following conditions for each t, s > 0:

 $\begin{array}{l} (M1)M(x,x,y,t)>0 \mbox{ for all } x,y\in X \mbox{ with } x\neq y;\\ (M2)M(x,x,y,t)\geq M(x,y,z,t) \mbox{ for all } x,y,z\in X \mbox{ with } y\neq z;\\ (M3)M(x,y,z,t)=1 \mbox{ if and only if } x=y=z;\\ (M5)M(x,a,a,t)*M(a,y,z,s)\leq M(x,y,z,t+s);\mbox{ (the triangle inequality)}\\ (M6)M(x,y,z,.):(0,\infty)\rightarrow [0,1] \mbox{ is continuous.} \end{array}$

A GM-fuzzy metric space is said to be symmetric if M(x, y, y, t) = M(x, x, y, t) for all $x, y \in X$ and t > 0.

Example 2.1 Let X be a non-empty set and G be the G-metric on X. Denote a * b = a.b for all $a, b \in [0, 1]$, For each t > 0:

 $M(x, y, z, t) = \frac{t}{t + G(x, y, z)}.$

Then (X, M, *) is a GM-fuzzy metric space.

Definition 2.6 Let (X, M, *) be a *GM*-fuzzy metric space. Then

(a) A sequence $\{x_n\}$ in X is said to coverage to x if and only if

 $M(x_m, x_n, x, t) \to 1$, as $n \to \infty$, $m \to \infty$, for each t > 0.

(b) A sequence $\{x_n\}$ in X is said to be a G-Cauchy sequence if $M(x_m, x_n, x_l, t) \to 1$ as $m \to \infty, n \to \infty, l \to \infty$ for each t > 0.

(c) A GM-fuzzy metric space in which every Cauchy sequence is convergent is said to be G-complete.

Lemma 2.7 If (X, M, *) be a *GM*-fuzzy metric space, then M(x, y, z, t) is non-decreasing with respect to t for all $x, y, z \in X$.

Through out this article we assume that $\lim_{n\to\infty} M(x_n, y, z, t) = 1$ and that N is the set of all natural numbers and that R^+ is the set of all positive real numbers.

Lemma 2.8. Let (X, M, *) be a GM-fuzzy metric space. Then the following properties are equivalent:

- 1) $\{x_n\}$ is convergent to x.
- 2) $M(x_n, x_n, x, t) \to 1$, as $n \to \infty$.
- 3) $M(x_n, x, x, t) \to 1$, as $n \to \infty$.
- 4) $M(x_m, x_n, x, t) \to 1$, as $m, n \to \infty$.

Lemma 2.9. Let (X, M, *) be a *GM*-fuzzy metric space, then the following are equivalent:

1) The sequence $\{x_n\}$ is *G*-Cauchy. 2) For every $\varepsilon \in (0, 1)$ and t > 0, there exists $k \in N$ such that $M(x_n, x_m, x_m, t) > 1 - \varepsilon$ for $n, m \ge k$.

Definition 2.10. Let (X, M, *) be a GM-fuzzy metric space. The following conditions are satisfied: $\lim_{n \to \infty} M(x_n, y_n, z_n, t_n) = M(x, y, z, t),$ whenever $\lim_{n \to \infty} x_n = x$, $\lim_{n \to \infty} y_n = y$, $\lim_{n \to \infty} z_n = z$ and $\lim_{n \to \infty} M(x, y, z, t_n) = M(x, y, z, t),$ then M is called a continuous function on $X^3 \times (0, \infty)$.

Lemma 2.11 Let (X, M, *) be a *GM*-fuzzy metric space. Then *M* is a continuous function on $X^3 \times (0, \infty)$.

Lemma 2.12 Let (X, M, *) be a complete GM-fuzzy metric space and $T : X \to X$ be a mapping satisfies the following conditions for all $x, y, z \in X$ and t > 0,

$$kM(Tx, Ty, Tz, t) \ge M(x, y, z, t), \text{ where } k \in [0, 1)$$

$$(2.1)$$

Lemma 2.13 Let (X, M, *) be a complete GM-fuzzy metric space and $T : X \to X$ be a mapping satisfies the following conditions for all $x, y \in X$ and t > 0

 $kM(Tx, Ty, Ty, t) \ge M(x, y, y, t),$ where $k \in [0, 1)$. Then T has a unique fixed point.

Definition 2.14 Let (X, M, *) be a *GM*-fuzzy metric space and *T* be a self mapping on *X*. Then *T* is called expansive mapping if there exists a constant $a \ge 1$, such that for all $x, y, z \in X$ and t > 0, we have

 $M(Tx, Ty, Tz, t) \ge aM(x, y, z, t).$

3. Main Results

Theorem 3.1 Let (X, M, *) be a complete GM-fuzzy metric space. If there exists a constant $a \leq 1$ and a onto self mapping T on X, such that for all $x, y, z \in X$ and t > 0,

$$M(Tx, Ty, Tz, t) \le aM(x, y, z, t). \tag{3.1}$$

Then T has a unique fixed point.

Proof. Under the assumption, if Tx = Ty, then $1 = M(Tx, Ty, Ty, t) \le aM(x, y, y, t)$.

Which implies $M(x, y, y, t) = 1 \Rightarrow x = y$. Hence, T is injective and invertible.

Let h be the inverse mapping of T, then $M(x, y, z, t) = M(T(hx), T(hy), T(hz), t) \le aM(hx, hy, hz, t)$. Thus, for all $x, y, z \in X$ and t > 0. we have, $aM(hx, hy, hz, t) \ge M(x, y, z, t)$.

Applying, Lemma 2.12, we conclude that inverse mapping h has a unique fixed point $u \in X$; h(u) = u. But, u = T(h(u)) = T(u). This gives that u is also a fixed point of T.

Suppose there exists another fixed point $v \neq u$ such that Tv = v. Then, Tv = v = T(h(v)) = h(T(v)).

So, Tv is another fixed point of h.

By uniqueness, we conclude that u = Tv = v, which implies that u is a unique fixed point of T.

Theorem 3.2 Let(X, M, *) be a complete GM-fuzzy metric space. If there exists a constant $c \leq 1$ and a surjective self mapping T on X, such that for all $x, y \in X$ and t > 0,

 $M(Tx, Ty, Ty, t) \leq cM(x, y, y, t),$ Then T has a unique fixed point.

Proof. Under the assumption, if Tx = Ty, then $1 = M(Tx, Tx, Ty, t) \le cM(x, x, y, t)$ Which implies M(x, x, y, t) = 1. $\Rightarrow x = y$ and hence T is invertible.

Let h be the inverse mapping of T, So, $M(x, y, y, t) = M(T(hx), T(hy), T(hy), t) \le cM(hx, hy, hy, t)$. Then, for all $x, y \in X$, we have $cM(hx, hy, hy, t) \ge M(x, y, y, t)$.

Applying Lemma 2.12 on the inverse mapping h, and use argument similar to that in Proof Theorem 3.1, we conclude that T has unique fixed point.

Corollary 3.3. Let (X, M, *) be a complete GM-fuzzy metric space. If there exists a constant $k \leq 1$ and surjective self mapping on X, such that for all $x, y, z \in X$ and t > 0.

$$M(Tx, Ty, Tz, t) \le k \{ M(x, z, z, t) * M(y, z, z, t) \}.$$
(3.2)

Then T has a unique fixed point.

Proof. The proof follows from Theorem 3.2 by taking z = y in condition (3.2).

Theorem 3.4 Let (X, M, *) be a complete GM-fuzzy metric space and let $T : X \to X$ be a surjective mapping satisfying the following condition for all $x, y, z \in X$ and t > 0,

 $M(T(x), T(y), T(z), t) \le k \max\{(M(x, z, z, t/2) * M(y, z, z, t/2)), (M(z, y, y, t/2))\}$

$$*M(x, y, y, t/2)), (M(z, x, x, t/2) * M(y, x, x, t/2)),$$
(3.3)

where $k \leq 1$. Then T has a unique fixed point.

Proof. Condition (3.3) implies T is injective and therefore invertible. Let h be the inverse mapping of T. By condition (4), for all $x, y, z \in X, t > 0$ We have, M(x, y, z, t) = M(T(hx), T(hy), T(hz), t) $\leq k \max\{(M(hx, hz, hz, t/2) * M(hy, hz, hz, t/2)), (M(hz, hy, hy, t/2))\}$

$$*M(hx, hy, hy, t/2)), (M(hz, hx, hx, t/2) * M(hy, hx, hx, t/2))\}$$
(3.4)

By (M4), we have

$$Max\{(M(hx, hz, hz, t/2) * M(hy, hz, hz, t/2)), (M(hz, hy, hy, t/2) * M(hx, hy, hy, t/2)),$$

$$(M(hz, hx, hx, t/2) * M(hy, hx, hx, t/2)) \le M(hx, hy, hz, t).$$
(3.5)

Thus equation (3.4) implies

$$kM(hx, hy, hz, t) \ge M(x, y, z, t). \tag{3.6}$$

Applying, Theorem 3.1 with the help of (3.6).

We conclude that the inverse mapping h has a unique fixed point $u \in X$ Such that h(u) = u. But u = T(h(u)) = T(u),

Which shows that u is also a fixed point of T.

To show u is unique fixed point, we can use the same argument in Theorem 3.4.

Theorem 3.5: Let (X, M, *) be a complete non symmetric GM-fuzzy metric space and let $T : X \to X$ be a surjective mapping satisfying the following condition for all $x, y \in X, t > 0$,

$$M(T(x), T(y), T(y), t) \le kmax\{M(x, y, y, t), M(y, x, x, t)\}.$$
(3.7)

When $k \leq 1$. Then T has a unique fixed point.

Proof: Since $Max\{M(x, y, y, t), M(y, x, x, t)\} \leq M(x, y, y, t)$, then from (3.7), we deduce

$$M(T(x), T(y), T(y), t) \le kM(x, y, y, t)$$
 for all $x, y \in X, t > 0.$ (3.8)

From (3.8), it is clear that Theorem 3.2 implies that T has a unique fixed point.

Corollary 3.6: Let (X, M, *) be a complete non-symmetric GM-fuzzy metric space, and let $T : X \to X$ be a surjective mapping satisfying the following condition for all $x, y, z \in X, t > 0$,

 $M(T(x), T(y), T(z), t) \le kmax\{(M(x, y, y, t/2) * M(y, x, x, t/2)), (M(x, z, z, t/2) * M(z, x, x, t/2))(M(z, y, y, t/2) * (M(y, z, z, t/2))\},$ when $k \le 1$. Then T has a unique fixed point.

Proof: Follows from the Theorem 3.5 on taking z = y.

Corollary 3.7: Let (X, M, *) be a complete GM-fuzzy metric space and let $T : X \to X$ be a surjective mapping satisfying the following condition for all $x, y, z \in X, t > 0$,

$$M(T(x), T(y), T(z), t) \le k \{ M(x, Tx, Tx, t/2) * M(Tx, y, z, t/2) \},$$
(3.9)

where $k \leq 1$. Then T has a unique fixed point.

Proof: From (M_4) , we have $M(x, Tx, Tx, t/2) * M(Tx, y, z, t/2) \le M(x, y, z, t)$. Then condition (10) becomes $M(T(x), T(y), T(z), t) \le kM(x, y, z, t)$ for all $x, y, z \in X$ and the proof follows from (3.1).

Theorem 3.8: Let (X, M, *) be a complete GM-fuzzy metric space and $T : X \to X$ be an onto and continuous mapping satisfying the followings condition for all $x \in X$ and t > 0,

$$M(T(x), T^{2}(x), T^{3}(x), t) \leq aM(x, Tx, T^{2}x, t).$$
(3.10)

Where $a \leq 1$. Then T has a fixed point.

Proof: Let $x_0 \in X$, since T is onto, so there exists an element x_1 satisfying $x_1 \in T^{-1}(x_0)$. By the same argument we can pick up $x_n \in T^{-1}(x_{n-1})$ where n = 2, 3, 4, 5, ...

Let $x_n \neq x_{n-1}$, then there is a sequence x_n with $x_n \neq x_{n-1}$ and $T(x_n) = x_{n-1}$. Then (3.10) implies

 $M(x_{n-1}, x_{n-2}, x_{n-3}, t) = M(Tx_n, T^2x_n, T^3x_n, t) \le aM(x_n, Tx_n, T^2x_n, t)$

$$= aM(x_n, x_{n-1}, x_{n-2}, t). (3.11)$$

Therefore, we have

 $M(x_n, x_{n-1}, x_{n-2}, t) \ge \frac{1}{a}M(x_{n-1}, x_{n-2}, x_{n-3}, t).$ Let $q = \frac{1}{a}$, then $q \ge 1$.

It can be easily verified that the sequence $\{x_n\}$ is a Cauchy and by completeness of (X, M, *), the sequence $\{x_n\}$ converges to a point $u \in X$.

Since T is continuous, then $T(x_n) = x_{n-1} \to T(u)$ as $n \to \infty$. Hence, T(u) = u, which shows that u is a fixed point of T.

Funding Statement. The work is done without any fund supported from any funding agency.

Competing Interest. The authors declare that the article is free from the competing interest.

References

- A. Deb Ray and P.K. Saha, Fixed point theorems on Generalized Fuzzy Metric spaces, Hacettepe Jour. Math. Statistics, 39(1)(2010), 1-9.
- 2. B.C. Dhange, Generalized metric spaces and mappings with fixed point, Bull. Calcutta Math. Soc., 84(4)(1992) 329-336
- 3. A. George, and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets Syst., 64(3) (1994), 395-399.
- 4. O. Kramosil, and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernelika. 11 (1975), 326-334.
- Z. Mustafa, H. Obiedat and F. Awawdeh, Some fixed point theorem for Mapping on complete G-metric spaces, Fixed Point Theory Appl., 2008(2008) article ID 189870, doi: 10.1155/2008/189870
- 6. Z. Mustafa, A new structure for generalized metric spaces with application to fixed point theory, Ph.D. Thesis, the university of New Castle, Australia, 2005.
- 7. Z. Mustafa and B. Sims, A new approach to generalized metric spaces, Jour. Nonlinear Conv. Anal., 7(2) (2006), 289-297
- Z. Mustafa, F. Awawdeh and W. Shatanawi, Fixed point theorem for expansive mapping in G-metric spaces, Int. J. Contemp. Math, Sci., 5(50)(2010), 2463-2472.
- S. Sedghi, N. Shobe and H. Zhou, A common fixed point theorem in D*-metric spaces, Fixed Point Theory Appl., 2007(2007) Article ID 27906, 1-13
- G.P. Sun and K. Yang, Generalized fuzzy metric spaces with properties, Research Journal of Applied Sciences, Engineering and Technology, 2(7)(2010) 673-678.
- 11. B.C. Tripathy and S. Borgogain, Some classes of difference sequence spaces of fuzzy real numbers defined by Orlicz function, Advances in Fuzzy Systems, 2011), Article ID216414, 6 pages.
- B.C. Tripathy and A. J. Dutta, On I-acceleration convergence of sequences of fuzzy real numbers, Math. Modell. Analysis, 17(4)(2012), 549-557.
- B.C. Tripathy, S. Paul and N.R. Das Banach's and Kannan's fixed point results in fuzzy 2-metric spaces, Proyecciones J. Math., 32(4)(2013), 359-375.
- B.C. Tripathy, S. Paul and N.R. Das, A fixed point theorem in a generalized fuzzy metric space, Boletim da Sociedade Paranaense de Matemática, 32(2)(2014), 221-227.
- B.C. Tripathy, S. Paul and N.R. Das Fixed point and periodic pint theorems in fuzzy metric space, Songklanakarin Journal of Science and Technology, 37(1)(2015), 89-92.
- B.C. Tripathy and G.C. Ray On mixed fuzzy topological spaces and countability, Soft Computing, 16(10)(2012), 1691-1695.

- S.Z. Wang, B.Y. Li, Z.M. Gao and K. Iseki, Some Fixed point theorem on Extension Mappings, Math. Japonica, 29(4) (1984), 631-636
- 18. L.A. Zadeh, Fuzzy Sets, Inf. control, 8(1965), 338-353

Binod Chandra Tripathy, Department of Mathematics, Tripura University, Suryamaninagar; Agartala - 799022 Tripura, India. E-mail address: tripathybc@yahoo.com; tripathybc@rediffmail.com

and

Sudipta Paul, Department of Mathematics, Gauhati University, Guwahati-781014 Assam, India. E-mail address: sudiptapaul_math@rediiffmail.com

and

Nanda Ram Das, Department of Mathematics, Gauhati University, Guwahati-781014 Assam, India. E-mail address: nrd47@yahoo.co.in