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Some Fixed Point Theorems in Generalized M-Fuzzy Metric Space
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abstract: In this paper, we define the expansive mapping in G-metric space and we prove some fixed point
theorems in generalized M -fuzzy (GM -fuzzy) metric space.
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1. Introduction

The theory of fuzzy sets was introduced by Zadeh [18]. Thereafter the introduced notion has evolved
in many directions of science and technology, where mathematics has a role. It has been studied by
Tripathy and Borgohain [11], Tripathy and Duta [12] for studying the properties of sequences of fuzzy
numbers, Tripathy and Ray [16] for studying fuzzy topological spaces, Deb and Saha [1], Dhange [2],
Mustafa et. al [5], Sedghi et.al. [9], Sun and Yang [10], Tripathy et. al ([13], [14], [15]), Wang [17] and
others for studying fixed point theory in fuzzy settings. Different researcher have interpreted and intro-
duced the concept of fuzzy metric space in different ways. George and Veeramani [3] modified the concept
of a fuzzy metric space introduced by Kramosil and Michalek [4] and defined a Hausdorff topology on
this fuzzy metric space.

The study of fixed points of a function satisfying certain contractive conditions has been at the center
of rigorous research activity. Mustafa and Sims [7] generalized the concept of a metric space. Based
on the notion of generalized metric spaces, Mustafa et. al [8] obtained some fixed point theorems for
mappings satisfying different contractive conditions.

2. Preliminaries and Definitions

Definition 2.1 A fuzzy set M on an arbitrary set X is a function with domain X and range in [0,1].

Definition 2.2 A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is called a continuous t-norm if ([0, 1], ∗)
is an abelian topological monoid with unit 1 such that a1 ∗ b1 ≤ a2 ∗ b2 whenever a1 ≤ a2, b1 ≤ b2 for all
a1, a2, b1, b2 ∈ [0, 1].

Examples of t-norm

(1) Minimum t-norm (∗M) : ∗M(x, y) = min{x, y}.
(2) Product t-norm (∗P ) : ∗P (x, y) = x.y.
(3) Lukasiewicz t-norm (∗L) : ∗L(x, y) = max{x + y − 1, 0}.

Definition 2.3 Let X be a non-empty set and let G : X × X × X → R+, be a function satisfying the
following properties:

(G1)G(x, x, y) > 0, for all x, y ∈ X , with x 6= y;
(G2)G(x, y, z) = 0, if x = y = z;
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(G3)G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with z = y;
(G4)G(x, y, z) = G(x, z, y) = G(y, z, x) = · · · ;
(Symmetry in all three variables)
(G5) : G(x, y, z) ≤ G(x, a, a) + G(a, y, z) for all x, y, z, a ∈ X ;
(rectangle inequality).

Then the function G is called Generalized metric or more specifically G-metric on X , and the pair
(X, G) is called a G-metric space.

Definition 2.4 The 3-tuple (X, M, ∗) is called a fuzzy metric space if X is an arbitrary set, * is
a continuous t-norm and M is a fuzzy set in X2 × (0, ∞) satisfying the following conditions, for all
x, y, z ∈ X and t1, t2, t > 0,

(1) M(x, y, 0) = 0;
(2) M(x, y, t) = 1 if and only if x = y;
(3) M(x, y, t) = M(y, x, t);
(4) M(x, y, t1 + t2) ≥ M(x, z, t1) ∗ M(z, y, t2);
(5) M(x, y, .) : (0, ∞) → [0, 1] is continuous.

Then M is called fuzzy metric on X and (X, M, ∗) is called fuzzy metric space and M(x, y, t) denotes
the degree of nearness between x and y.

Definition 2.5 A 3-tuple (X, M, ∗) is said to be a Generalized M(GM)-fuzzy metric space if X is
an arbitrary non-empty set, ∗ is a continuous t-norm and M is a fuzzy set on X3 × (0, ∞) satisfying the
following conditions for each t, s > 0:

(M1)M(x, x, y, t) > 0 for all x, y ∈ X with x 6= y;
(M2)M(x, x, y, t) ≥ M(x, y, z, t) for all x, y, z ∈ X with y 6= z;
(M3)M(x, y, z, t) = 1 if and only if x = y = z;
(M5)M(x, a, a, t) ∗ M(a, y, z, s) ≤ M(x, y, z, t + s); (the triangle inequality)
(M6)M(x, y, z, .) : (0, ∞) → [0, 1] is continuous.

A GM -fuzzy metric space is said to be symmetric if M(x, y, y, t) = M(x, x, y, t) for all x, y ∈ X and
t > 0.

Example 2.1 Let X be a non-empty set and G be the G-metric on X .
Denote a ∗ b = a.b for all a, b ∈ [0, 1], For each t > 0:

M(x, y, z, t) =
t

t + G(x, y, z)
.

Then (X, M, ∗) is a GM -fuzzy metric space.

Definition 2.6 Let (X, M, ∗) be a GM -fuzzy metric space. Then
(a) A sequence {xn} in X is said to coverage to x if and only if
M(xm, xn, x, t) → 1, as n → ∞, m → ∞, for each t > 0.
(b) A sequence {xn} in X is said to be a G-Cauchy sequence if M(xm, xn, xl, t) → 1 as m → ∞, n →

∞, l → ∞ for each t > 0.
(c) A GM -fuzzy metric space in which every Cauchy sequence is convergent is said to be G-complete.

Lemma 2.7 If (X, M, ∗) be a GM -fuzzy metric space, then M(x, y, z, t) is non-decreasing with re-
spect to t for all x, y, z ∈ X .

Through out this article we assume that lim

n→∞
M(xn, y, z, t) = 1 and that N is the set of all natural

numbers and that R+ is the set of all positive real numbers.

Lemma 2.8. Let (X, M, ∗) be a GM -fuzzy metric space. Then the following properties are equivalent:
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1) {xn} is convergent to x.
2) M(xn, xn, x, t) → 1, as n → ∞.
3) M(xn, x, x, t) → 1, as n → ∞.
4) M(xm, xn, x, t) → 1, as m, n → ∞.

Lemma 2.9. Let (X, M, ∗) be a GM -fuzzy metric space, then the following are equivalent:

1) The sequence {xn} is G-Cauchy.
2) For every ε ∈ (0, 1) and t > 0, there exists k ∈ N such that
M(xn, xm, xm, t) > 1 − ε for n, m ≥ k.

Definition 2.10. Let (X, M, ∗) be a GM -fuzzy metric space. The following conditions are satisfied:
lim

n→∞
M(xn, yn, zn, tn) = M(x, y, z, t),

whenever lim
n→∞

xn = x, lim
n→∞

yn = y, lim
n→∞

zn = z

and lim
n→∞

M(x, y, z, tn) = M(x, y, z, t),
then M is called a continuous function on X3 × (0, ∞).

Lemma 2.11 Let (X, M, ∗) be a GM -fuzzy metric space. Then M is a continuous function on
X3 × (0, ∞).

Lemma 2.12 Let (X, M, ∗) be a complete GM - fuzzy metric space and T : X → X be a mapping
satisfies the following conditions for all x, y, z ∈ X and t > 0,

kM(T x, T y, T z, t) ≥ M(x, y, z, t), where k ∈ [0, 1) (2.1)

Lemma 2.13 Let (X, M, ∗) be a complete GM -fuzzy metric space and T : X → X be a mapping
satisfies the following conditions for all x, y ∈ X and t > 0

kM(T x, T y, T y, t) ≥ M(x, y, y, t),
where k ∈ [0, 1). Then T has a unique fixed point.

Definition 2.14 Let (X, M, ∗) be a GM -fuzzy metric space and T be a self mapping on X . Then T
is called expansive mapping if there exists a constant a ≥ 1, such that for all x, y, z ∈ X and t > 0, we have

M(T x, T y, T z, t) ≥ aM(x, y, z, t).

3. Main Results

Theorem 3.1 Let (X, M, ∗) be a complete GM -fuzzy metric space. If there exists a constant a ≤ 1
and a onto self mapping T on X , such that for all x, y, z ∈ X and t > 0,

M(T x, T y, T z, t) ≤ aM(x, y, z, t). (3.1)

Then T has a unique fixed point.

Proof. Under the assumption, if T x = T y, then
1 = M(T x, T y, T y, t) ≤ aM(x, y, y, t).

Which implies M(x, y, y, t) = 1 ⇒ x = y.
Hence, T is injective and invertible.

Let h be the inverse mapping of T ,
then M(x, y, z, t) = M(T (hx), T (hy), T (hz), t) ≤ aM(hx, hy, hz, t).
Thus, for all x, y, z ∈ X and t > 0.
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we have, aM(hx, hy, hz, t) ≥ M(x, y, z, t).

Applying, Lemma 2.12, we conclude that inverse mapping h has a unique fixed point u ∈ X ; h(u) = u.
But, u = T (h(u)) = T (u).
This gives that u is also a fixed point of T .

Suppose there exists another fixed point v 6= u such that T v = v.
Then, T v = v = T (h(v)) = h(T (v)).

So, T v is another fixed point of h.

By uniqueness, we conclude that u = T v = v, which implies that u is a unique fixed point of T .

Theorem 3.2 Let(X, M, ∗) be a complete GM -fuzzy metric space. If there exists a constant c ≤ 1
and a surjective self mapping T on X , such that for all x, y ∈ X and t > 0,

M(T x, T y, T y, t) ≤ cM(x, y, y, t),
Then T has a unique fixed point.

Proof. Under the assumption, if T x = T y,
then 1 = M(T x, T x, T y, t) ≤ cM(x, x, y, t)
Which implies M(x, x, y, t) = 1.
⇒ x = y

and hence T is invertible.

Let h be the inverse mapping of T ,
So, M(x, y, y, t) = M(T (hx), T (hy), T (hy), t) ≤ cM(hx, hy, hy, t).
Then, for all x, y ∈ X , we have
cM(hx, hy, hy, t) ≥ M(x, y, y, t).
Applying Lemma 2.12 on the inverse mapping h, and use argument similar to that in Proof Theorem

3.1, we conclude that T has unique fixed point.

Corollary 3.3. Let (X, M, ∗) be a complete GM -fuzzy metric space. If there exists a constant k ≤ 1
and surjective self mapping on X , such that for all x, y, z ∈ X and t > 0.

M(T x, T y, T z, t) ≤ k{M(x, z, z, t) ∗ M(y, z, z, t)}. (3.2)

Then T has a unique fixed point.

Proof. The proof follows from Theorem 3.2 by taking z = y in condition (3.2).

Theorem 3.4 Let (X, M, ∗) be a complete GM -fuzzy metric space and let T : X → Xbe a surjective
mapping satisfying the following condition for all x, y, z ∈ X and t > 0,

M(T (x), T (y), T (z), t) ≤ k max{(M(x, z, z, t/2) ∗ M(y, z, z, t/2)), (M(z, y, y, t/2)

∗M(x, y, y, t/2)), (M(z, x, x, t/2) ∗ M(y, x, x, t/2)), (3.3)

where k ≤ 1. Then T has a unique fixed point.

Proof. Condition (3.3) implies T is injective and therefore invertible.
Let h be the inverse mapping of T .
By condition (4), for all x, y, z ∈ X, t > 0 We have,
M(x, y, z, t) = M(T (hx), T (hy), T (hz), t)
≤ k max{(M(hx, hz, hz, t/2) ∗ M(hy, hz, hz, t/2)), (M(hz, hy, hy, t/2)

∗M(hx, hy, hy, t/2)), (M(hz, hx, hx, t/2) ∗ M(hy, hx, hx, t/2))} (3.4)
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By (M4), we have

Max{(M(hx, hz, hz, t/2) ∗ M(hy, hz, hz, t/2)), (M(hz, hy, hy, t/2) ∗ M(hx, hy, hy, t/2)),

(M(hz, hx, hx, t/2) ∗ M(hy, hx, hx, t/2))} ≤ M(hx, hy, hz, t). (3.5)

Thus equation (3.4) implies

kM(hx, hy, hz, t) ≥ M(x, y, z, t). (3.6)

Applying, Theorem 3.1 with the help of (3.6).
We conclude that the inverse mapping h has a unique fixed point u ∈ X Such that h(u) = u.
But u = T (h(u)) = T (u),
Which shows that u is also a fixed point of T .
To show u is unique fixed point, we can use the same argument in Theorem 3.4.

Theorem 3.5: Let (X, M, ∗) be a complete non symmetric GM -fuzzy metric space and let T : X → X
be a surjective mapping satisfying the following condition for all x, y ∈ X, t > 0,

M(T (x), T (y), T (y), t) ≤ kmax{M(x, y, y, t), M(y, x, x, t)}. (3.7)

When k ≤ 1. Then T has a unique fixed point.

Proof : Since Max{M(x, y, y, t), M(y, x, x, t)} ≤ M(x, y, y, t),
then from (3.7), we deduce

M(T (x), T (y), T (y), t) ≤ kM(x, y, y, t) for all x, y ∈ X, t > 0. (3.8)

From (3.8), it is clear that Theorem 3.2 implies that T has a unique fixed point.

Corollary 3.6: Let (X, M, ∗) be a complete non-symmetric GM -fuzzy metric space, and let T : X →
X be a surjective mapping satisfying the following condition for all x, y, z ∈ X , t > 0,

M(T (x), T (y), T (z), t) ≤ kmax{(M(x, y, y, t/2) ∗ M(y, x, x, t/2)),
(M(x, z, z, t/2) ∗ M(z, x, x, t/2))(M(z, y, y, t/2) ∗ (M(y, z, z, t/2))}, when k ≤ 1. Then T has a unique
fixed point.

Proof : Follows from the Theorem 3.5 on taking z = y.

Corollary 3.7: Let (X, M, ∗) be a complete GM -fuzzy metric space and let T : X → X be a
surjective mapping satisfying the following condition for all x, y, z ∈ X , t > 0,

M(T (x), T (y), T (z), t) ≤ k{M(x, T x, T x, t/2) ∗ M(T x, y, z, t/2)}, (3.9)

where k ≤ 1. Then T has a unique fixed point.

Proof : From (M4), we have
M(x, T x, T x, t/2) ∗ M(T x, y, z, t/2) ≤ M(x, y, z, t).
Then condition (10) becomes
M(T (x), T (y), T (z), t) ≤ kM(x, y, z, t) for all x, y, z ∈ X and the proof follows from (3.1).

Theorem 3.8: Let (X, M, ∗) be a complete GM -fuzzy metric space and T : X → X be an onto and
continuous mapping satisfying the followings condition for all x ∈ X and t > 0,

M(T (x), T 2(x), T 3(x), t) ≤ aM(x, T x, T 2x, t). (3.10)

Where a ≤ 1. Then T has a fixed point.
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Proof : : Let x0 ∈ X , since T is onto, so there exists an element x1 satisfying x1 ∈ T −1(x0). By the
same argument we can pick up xn ∈ T −1(xn−1) where n = 2, 3, 4, 5, . . .

Let xn 6= xn−1, then there is a sequence xn with xn 6= xn−1 and T (xn) = xn−1.
Then (3.10) implies
M(xn−1, xn−2, xn−3, t) = M(T xn, T 2xn, T 3xn, t) ≤ aM(xn, T xn, T 2xn, t)

= aM(xn, xn−1, xn−2, t). (3.11)

Therefore, we have

M(xn, xn−1, xn−2, t) ≥
1

a
M(xn−1, xn−2, xn−3, t).

Let q =
1

a
, then q ≥ 1.

It can be easily verified that the sequence {xn} is a Cauchy and by completeness of (X, M, ∗), the
sequence {xn} converges to a point u ∈ X .

Since T is continuous, then
T (xn) = xn−1 → T (u) as n → ∞.
Hence, T (u) = u, which shows that u is a fixed point of T .
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