

Bol. Soc. Paran. Mat. ©SPM –ISSN-2175-1188 on line SPM: www.spm.uem.br/bspm

(3s.) v. 2023 (41) : 1-9. ISSN-0037-8712 IN PRESS doi:10.5269/bspm.52640

A Resonance Problem for *p*-Laplacian with Mixed Boundary Conditions

Mustapha Haddaoui, Hafid Lebrimchi and Najib Tsouli

ABSTRACT: In this work, we are interested at the existence of nontrivial solutions for a nonlinear elliptic problems with resonance part and mixed boundary conditions. Our approach is variational and is based on the well known Landesman-Laser type conditions.

Key Words: p-Laplacian, mixed boundary conditions, Landesman-Lazer type conditions.

Contents

1 1 Introduction and main results 2 **Preliminaries** 2 6

3 Proof of main results

1. Introduction and main results

In this work, we deal with the following problems with mixed boundary conditions

$$\begin{cases} -\Delta_p u = \lambda_1 |u|^{p-2} u + f(x, u) - h(x) & \text{in} \quad \Omega, \\ u = 0 & \text{on} \quad \sigma, \\ |\nabla u|^{p-2} \frac{\partial u}{\partial \nu} = \lambda_1 |u|^{p-2} u + g(x, u) & \text{on} \quad \Gamma, \end{cases}$$
(1.1)

where $p > 1, \Omega$ is a bounded domain of \mathbb{R}^N $(N \ge 1)$ with C^1 boundary $\partial \Omega$ such that $\partial \Omega = \sigma \cup \Gamma$ and $\sigma \cap \Gamma = \emptyset$, Γ is a sufficiently smooth (N-1)-dimensional, ν is the outward normal vector on $\partial \Omega$, $f: \Omega \times \mathbb{R} \longrightarrow \mathbb{R}$ and $g: \Gamma \times \mathbb{R} \longrightarrow \mathbb{R}$ are a bounded Carathéodory functions, $h \in L^{p'}(\Omega), (p' = \frac{p}{p-1})$ and λ_1 designates the first eigenvalue for the eigenvalue problem

$$\begin{cases} -\Delta_p u = \lambda |u|^{p-2} u & \text{in} \quad \Omega, \\ u = 0 & \text{on} \quad \sigma, \\ |\nabla u|^{p-2} \frac{\partial u}{\partial \nu} = \lambda |u|^{p-2} u & \text{on} \quad \Gamma. \end{cases}$$
(1.2)

The investigation of existence of solutions for problems at resonance has drawn the attention of many authors, see for example [1,2,3,4,5,6,7,10].

In the recent paper of G. Li et al [8], the authors obtained, by using the Ljusternik-Schnirelman principle, the existence of a nondecreasing sequence of nonnegative eigenvalues of problem (1.2), and showed that the first eigenvalue λ_1 is simple, isolated and given by

$$\lambda_1 = \inf_{u \in X} \frac{\int_{\Omega} |\nabla u|^p dx}{\int_{\Omega} |u|^p dx + \int_{\Gamma} |u|^p ds},$$

where $X := \{ u \in W^{1,p}(\Omega) : u|_{\sigma} = 0 \}$, is a closed subspace of $W^{1,p}(\Omega)$ endowed with the norm

$$||u|| = \left(\int_{\Omega} (|\nabla u|^p + |u|^p) dx\right)^{1/p}$$

Let us denote by φ_1 the positive eigenfunction associated with λ_1 , which can be chosen normalized. the authors characterized the second eigenvalue as follows

 $\lambda_2 = \inf\{\lambda : \lambda \text{ is an eigenvalue of } (1.2), \text{ with } \lambda > \lambda_1\}.$

We assume that f and g satisfy the following hypotheses:

²⁰¹⁰ Mathematics Subject Classification: 35B34, 35D30, 35M10.

Submitted March 15, 2020. Published June 09, 2021

(F) For almost every $x \in \Omega$, there exist

$$\lim_{s \to \pm \infty} f(x, s) = f_{\pm}(x),$$

(G) For almost every $x \in \Gamma$, there exist

$$\lim_{\tau \to \pm \infty} g(x,\tau) = g_{\pm}(x)$$

We study the solvability of problem (1.1) under the well known Landesman-Laser type conditions for the resonance part. The following theorems (see [11]) is our main ingredient

Theorem 1.1. Let X be a Banach space and $\Phi \in C^1(X, \mathbb{R})$. Assume that Φ satisfies the Palais-Smale condition and bounded from below. Then $c = \inf_X \Phi$ is a critical point.

Theorem 1.2. Let X be a Banach space. Let $\Phi : X \to \mathbb{R}$ be a C^1 functional that satisfies the Palais-Smale condition, and suppose that $X = V \oplus W$, with V is a finite dimensional subspace of X. If there exists R > 0 such that

$$\max_{v \in V, ||v||=R} \Phi(v) < \inf_{w \in W} \Phi(w)$$

then Φ has a least a critical point on X.

Now, we are ready to state our main results.

Theorem 1.3. Assume that (F) and (G) hold. Suppose that f(x, .) and g(x, .) be strictly decreasing. Then problem (1.1) has at least one weak solution if and only if

$$\int_{\Omega} f_{+}(x)\varphi_{1}dx + \int_{\Gamma} g_{+}(x)\varphi_{1}ds < \int_{\Omega} h(x)\varphi_{1}dx < \int_{\Omega} f_{-}(x)\varphi_{1}dx + \int_{\Gamma} g_{-}(x)\varphi_{1}ds.$$
(1.3)

Theorem 1.4. Assume that (F) and (G) hold. Suppose that f(x, .) and g(x, .) be increasing. Then problem (1.1) has at least one weak solution if and only if

$$\int_{\Omega} f_{-}(x)\varphi_{1}dx + \int_{\Gamma} g_{-}(x)\varphi_{1}ds < \int_{\Omega} h(x)\varphi_{1}dx < \int_{\Omega} f_{+}(x)\varphi_{1}dx + \int_{\Gamma} g_{+}(x)\varphi_{1}ds.$$
(1.4)

Theorem 1.5. Assume that (F) and (G) hold. If $h \in L^{p'}(\Omega)$ satisfy (1.3) or (1.4), then problem

$$\begin{cases} -\Delta_p u = \lambda |u|^{p-2} u + f(x, u) - h(x) & in \quad \Omega, \\ u = 0 & on \quad \sigma, \\ |\nabla u|^{p-2} \frac{\partial u}{\partial \nu} = \lambda |u|^{p-2} u + g(x, u) & on \quad \Gamma, \end{cases}$$
(1.5)

with $\lambda_1 < \lambda < \lambda_2$, has at least one solution.

2. Preliminaries

Denoting by $\Phi : X \to \mathbb{R}$ the variational functional corresponding to the problem (1.1)

$$\begin{split} \Phi(u) &= \frac{1}{p} \int_{\Omega} |\nabla u|^p dx - \frac{\lambda_1}{p} \left(\int_{\Omega} |u|^p dx + \int_{\Gamma} |u|^p ds \right) - \int_{\Omega} F(x, u) dx \\ &- \int_{\Gamma} G(x, u) ds + \int_{\Omega} h u dx, \end{split}$$

where

$$F(x,t) = \int_0^t f(x,\xi)d\xi \text{ for a.e. } x \in \Omega, \ \forall t \in \mathbb{R},$$
$$G(x,\tau) = \int_0^\tau g(x,\xi)d\xi \text{ for a.e. } x \in \Gamma, \ \forall \tau \in \mathbb{R}.$$

It is obvious that the functional $\Phi \in \mathcal{C}^1(X, \mathbb{R})$, with derivative at point $u \in X$ is given by

$$\langle \Phi'(u), v \rangle = \int_{\Omega} |\nabla u|^{p-2} \nabla u \nabla v dx - \lambda_1 \left(\int_{\Omega} |u|^{p-2} uv dx + \int_{\Gamma} |u|^{p-2} uv ds \right)$$

$$- \int_{\Omega} f(x, u) v dx - \int_{\Gamma} g(x, u) v ds + \int_{\Omega} hv dx,$$
 (2.1)

for every $v \in X$, and its critical points correspond to solutions of (1.1).

Now, let denote $V = \langle \varphi_1 \rangle$ the linear spans of φ_1 and

$$W = \left\{ u \in X : \int_{\Omega} |\varphi_1|^{p-1} u dx + \int_{\Gamma} |\varphi_1|^{p-1} u ds = 0 \right\}.$$
(2.2)

We can decompose X as a direct sum of V and W. Indeed, for $u \in X$, writing $u = \alpha \varphi_1 + w$ where $w \in X$ and

$$\alpha = \lambda_1 \frac{\int_{\Omega} |\varphi_1|^{p-1} u dx + \int_{\Gamma} |\varphi_1|^{p-1} u ds}{\int_{\Omega} |\nabla \varphi_1|^p dx}.$$

Due to the fact that

$$\lambda_1 = \frac{\int_{\Omega} |\nabla \varphi_1|^p dx}{\int_{\Omega} |\varphi_1|^p dx + \int_{\Gamma} |\varphi_1|^p ds},$$

we get

$$\int_{\Omega} |\varphi_1|^{p-1} w dx + \int_{\Gamma} |\varphi_1|^{p-1} w ds = 0.$$

Therefore $w \in W$, (the uniqueness of w comes from the uniqueness of λ_1 .) Hence

$$X = V \oplus W.$$

Recall that a functional Φ satisfies the Palais-Smale condition on X, if for any sequence such that $|\Phi(u_n)| \leq c$ and $\Phi'(u_n) \to 0$, we can show that there exists a convergent subsequence.

Lemma 2.1. Assume that (F), (G) and (1.3) or (1.4) are verified. Then the functional Φ satisfies the Palais-Smale condition on X.

Proof. Let (u_n) be a sequence in X, and c a real number such that:

$$|\Phi(u_n)| \le c \quad for \ all \ n, \tag{2.3}$$

$$\Phi'(u_n) \to 0. \tag{2.4}$$

We claim that (u_n) is bounded in X. Otherwise, suppose by contradiction that

$$||u_n|| \to +\infty, as n \to +\infty.$$

Put $v_n = u_n/||u_n||$, thus (v_n) is bounded, for a subsequence still denoted (v_n) , we can assume that $v_n \rightarrow v$ weakly in X, by Sobelev injection theorems we have $v_n \rightarrow v$ strongly in $L^p(\Omega)$ and $v_n \rightarrow v$ a.e in Ω , since the range of the trace mapping $X \hookrightarrow L^p(\Gamma)$ is continuous and compact (see [9]), $v_n \rightarrow v$ strongly in $L^p(\Gamma)$. Dividing (2.3) by $||u_n||^p$, we get

$$\lim_{n \to +\infty} \left\{ \frac{1}{p} \int_{\Omega} |\nabla v_n|^p dx - \frac{\lambda_1}{p} \Big(\int_{\Omega} |v_n|^p dx + \int_{\Gamma} |v_n|^p ds \Big) - \int_{\Omega} \frac{F(x, u_n)}{||u_n||^p} dx - \int_{\Gamma} \frac{G(x, u_n)}{||u_n||^p} ds + \int_{\Omega} h \frac{u_n}{||u_n||^p} \Big\} = 0.$$
(2.5)

By the hypotheses on the functions f, g, h and (u_n) , we obtain

$$\lim_{n \to +\infty} \left(\int_{\Omega} \frac{F(x, u_n)}{||u_n||^p} dx + \int_{\Gamma} \frac{G(x, u_n)}{||u_n||^p} ds - \int_{\Omega} h \frac{u_n}{||u_n||^p} dx \right) = 0,$$

while

$$\lim_{n \to +\infty} \int_{\Omega} |v_n|^p dx = \int_{\Omega} |v|^p dx, \text{ and } \lim_{n \to +\infty} \int_{\Gamma} |v_n|^p ds = \int_{\Gamma} |v|^p ds,$$

from (2.5) we deduce that

$$1 = \lim_{n \to +\infty} \int_{\Omega} (|\nabla v_n|^p + |v_n|^p) dx = \lambda_1 \left(\int_{\Omega} |v|^p dx + \int_{\Gamma} |v|^p ds \right) + \int_{\Omega} |v|^p dx.$$

Then $v \neq 0$. According to the variational characterization of λ_1 and the weak lower semi continuity of norm yield

$$\lambda_1 \left(\int_{\Omega} |v|^p dx + \int_{\Gamma} |v|^p ds \right) + \int_{\Omega} |v|^p dx \le \int_{\Omega} \left(|\nabla v|^p + |v|^p \right) dx$$
$$\le \liminf_{n \to +\infty} \int_{\Omega} \left(|\nabla v_n|^p + |v_n|^p \right) dx = \lambda_1 \left(\int_{\Omega} |v|^p dx + \int_{\Gamma} |v|^p ds \right) + \int_{\Omega} |v|^p dx,$$

which implies that

$$v_n \to v$$
 strongly in X, and $\int_{\Omega} |\nabla v|^p dx = \lambda_1 \left(\int_{\Omega} |v|^p dx + \int_{\Gamma} |v|^p ds \right)$.

Thus, by the simplicity of the eigenfunction φ_1 , we deduce that $v = \pm \varphi_1$.

Now, from (2.3) we have

$$-cp \leq \int_{\Omega} |\nabla u_n|^p dx - \lambda_1 \left(\int_{\Omega} |u_n|^p dx + \int_{\Gamma} |u_n|^p ds \right) - p \int_{\Omega} F(x, u_n) dx -p \int_{\Gamma} G(x, u_n) ds + p \int_{\Omega} h u_n dx \leq cp.$$

$$(2.6)$$

In view of (2.4), for all $\varepsilon > 0$ and n large enough, one can also have

$$-\varepsilon \|u_n\| \leq -\int_{\Omega} |\nabla u_n|^p dx + \lambda_1 \left(\int_{\Omega} |u_n|^p dx + \int_{\Gamma} |u_n|^p ds \right) + \int_{\Omega} f(x, u_n) u_n dx + \int_{\Gamma} g(x, u_n) u_n ds - \int_{\Omega} hu_n \leq \varepsilon \|u_n\|.$$

$$(2.7)$$

Let

$$\varphi(x,s) = \begin{cases} \frac{F(x,s)}{s} & \text{if } s \neq 0\\ f(x,0) & \text{if } s = 0, \end{cases}$$
(2.8)

and

$$\psi(x,s) = \begin{cases} \frac{G(x,s)}{s} & \text{if } s \neq 0\\ g(x,0) & \text{if } s = 0. \end{cases}$$
(2.9)

Suppose that $v_n \to -\varphi_1$ (for example), then $u_n(x) \to -\infty$ for a.e. $x \in \Omega$, it follows from hypotheses (F) and (G) that

$$\begin{cases} f(x, u_n) \to f_+(x) & \text{ a.e } x \in \Omega, \\ \varphi(x, u_n) \to f_+(x) & \text{ a.e } x \in \Omega, \\ g(x, u_n) \to g_+(x) & \text{ a.e } x \in \Gamma, \\ \psi(x, u_n) \to g_+(x) & \text{ a.e } x \in \Gamma. \end{cases}$$

Moreover, the Lebesgue's theorem imply

$$\lim_{n \to +\infty} \int_{\Omega} (f(x, u_n)v_n - p\varphi(x, u_n)v_n) dx = (p-1) \int_{\Omega} f_+(x)\varphi_1 dx,$$
(2.10)

$$\lim_{n \to +\infty} \int_{\Gamma} (g(x, u_n)v_n - p\psi(x, u_n)v_n) ds = (p-1) \int_{\Gamma} g_+(x)\varphi_1 ds.$$
(2.11)

Combining (2.6) and (2.7), we get

$$-cp - \varepsilon \|u_n\| \le \int_{\Omega} f(x, u_n) u_n dx - p \int_{\Omega} F(x, u_n) dx + \int_{\Gamma} g(x, u_n) u_n ds$$
$$-p \int_{\Gamma} G(x, u_n) ds + (p-1) \int_{\Omega} hu_n \le cp + \varepsilon \|u_n\|.$$

Dividing by $||u_n||$ the last inequalities, we obtain

$$\frac{-cp}{||u_n||} - \varepsilon \le \int_{\Omega} f(x, u_n) v_n dx - p \int_{\Omega} \varphi(x, u_n) v_n dx + \int_{\Gamma} g(x, u_n) v_n ds$$
$$-p \int_{\Gamma} \psi(x, u_n) v_n ds + (p-1) \int_{\Omega} h v_n \le \frac{cp}{||u_n||} + \varepsilon,$$

and passing to the limits, we deduce from (2.10) and (2.11) that

$$\int_{\Omega} f_{+}(x)\varphi_{1}dx + \int_{\Gamma} g_{+}(x)\varphi_{1}ds = \int_{\Omega} h(x)\varphi_{1}dx,$$

which contradicts (1.3). Thus (u_n) is bounded in X, for a subsequence denoted also (u_n) , there exists $u \in X$ such that $u_n \rightharpoonup u$ weakly in X, and strongly in $L^p(\Omega)$ and $L^p(\Gamma)$. Since

$$\lim_{n \to +\infty} \langle \Phi'(u_n), (u_n - u) \rangle = 0,$$

we have

$$\langle \Phi'(u_n), (u_n - u) \rangle = \int_{\Omega} |\nabla u_n|^{p-2} \nabla u_n \nabla (u_n - u) dx -\lambda_1 \int_{\Omega} |u_n|^{p-2} u_n (u_n - u) dx -\lambda_1 \int_{\Gamma} |u_n|^{p-2} u_n (u_n - u) ds - \int_{\Omega} f(x, u_n) (u_n - u) dx - \int_{\Gamma} g(x, u_n) (u_n - u) ds + \int_{\Omega} h(u_n - u) dx = o_n(1).$$
 (2.12)

It can be easily seen that

$$\lim_{n \to +\infty} \int_{\Omega} |u_n|^{p-2} u_n (u_n - u) dx = \lim_{n \to +\infty} \int_{\Gamma} |u_n|^{p-2} u_n (u_n - u) ds = 0,$$

and

$$\lim_{n \to +\infty} \int_{\Omega} f(x, u_n)(u_n - u) dx = \lim_{n \to +\infty} \int_{\Gamma} g(x, u_n)(u_n - u) ds = 0,$$
$$\lim_{n \to +\infty} \int_{\Omega} h(x)(u_n - u) dx = 0.$$

Consequently, from (2.12) it follows that

$$\lim_{n \to +\infty} \int_{\Omega} |\nabla u_n|^{p-2} \nabla u_n \nabla (u_n - u) dx = 0.$$

Thus by the (S+) property, $u_n \to u$ strongly in X and Φ satisfies the (PS) condition.

Lemma 2.2. Assume that (F), (G) and (1.3) are satisfied. Then the functional Φ is coercive on X.

Proof. Suppose by contadiction that Φ is not coercive, then there exists a sequence (u_n) such that $||u_n|| \to +\infty$, and $|\Phi(u_n)| \le c$. In the proof of lemma 2.1, we have showed that $v_n = u_n/||u_n|| \to \pm \varphi_1$. Since

$$0 \leq \int_{\Omega} |\nabla u_n|^p dx - \lambda_1 \left(\int_{\Omega} |u_n|^p dx + \int_{\Gamma} |u_n|^p ds \right),$$

one has

$$-\int_{\Omega} F(x, u_n) dx - \int_{\Gamma} G(x, u_n) ds + \int_{\Omega} h u_n dx \le \Phi(u_n) \le c.$$
(2.13)

Assume $v_n \to +\varphi_1$ (for example). Dividing (2.13) by $||u_n||$, we get

$$-\int_{\Omega} \frac{F(x,u_n)}{||u_n||} dx - \int_{\Gamma} \frac{G(x,u_n)}{||u_n||} ds + \int_{\Omega} h \frac{u_n}{||u_n||} dx \le \frac{c}{||u_n||}$$

Passing to the limits, we have

$$\int_{\Omega} f_{+}(x)\varphi_{1}dx + \int_{\Gamma} g_{+}(x)\varphi_{1}ds \ge \int_{\Omega} h(x)\varphi_{1}dx,$$

which contradicts (1.3).

3. Proof of main results

Proof of Theorem 1.3. If (1.3) holds, the coerciveness of the functional Φ and the Palais-Smale condition entrain, from theorem 1.1, that Φ attains its minimum, so problem (1.1) admits at least a weak solution in X.

we show that (1.3) is a necessary condition. Let $u \in X$ be a weak solution of (1.1). Then taking $v = \varphi_1$ as a test function in (2.1), we obtain

$$\int_{\Omega} |\nabla u|^{p-2} \nabla u \nabla \varphi_1 dx = \lambda_1 \left(\int_{\Omega} |u|^{p-2} u \varphi_1 dx + \int_{\Gamma} |u|^{p-2} u \varphi_1 ds \right)$$
$$+ \int_{\Omega} f(x, u) \varphi_1 dx + \int_{\Gamma} g(x, u) \varphi_1 ds - \int_{\Omega} h(x) \varphi_1 dx,$$
$$\int_{\Gamma} f(x, u) \varphi_2 dx + \int_{\Gamma} g(x, u) \varphi_1 ds = \int_{\Omega} h(x) \varphi_1 dx$$

 \mathbf{SO}

$$\int_{\Omega} f(x,u)\varphi_1 dx + \int_{\Gamma} g(x,u)\varphi_1 ds = \int_{\Omega} h(x)\varphi_1 dx.$$

Since f(x, .) and g(x, .) are strictly decreasing functions, we have

$$\int_{\Omega} f_{+}(x)\varphi_{1}dx < \int_{\Omega} f(x,u)\varphi_{1}dx < \int_{\Omega} f_{-}(x)\varphi_{1}dx \text{ for a.a.} x \in \Omega,$$
(3.1)

and

$$\int_{\Gamma} g_{+}(x)\varphi_{1}ds < \int_{\Gamma} g(x,u)\varphi_{1}ds < \int_{\Gamma} g_{-}(x)\varphi_{1}ds \text{ for a.a.} x \in \Gamma.$$
(3.2)

Summing (3.1) and (3.2), we obtain

$$\int_{\Omega} f_{+}(x)\varphi_{1}dx + \int_{\Gamma} g_{+}(x)\varphi_{1}ds < \int_{\Omega} h(x)\varphi_{1}dx < \int_{\Omega} f_{-}(x)\varphi_{1}dx + \int_{\Gamma} g_{-}(x)\varphi_{1}ds.$$

Proof of Theorem 1.4. If (1.4) holds, then Φ has the geometry of the saddle point theorem 1.2. Indeed, splitting $X = V \oplus W$, it is well known that

$$\int_{\Omega} |\nabla u|^p dx \ge \lambda_2 \Big(\int_{\Omega} |u|^p dx + \int_{\Gamma} |u|^p ds \Big) \text{ for all } u \in W.$$
(3.3)

Thus for $u \in W$, using Hölder inequality, (3.3) and recalling the properties of the functions F and G, we obtain

$$\Phi(u) = \frac{1}{p} \int_{\Omega} |\nabla u|^{p} dx - \frac{\lambda_{1}}{p} \left(\int_{\Omega} |u|^{p} dx + \int_{\Gamma} |u|^{p} ds \right) \\
- \int_{\Omega} F(x, u) dx - \int_{\Gamma} G(x, u) ds + \int_{\Omega} h(x) u dx \\
\geq \frac{1}{p} \left(1 - \frac{\lambda_{1}}{\lambda_{2}} \right) ||\nabla u||^{p}_{L^{p}(\Omega)} - C_{1} \left(|\Omega|^{1/p'} + |\Gamma|^{1/p'} + ||h||_{p'} \right) ||u||,$$
(3.4)

and

$$\Phi(u) \ge \frac{\lambda_2 - \lambda_1}{p} \left(\int_{\Omega} |u|^p dx + \int_{\Gamma} |u|^p ds \right) - C_2 \left(|\Omega|^{1/p'} + |\Gamma|^{1/p'} + ||h||_{p'} \right) ||u||, \tag{3.5}$$

where C_1 and C_2 are positive constants, $\|.\|_{p'}$ denote the norm in $L^{p'}(\Omega)$. Summing (3.4) and (3.5), we get

$$\Phi(u) \geq \frac{\lambda_2 - \lambda_1}{p(1 + \lambda_2)} \Big(||\nabla u||_{L^p(\Omega)}^p + \int_{\Omega} |u|^p dx + \int_{\Gamma} |u|^p ds \Big) - C_3 \Big(|\Omega|^{1/p'} + |\Gamma|^{1/p'} + ||h||_{p'} \Big) ||u|| \\
\geq \frac{\lambda_2 - \lambda_1}{p(1 + \lambda_2)} ||u||^p - C_3 \Big(|\Omega|^{1/p'} + |\Gamma|^{1/p'} + ||h||_{p'} \Big) ||u||.$$
(3.6)

Then Φ is coercive on W, so that

$$\inf_{w \in W} \Phi(w) > -\infty. \tag{3.7}$$

On the other hand, for every $t \in \mathbb{R}$, one has

$$\begin{split} \Phi(t\varphi_1) &= -\int_{\Omega} F(x,t\varphi_1)dx - \int_{\Gamma} G(x,t\varphi_1)ds + t\int_{\Omega} h(x)\varphi_1dx \\ &= t\left(\int_{\Omega} h(x)\varphi_1dx - \int_{\Omega} \varphi(x,t\varphi_1)\varphi_1dx - \int_{\Gamma} \psi(x,t\varphi_1)\varphi_1ds\right), \end{split}$$

where φ and ψ has been defined by (2.8) and (2.9). From the Lebesgue theorem, it follows that $\int_{\Omega} (h(x) - \varphi(x, t\varphi_1)) \varphi_1 dx - \int_{\Gamma} \psi(x, t\varphi_1) \varphi_1 ds$ tends to $\int_{\Omega} (h(x) - f_+(x)) \varphi_1 - \int_{\Gamma} g_+(x) \varphi_1 ds$, as $t \to +\infty$ and the limit is negative by (1.4). Analogously, if t tends to $-\infty$, we have the same result with $f_-(x)$ and $g_-(x)$ exchanged with $f_+(x)$ and $g_+(x)$ respectively. In both cases we get

$$\lim_{t \to \pm \infty} \Phi(t\varphi_1) = -\infty.$$
(3.8)

By (3.7) and (3.8), there exists R > 0 such that

$$\max_{v \in V, ||v||=R} \Phi(v) < \inf_{w \in W} \Phi(w).$$

Hence, Φ satisfies the hypotheses of Theorem 1.2, and there exists a critical point of Φ , that is a solution of (1.1).

For the necessary condition, we can take the same technique as in the proof of theorem 1.3. \Box

Proof of Theorem 1.5. The result of Lemma 2.1 holds true for the Euler functional associated to problem (1.5), that is

$$\Phi_{\lambda}(u) = \frac{1}{p} \int_{\Omega} |\nabla u|^{p} dx - \frac{\lambda}{p} \Big(\int_{\Omega} |u|^{p} dx + \int_{\Gamma} |u|^{p} ds \Big)$$
$$- \int_{\Omega} F(x, u) dx - \int_{\Gamma} G(x, u) ds + \int_{\Omega} h u dx$$

for every $u \in X$. Indeed, Let (u_n) be a sequence satisfying (2.3) and (2.4), suppose that (u_n) is unbounded, and define $v_n = u_n/||u_n||$, so that, up to subsequence, (v_n) converges weakly to a function v in X. Dividing (2.4) by $||u_n||^{p-1}$, and then taking $\langle \Phi'_{\lambda}(u_n), v_n - v \rangle = o_n(1)$, we get

$$\lim_{n \to +\infty} \int_{\Omega} |\nabla v_n|^{p-2} \nabla v_n \nabla (v_n - v) dx = 0$$

this fact implies (as in proof of Lemma 2.1) that $v_n \to v$ strongly in X. since $\langle \Phi'_{\lambda}(u_n), \psi/||u_n||^{p-1} \rangle = o_n(1)$, with $\psi \in X$,

$$\int_{\Omega} |\nabla v|^{p-2} \nabla v \nabla \psi dx = \lambda \Big(\int_{\Omega} |v|^{p-2} v \psi dx + \int_{\Gamma} |v|^{p-2} v \psi ds \Big),$$

so that v solve the problem $-\Delta_p u = \lambda |u|^{p-2}u$ with mixed boundary condition on $\partial\Omega$. But this equation, being $\lambda \in (\lambda_1, \lambda_2)$, has zero as the only solution by definition of λ_2 . Thus v = 0, a contradiction with the strong convergence of v_n to v. Hence (u_n) is bounded. This implies, by same argument in proof of Lemma 2.1, that (u_n) is strongly convergent.

On the other hand, as in the second part of the proof of Theorem 1.3, rewrite everything with λ instead of λ_1 and use the fact that $\lambda < \lambda_2$, we get the coerciveness of Φ_{λ} on W. Now, recalling that

 $\int_{\Omega} |\nabla t\varphi_1|^p dx = \lambda_1 \Big(\int_{\Omega} |t\varphi_1|^p dx + \int_{\Gamma} |t\varphi_1|^p ds \Big), \quad \text{for every } t \in \mathbb{R}$

thus

$$\begin{split} \Phi_{\lambda}(t\varphi_{1}) &= \frac{\lambda_{1}-\lambda}{p} |t|^{p} \Big(\int_{\Omega} |\varphi_{1}|^{p} dx + \int_{\Gamma} |\varphi_{1}|^{p} ds \Big) \\ &+ t \left(\int_{\Omega} h(x)\varphi_{1} dx - \int_{\Omega} \varphi(x,t\varphi_{1})\varphi_{1} dx - \int_{\Gamma} \psi(x,t\varphi_{1})\varphi_{1} dx \right), \end{split}$$

since $\lambda > \lambda_1$ and p > 1, we have, as before

$$\lim_{t \to \pm \infty} \Phi_{\lambda}(t\varphi_1) = -\infty.$$

Using again the saddle point theorem, the desired result follows.

References

- G. A. Afrouzi, M. Mirzapour, A. Hadjian, S. Shakeri, Existence of solutions of weak solutions for a semilinear problem with a nonlinear boundary condition, Bulletin of Mathematical Analysis and Applications, Volume 3 Issue 3(2011), Pages 109-114.
- C. O. Alves, P. C. Carriao, O. H. Miyagaki, Multiple solutions for a problem with resonance involving the p-laplacian, Abstr. Appl. Anal, volume 3, number 1-2 (1998), 191-210.
- A. Anane, O. Chakron, B. Karim, A. Zerouli, Existence of solution for a resonant Steklov Problem, Bol.Soc. Paranaense de Mat.(3s) v.27 1 (2009) 87-90.
- A. Anane, J. P. Gossez, Strongly nonlinear elliptic problems near resonance a variational approach, Comm. Partial Diff Eqns, 15 (1990), 1141-1159.
- D. Arcoya, L. Orsina, Landesman-Lazer conditions and quasilinear elliptic equations, Nonlinear Analysis, Theory, Methods and Applications. v.28 N 10 (1997) 1623-1632.
- 6. P. Drabek, S. B. Robinson, Resonance Problems for the p-Laplacian, Journal of Functional Analysis. 169,(1999) 189-200
- El. M. Hssini, M. Massar, M. Talbi and N. Tsouli, Existence of solutions for a fourth order problem at resonance, Bol. Soc. Paran. Mat. (3s.) v. 32 2 (2014): 133–142.
- G. Li, H. Liu, B. Cheng, Eigenvalue problem for p-Laplacian with mixed boundary conditions, Mathematical Sciences 2013, 7:8 doi:10.1186/2251-7456-7-8.
- 9. J. L. Lions, E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Springer, Berlin, 1972.

EXISTENCE OF SOLUTION

- L. Li, Chun-Lei. Tang, Infinitely many solutions for resonance elliptic systems, C. R. Acad. Sci. Paris, Ser. I 353 (2015) 35–40.
- 11. P. H. Rabinowitz, Some minimax theorems and applications to partial differential equations, Nonlinear Analysis: A collection of papers honor of Erich Röthe. Academic press, New York, 1978, pp. 161-177.

Mustapha Haddaoui, University Moulay Ismail, FST Errachidia, LAMIMA Laboratory, ROALI Team, Morocco. E-mail address: m.haddaoui@umi.ac.ma

and

Hafid Lebrimchi, FS Oujda, LaMAO Laboratory, Morocco. E-mail address: h.lebrimchi@ump.ac.ma

and

Najib Tsouli, FS Oujda, LaMAO Laboratory, Morocco. E-mail address: tsouli@hotmail.com