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Convergence Theorem for Split Feasibility Problem, Equilibrium Problem and Zeroes of

Sum of Monotone Operators ∗
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abstract: The main purpose of this paper is to introduce a parallel iterative algorithm for approximating
the solution of a split feasibility problem on the zero of monotone operators, generalized mixed equilibrium
problem and fixed point problem. Using our algorithm, we state and prove a strong convergence theorem for
approximating a common element in the set of solutions of a problem of finding zeroes of sum of two monotone
operators, generalized mixed equilibrium problem and fixed point problem for a finite family of η-demimetric
mappings in the frame work of a reflexive, strictly convex and smooth Banach spaces. We also give a numerical
experiment applying our main result. Our result improves, extends and unifies other results in this direction
in the literature.
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1. Introduction

The problem of finding a point in the nonempty intersection of convex sets formulated as x ∈ H such
that

x ∈ ∩M
i=1Ci , ∅,

where Ci, i = 1, · · · , M are nonempty, closed and convex subsets of a Hilbert space H is referred to
as the Convex Feasibility Problem (CFP). There are numerous areas of applications of the (CFP) in
many applied disciplines such as applied mathematics, engineering, approximation theory, image recovery,
signal processing. It also finds applications in control theory, biomedical engineering, communications
and geophysics and so on (see [9] and the references cited therein).
On the other hand, let C and Q be nonempty, closed and convex subsets of real Hilbert spaces H1 and
H2 respectively, the Split Feasibility Problem (SFP) consists of finding a point x ∈ C such that Sx ∈ Q

where S : H1 → H2 is a bounded linear operator. Observe that, by defining, S−1(Q) = {x : Sx ∈ Q},

then the SFP reduces to the CFP which is to find x ∈ C ∩ S−1(Q). Despite this close relations, the
methodologies employed for finding the solution of each of the problems are different, (see [17,36,35,45]
and the references cited therein ).
Furthermore, there are some generalizations of the CFP which can be formulated in various forms; finding
a common fixed point of nonexpansive mappings, finding a common minimum of convex functionals,
finding a common zero of maximal monotone operators, solving variational inequalities, solving a system
of equilibrium problems. For surveys of methods for solving such problems, (see [3,13,25,26,27,28,29,30,
31,32] and the references cited therein).
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The monotone operator theory closely related to the fixed point theory has appeared as an effective and
powerful tool for studying a wide range of problems arising in different branches of knowledge, from social,
engineering to pure sciences in a unified and general framework. In recent years, monotone operators
have received a lot of attention by many authors in the area of approximating the zero points of monotone
operators and its relation to finding fixed point of mappings which have Lipschitz uniform continuity,
(see [15,24]). There are various number of applications of the problem of finding zero points of the sum
of two operators; (see [22,23] and the references cited therein). For more on monotone operators and
generalized sums of two monotone operators, (see [22,23] and the references cited therein).
Recently, some authors have considered the problems of obtaining common solutions of inclusion problems
and fixed point problems in the framework of Hilbert spaces; (see [46] and the references cited therein).
Very recently, Petrot et al. [33], presented an alternative algorithm for finding a solution of split feasibility
problem for a point in zeros of finite sum of αi-inverse strongly monotone operators and maximal mono-
tone operators and fixed points of nonexpansive mappings. They proposed two parallel type algorithm
for approximating the solution of this problem in the framework of two real Hilbert spaces. However, in
obtaining strong convergence of their algorithm, Petrot et al. [33] imposed the condition of compactness
on the mapping in the first algorithm. They incorporated the hybrid step into the proposed parallel
algorithm and proved strong convergence theorems based on this algorithms.
In this paper, inspired and motivated by the research going on in this direction, most especially what
has preceded above in the literature, we introduce a parallel iterative algorithm for finding a solution of
split feasibility problem for a generalized mixed equilibrium problem, a point in zeroes of a finite sum
of an α-inverse strongly operator and maximal monotone operator and a common fixed point of a finite
family of η-demimetric mappings. Our algorithm does not require the compactness assumption on the
underlining space or any of the demimetric mappings. Also, our proposed method does not require a
projection onto a convex set for obtaining its strong convergence.

2. Preliminaries

In this section, we give some definitions and important results which will be useful in establishing our
main results. We denote the weak and the strong convergence of a sequence {xn} to a point x by xn ⇀ x

and xn → x respectively.
Throughout this paper, we suppose C is a nonempty, closed and convex subset of a real Banach space E

with norm || · ||. The normalized duality mapping J : E → 2E∗

is defined by

J(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ||x||2 = ||x∗||2, ∀x ∈ E},

where E∗ denotes the dual space of E and 〈·, ·〉 the duality pairing between the elements of E and E∗.

By considering the Lyapunov functional φ : E × E → R+ which is defined by

φ(x, y) = ||x||2 − 2〈x, Jy〉 + ||y||2, ∀x, y ∈ E,

Alber [7], introduced a generalized projection operator ΠC : E → C given by

ΠC(x) = inf
y∈C

{φ(y, x), ∀x ∈ E}.

Note that, for the Hilbert spaces, we observe that φ(x, y) = ||x − y||2 and ΠC(x) ≡ PC(x), where
PC : H → C is the usual metric projection. It is obvious from the definition of the functional φ that

(||x|| − ||y||)2 ≤ φ(x, y) ≤ (||x|| + ||y||)2.

Moreover, the functional φ also satisfy the following important properties:

(N1) φ(x, y) = φ(x, z) + φ(z, y) + 2〈x − z, Jz − Jy〉;

(N2) φ(x, y) + φ(y, x) = 2〈x − y, Jx − Jy〉;

(N3) φ(x, y) = ||x||||Jx − Jy|| + ||y||||x − y||.
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In this work, we are also concerned with the functional V : E × E∗ → R which is defined by

V (x, x∗) = ||x||2 − 2〈x, x∗〉 + ||x∗||2 (2.1)

for all x ∈ E and x∗ ∈ E∗. Observe that, if E is a reflexive, strictly convex and smooth Banach space,
we have V (x, x∗) = φ(x, J−1x∗), and

V (x, x∗) ≤ V (x, x∗ + y∗) − 2〈J−1x∗ − x, y∗〉 (2.2)

for all x ∈ E and all x∗, y∗ ∈ E∗, see [42].
A point x ∈ C is called a fixed point of a mapping T : C → C, if x = T x. We denote the set of fixed
points of T by F (T ). A point p ∈ C is called an asymptotic fixed point of T, if C contains a sequence {xk}
such that xk ⇀ p and ||xk − T xk|| → 0 as k → ∞ (see [34]). We denote by F̂ (T ) the set of asymptotic
fixed points of T.

A mapping T : C → C is said to be:

(a) relatively nonexpansive if F̂ (T ) = F (T ) and φ(p, T x) ≤ φ(p, x) for all x ∈ C and p ∈ F (T ) (see
[11,12]);

(b) φ-nonexpansive if φ(T x, T y) ≤ φ(x, y) for all x, y ∈ C and quasi-φ-nonexpansive if F (T ) , ∅ and
φ(p, T x) ≤ φ(p, x) for all x ∈ C and p ∈ F (T );

(c) firmly nonexpansive type mapping if, for all x, y ∈ C,

φ(T x, T y) + φ(T y, T x) ≤ φ(T x, y) + φ(T y, x) − φ(T x, x) − φ(T y, y)

or equivalently

〈T x − T y, Jx − JT x − (Jy − JT y)〉 ≥ 0, (2.3)

where φ is the Lyapunov functional.

It is known that the class of quasi-φ-nonexpansive mappings is more general than the class of relatively
nonexpansive mapping which requires the strict condition F (T ) = F̂ (T ), see ( [11,12]).
Let C be a nonempty, closed and convex subset of a Banach space E and let η be a real number with
η ∈ (−∞, 1). Then a mapping T : C → E with F (T ) , ∅ is called η-demimetric [39], if

〈x − p, j(x − T x) ≥ (1 − η)

2
||x − T x||2, (2.4)

for all x ∈ C and p ∈ F (T ). It has been shown in [39] that F (T ) is closed and convex. It is known that
the class of quasi-φ-nonexpansive is 0-demimetric. For more on demimetric mappings see [20,39] and the
references therein.
Recall that an operator A : C → E∗ is α-inverse strongly monotone, where α > 0, if

〈x − y, Ax − Ay〉 ≥ α||Ax − Ay||2, (2.5)

for all x, y ∈ C. A mapping T : E → E is said to be L-Lipschitz continuous if ||T x − T y|| ≤ L||x − y||, for

all x, y ∈ E. It is known that the class of α-inverse strongly monotone operator is
1

α
-Lipschitz continuous.

A multivalued mapping A : E → 2E∗

is said to be monotone if 〈u − v, x − y〉 ≥ 0, for all x, y ∈ E, u ∈ Ax

and v ∈ Ay. A monotone operator is said to be maximal if the graph of A is not properly contained in
the graph of any other monotone operator in the same space. We denote by A−1(0) the set of zeros of
A, that is A−1(0) = {x ∈ E : 0 ∈ Ax}. It is well known that, if A is maximal monotone then the solution
set A−1(0) is closed and convex. Let A : E → 2E∗

be a maximal monotone operator, then for each r > 0
and x ∈ E, there exists a unique element xr ∈ D(T ) satisfying

J(x) ∈ J(xr) + rA(xr);



4 O. K. Oyewole, L. O. Jolaoso, O. T. Mewomo and S. H. Khan

(see [40]). For each r > 0, define the resolvent operator of A by QA
r x. In other words, QA

r = (J + rA)−1J

for all r > 0. It is easy show that A−1(0) = F (QA
r ) for all r > 0, where F (QA

r ) denotes the set of all fixed
points of QA

r .

Remark: If we put GA,B
r = QA

r (J−1(J − rB)) = (J + rA)−1J [J−1(J − rB)], where r is a real number.
Then,

x = GA,B
r x

⇐⇒ x ∈ (J + rA)−1J [J−1(Jx − rBx)] = (J + rA)−1(Jx − rBx)

⇐⇒ (Jx − rBx) ∈ (Jx + rAx)

⇐⇒ 0 ∈ Ax + Bx. (2.6)

This means that, F (Gr) = (A + B)−1(0).
Now, we recall some geometric properties on the Banach space, see [37,38].

For a real Banach space E. The modulus of convexity of E is the function δE : (0, 2] → [0, 1] defined by

δE(ǫ) = inf{1 − 1

2
||x + y|| : ||x|| = ||y|| = 1, ||x − y|| ≥ ǫ}. (2.7)

Recall that E is said to be uniformly convex if δE(ǫ) > 0 for any ǫ ∈ (0, 2]. E is said to be strictly convex

if
||x + y||

2
< 1 for all x, y ∈ E with ||x|| = ||y|| = 1 and x , y. Also, E is p-uniformly convex if there

exists a constant cp > 0 such that δE(ǫ) > cpǫp for any ǫ ∈ (0, 2].
The modulus of smoothness of E is the function ρE : R+ → R+ defined by

ρE(t) = sup{1

2
(||x + ty|| − ||x − ty||) − 1 : ||x|| = ||y|| = 1}. (2.8)

E is said to be uniformly smooth if lim
t→0

ρE(t)

t
= 0. Let 1 < q ≤ 2, then E is q-uniformly smooth if there

exists cq > 0 such that ρE(t) ≤ cqtq for t > 0. It is known that E is p-uniformly convex if and only if
E∗ is q-uniformly smooth, where p−1 + q−1 = 1. It is also known that every q-uniformly smooth Banach
space is uniformly smooth.
It is widely known that if E is uniformly smooth, then the duality mapping J is norm-to-norm continuous
on each bounded subset of E. The following are some important and useful properties of duality mapping
J, for further details, see [1]:

• For every x ∈ E, Jx is nonempty, closed, convex and bounded subset of E∗.

• If E is smooth or E∗ is strictly convex, then J is single valued. Also, If E is reflexive, then J is
onto.

• If E is strictly convex, then J is strictly monotone, that is

〈x − y, Jx − Jy〉 > 0, ∀x, y ∈ E.

• If E is smooth, strictly convex and reflexive and J∗ : E∗ → 2E is the normalized duality mapping
on E∗, then J−1 = J∗, JJ∗ = IE∗ and J∗J = IE , where IE and IE∗ are the identity mappings on
E and E∗ respectively.

• If E is uniformly convex and uniformly smooth, then J is uniformly norm-to-norm continuous on
bounded subsets of E and J∗ = J−1 is also uniformly norm-to-norm continuous on bounded subsets
of E∗.

We now give the following useful and important lemmas that are needed in establishing our main
results:
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Lemma 2.1. [44] Given a number s > 0. A real Banach space X is uniformly convex if and only if
there exists a continuous strictly increasing function g : [0, ∞) → [0, ∞) with g(0) = 0 such that

||λx + (1 − λ)y||2 ≤ λ||x||2 + (1 − λ)||y||2 − λ(1 − λ)g(||x − y||),
for all x, y ∈ X, λ ∈ [0, 1], with ||x|| < s and ||y|| < s.

Lemma 2.2. [19] Let E be a smooth and uniformly convex real Banach space and let {xn} and {yn} be
two sequences in E. If either {xn} or {yn} is bounded and φ(xn, yn) → 0 as n → ∞, then ||xn − yn|| → 0
as n → ∞.

Remark 2.3. Using N3, it is easy to see that the converse of Lemma 2.2 is also true whenever {xn} and
{yn} are both bounded.

Lemma 2.4. [7] Let C be a nonempty, closed and convex subset of a reflexive, strictly convex and smooth
Banach space E. If x ∈ E and q ∈ C, then

q = ΠCx ⇐⇒ 〈y − q, Jx − Jq〉 ≤ 0, ∀y ∈ C (2.9)

and

φ(y, ΠCx) + φ(ΠCx, x) ≤ φ(y, x), ∀y ∈ C, x ∈ E. (2.10)

Lemma 2.5. [44] Let E be a 2-uniformly smooth Banach space with the best smoothness constant k > 0.

Then, the following inequality holds:

||x + y||2 ≤ ||x||2 + 2〈y, Jx〉 + 2||ky||2, ∀x, y ∈ E.

Lemma 2.6. [8] Suppose that E is 2-uniformly convex Banach space. Then, there exists a constant
c ≥ 1 such that

φ(x, y) ≥ 1

c
||x − y||2, ∀x, y ∈ E.

Lemma 2.7. [43] Let {an} be a sequence of nonnegative real numbers satisfying the following relation

an+1 ≤ (1 − αn)an + αnδn, n ≥ 0,

where {αn} ⊂ (0, 1) and {δn} ⊂ R satisfy the conditions
∑

n=0
αn = ∞ and lim sup

n→∞
δn ≤ 0. Then, lim

n→∞
an =

0.

Lemma 2.8. [21] Let {an} be a sequence of real numbers such that there exists a subsequence {nj} of
{n} such that anj

< anj+1 for all j ∈ N. Then, there exists a nondecreasing subsequence {mn} ⊂ N
such that mn → ∞ and the following properties are satisfied by all (sufficiently large) numbers n ∈ N:
amn

< amn+1 and an < amn+1. In fact, mn = max{i ≤ k : ai < ai+1}.

We end this section by recalling some knowledge on the concept of equilibrium problem.
Let Θ : C × C → R be a bifunction, ϕ : C → R be a real-valued function and Ψ : C → E∗ be a nonlinear
mapping, where C is a nonempty, closed and convex subset of a real Banach space E with E∗ its dual.
We consider the following Generalized Mixed Equilibrium Problem (GMEP):
Find x ∈ C such that

Θ(x, y) + 〈y − x, Ψx〉 + ϕ(y) ≥ ϕ(x), ∀ y ∈ C. (2.11)

The set of solutions of (2.11) is denoted by GMEP (Θ, Ψ, ϕ). In the case when Ψ = 0, problem (2.11)
reduces to the Mixed Equilibrium Problem (MEP) with solution set MEP (Θ, ϕ). In the case ϕ = 0,

then (2.11) reduces to Generalized Equilibrium Problem (GEP) with solution set GEP (Θ, Ψ). Note that,
if Ψ = ϕ = 0, then problem (2.11) becomes the classical equilibrium introduced by Blum and Oetlli
[10]. This means that the problem (2.11) is very general in the sense that it include as special cases,
the optimization problem, variational inequalities, min-max problems, the Nash equilibrium in non co-
operative games and so on (see [2,4,14,16,18]).
For solving the GMEP, we will assume the bifunction Θ satisfies the following:
Assumption I: The bifunction Θ : C × C → R satisfies the following conditions (see [5,?]:



6 O. K. Oyewole, L. O. Jolaoso, O. T. Mewomo and S. H. Khan

(I1) Θ(x, x) = 0 for all x ∈ C;

(I2) Θ is monotone, i.e, g(x, y) + g(y, x) ≤ 0 for all x, y ∈ C;

(I3) lim sup
t↓0

g(x + t(z − x), y) ≤ g(x, y), ∀x, y, z ∈ C;

(I4) the function y 7→ Θ(x, y) is convex and lower semi-continuous.

The following Lemma is useful in our work.

Lemma 2.9. [41] Let E be a smooth, strictly convex and reflexive Banach space and C be a nonempty,
closed and convex subset of E. Let Ψ : C → E∗ be a continuous and monotone mapping, ϕ : C → R be a
lower semi-continuous and convex function and Θ : C × C → R be a bifunction satisfying the Assumption
I. Let s > 0 be any given number and x ∈ E be any given point. Then, the following hold:

(i) there exists z ∈ C, such that

Θ(z, y) + 〈y − z, Ψz〉 + ϕ(y) +
1

s
〈y − z, Jz − Jx〉 ≥ ϕ(z), ∀ y ∈ Q;

(ii) the mapping KΘ
s : E → C defined by

KΘ
s (x) = {z ∈ C : Θ(z, y) + 〈y − z, Ψz〉 + ϕ(y) +

1

s
〈z − y, Jz − Jx〉 ≥ ϕ(z), ∀y ∈ C}, ∀x ∈ E,

has the following properties:

(a) for all x ∈ E, KΘ
s (x) , ∅.

(b) KΘ
s is single valued

(c) KΘ
s is firmly nonexpansive-type, i.e

〈KΘ
s z − KΘ

s y, JKΘ
s z − JKΘ

s y〉 ≤ 〈KΘ
s z − KΘ

s y, Jz − Jy〉, ∀ z, y ∈ E;

(d) F (KΘ
s ) = GMEP (Θ, Ψ, ϕ);

(e) F (KΘ
s ) is closed and convex;

(f) φ(p, KΘ
s z) + φ(KΘ

s z, z) ≤ φ(p, z), ∀p ∈ F (KΘ
s ), z ∈ E.

3. Main Results

In this section we state and prove our main results. Firstly, we explicitly state the problem considered in
this paper, we introduce a parallel iterative method for obtaining the solution of the problem and finally
discuss its convergence analysis.
Let C be a nonempty, closed and convex subset of a 2-uniformly convex, and uniformly smooth Banach
space E1, Q be a nonempty, closed and convex subset of a smooth, strictly convex and reflexive Banach
space E2 and S : E1 → E2 be a bounded linear operator with S∗ : E∗

2 → E∗
1 its adjoint. For each

j = 1, · · · M, let Tj : E2 → E2 be a finite family of ηj-demimetric mappings. For each i = 1, · · · , N, let

Ai : E1 → 2E∗

1 be a finite family of maximal monotone operators and Bi : E1 → E∗
1 be a finite family

of αi-inverse strongly monotone operators. Let Θ : C × C → R be a monotone bifunction satisfying
Assumption I, let Ψ : C → E∗

1 be a continuous and monotone mapping and ϕ : C → R ∪ {+∞} be a

proper, lower semi-continuous and convex function. From now
1

c
, where c ∈ (0, 1], and k represent the

uniformly convex constant and smoothness constant of E1 respectively.
We consider the problem of finding a point p ∈ C such that

p ∈ GMEP (Θ, Ψ, ϕ) ∩ (∩N
i=1(Ai + Bi)

−1(0)) ∩ S−1(∩M
j=1F (Tj)). (3.1)
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We denote the set of solution of (3.1) by Γ and assume Γ , ∅. To solve (3.1), we introduce the following
parallel iterative algorithm: Choose u, x0 ∈ C, define {xn} by the following process:



























































































yj,n = J−1
1 (J1xn − µnS∗J2(I − Tj)Sxn),

choose jn : ||yjn,n − xn|| = max{||yj,n − xn|| : j = 1, · · · , M},

set yjn,n = yn,

zi,n = QAi
r ◦ J−1

1 (J1yn − rBiyn),

choose in : ||zin,n − xn|| = max{||zi,n − xn|| : i = 1, · · · , N},

set zin,n = zn,

vi,n = zn − r(Bizn − Biyn),

choose in : ||vin,n − xn|| = max{||vi,n − xn|| : i = 1, · · · , N},

set vin,n = vn,

Θ(wn, y) + 〈y − wn, Ψwn〉 + ϕ(y) − ϕ(wn) +
1

s
〈y − wn, J1wn − J1vn〉 ≥ 0, ∀y ∈ C,

xn+1 = J−1
1 (βnJ1u + (1 − βn)J1wn), n ≥ 0,

(3.2)

where s > 0, is a positive parameter, {µn} is a sequence of positive real numbers and {βn} is a sequence
in (0, 1) satisfying the following conditions:

(i) lim
n→∞

βn = 0,
∞
∑

n=0
βn = ∞;

(ii) 0 ≤ µn ≤ 1 − η

2k2||S||2 , where η = max
1≤j≤M

{ηj};

(iii) 0 < a ≤ r ≤ b <
α

k
√

2c
, where α = min

1≤i≤N
{αi}.

Firstly, we prove the following lemma which is important for establishing the zero of the sum (Ai + Bi).

Lemma 3.1. Define the sequences {yn} and {zi,n} as in (3.2). Choose subsequences {ynk
} of {yn} and

{zi,nk
} of {zi,n}, such that ynk

⇀ p and ||ynk
− zi,nk

|| → 0 as n → ∞. Then, p ∈ (Ai + Bi)
−1(0).

Proof. Suppose that (v, u) ∈ Grp(Ai + Bi). Then we have J1u − Biv ∈ Aiv. Furthermore, we obtain from
zi,nk

= (J1 + rAi)
−1J1 ◦ J−1

1 (J1ynk
− rBiynk

) that (J1ynk
− rBiynk

) ∈ (J1 + rAi)zi,nk
, and thus

1

r
(J1ynk

− J1zi,nk
− rBiynk

) ∈ Aizi,nk
.

Since Ai is maximal monotone and (v, u) ∈ Grp(Ai + Bi) for each i = 1, 2 · · · , N, we obtain

〈v − zi,nk
, J1u − Biv − 1

r
(J1ynk

− J1zi,nk
− rBiynk

)〉 ≥ 0.

Therefore,

〈v − zi,nk
, J1u〉 ≥ 〈v − zi,nk

, Biv +
1

r
(J1ynk

− J1zi,nk
− rBiynk

)〉

= 〈v − zi,nk
, Biv − Biynk

〉 + 〈v − zi,nk
,

1

r
(J1ynk

− J1zi,nk
)〉

= 〈v − zi,nk
, Biv − Bizi,nk

〉 + 〈v − zi,nk
, Bizi,nk

− Biynk
〉 + 〈v − zi,nk

,
1

r
(J1ynk

− J1zi,nk
)〉

≥ 〈v − zi,nk
, Bizi,nk

− Biynk
〉 + 〈v − zi,nk

,
1

r
(J1ynk

− J1zi,nk
)〉.

Since ||zi,nk
−ynk

|| → 0 as n → ∞ and Bi is Lipschitz continuous for each i, we obtain ||Bizi,nk
−Biynk

|| →
0 as n → ∞. Consequently, 〈v − p, J1u〉 ≥ 0. By the maximal monotonicity of (Ai + Bi) for each
i = 1, 2, · · · N, we have 0 ∈ (Ai + Bi)p, for each i. Hence p ∈ ∩N

i=1(Ai + Bi)
−1(0). �
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Next, we prove a lemma which guarantees the existence of weak cluster points of the sequence. That is,
we show that {xn} is bounded.

Lemma 3.2. Let C be a nonempty, closed and convex subset of a 2-uniformly convex and uniformly
smooth Banach space E1 and Q is a nonempty, closed and convex subset of a smooth, strictly convex and
reflexive Banach space E2. Let Θ : C × C → R be a bifunction satisfying Assumption I, Ψ : C → E∗

1 be
a continuous and monotone mapping and ϕ : C → R ∪ {+∞} be a proper lower semi-continuous convex
function. For each i = 1, · · · N, let Ai : E1 → 2E∗

1 be a finite family of maximal monotone operators and
Bi : E1 → E∗

1 be a finite family of αi-inverse strongly monotone operators, and let Tj : E2 → E2 be a
finite family of η-demimetric and demiclosed mappings. If Γ , ∅ then, the sequence {xn} generated by
(3.2) is bounded.

Proof. Fix p ∈ Γ, we have from (3.2), that

φ(p, yn) = φ(p, J−1
1 (J1xn − µnS∗J2(I − Tjn

)Sxn))

= ||p||2 − 2〈p, J1xn − µnS∗J2(I − Tjn
)Sxn〉 + ||J1xn − µnS∗J2(I − Tjn

)Sxn||2
= ||p||2 − 2〈p, J1xn〉 + 2µn〈p, S∗J2(I − Tjn

)Sxn〉 + ||xn||2 − 2µn〈xn, S∗J2(I − Tjn
)Sxn〉

+2µ2
nk2||S||2||(I − Tjn

)Sxn||2
= φ(p, xn) − 2µn〈Sxn − Sp, J2(I − Tjn

)Sxn〉 + 2µ2
nk2||S||2||(I − Tjn

)Sxn||2
≤ φ(p, xn) − µn(1 − η)||(I − Tjn

)Sxn||2 + 2µ2
nk2||S||2||(I − Tjn

)Sxn||2
= φ(p, xn) − µn[(1 − η) − 2µn||S||2k2]||(I − Tjn

)Sxn||2. (3.3)

Since 0 < µn ≤ 1 − η

2k2||S||2 , we have

φ(p, yn) ≤ φ(p, xn). (3.4)

Again from (3.2), we have

φ(p, vn) = φ(p, J−1
1 (J1zn − r(Bin

zn − Bin
yn)))

= ||p||2 − 2〈p, J1zn − r(Bin
zn − Bin

yn)〉 + ||J−1
1 (J1zn − r(Bin

zn − Bin
yn))||2

= ||p||2 − 2〈p, J1zn − r(Bin
zn − Bin

yn)〉 + ||J1zn − r(Bin
zn − Bin

yn)||2
= ||p||2 − 2〈p, J1zn〉 + 2r〈p, Bin

zn − Bin
yn〉 + ||J1zn − r(Bin

zn − Bin
yn)||2. (3.5)

By using Lemma 2.5, we have

||J1zn − r(Bin
zn − Bin

yn)||2 ≤ ||J1zn||2 − 2r〈zn, Bin
zn − Bin

yn〉 + 2k2||r(Bin
zn − Bin

yn)||2.

Substituting this into (3.5), we obtain

φ(p, vn) = ||p||2 − 2〈p, J1zn〉 + ||zn||2 − 2r〈zn, Bin
zn − Bin

yn〉
+2r〈p, Bin

zn − Bin
yn〉 + 2k2||r(Bin

zn − Bin
yn)||2

= φ(p, yn) + φ(yn, zn) + 2〈yn − p, J1zn − J1yn〉 − 2r〈zn − p, Bin
zn − Bin

yn〉
+2k2||r(Bin

zn − Bin
yn)||2. (3.6)

By N2, we have
φ(yn, zn) = −φ(zn, yn) + 2〈zn − yn, J1zn − J1yn〉

Substituting this into (3.6), we get

φ(p, vn) = φ(p, yn) − φ(zn, yn) + 2〈zn − yn, J1zn − J1yn〉 + 2〈yn − p, J1zn − J1yn〉
−2r〈zn − p, Bin

zn − Bin
yn〉 + 2k2||r(Bin

zn − Bin
yn)||2

= φ(p, yn) − φ(zn, yn) + 2〈zn − p, J1zn − J1yn〉 − 2r〈zn − p, Bin
zn − Bin

yn〉
+2k2||r(Bin

zn − Bin
yn)||2

= φ(p, yn) − φ(zn, yn) − 2〈zn − p, J1yn − J1zn − r(Bin
yn − Bin

zn)〉
+2k2||r(Bin

zn − Bin
yn)||. (3.7)
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Since zn = (J1 + rAin
)−1J1 ◦ J−1

1 (J1yn − rBin
yn), we have J1yn − rBin

yn ∈ (J1 + rAin
)zn. Using the

fact Ain
is maximal monotone for each i, there exists un ∈ Ain

zn such that J1yn − rBin
yn = J1zn + run.

Therefore,

un =
1

r
(J1yn − J1zn − rBin

yn) (3.8)

On the other hand, we have 0 ∈ (Ain
+ Bin

)p and un + Bin
zn ∈ (Ain

+ Bin
)zn. By the maximal

monotonicity of (Ain
+ Bin

), we obtain

〈un + Bin
zn, zn − p〉 ≥ 0.

Using (3.8) in the last inequality, we get

〈1

r
(J1yn − J1zn − rBin

yn) + Bin
zn, zn − p〉 ≥ 0,

this implies that

〈J1yn − J1zn − r(Bin
yn − Bin

zn), zn − p〉 ≥ 0. (3.9)

Now using (3.7), (3.9) and Lemma 2.6, we have

φ(p, vn) ≤ φ(p, yn) − φ(zn, yn) +
2k2r2c

α2
φ(zn, yn)

= φ(p, yn) − (1 − 2k2r2c

α2
)φ(zn, yn), (3.10)

by condition (iii), we obtain

φ(p, vn) ≤ φ(p, yn).

Using this in (3.4), we have

φ(p, xn+1) = φ(p, J−1
1 (βnJ1u + (1 − βn)J1wn))

= ||p||2 − 2〈p, βnJ1u + (1 − βn)J1wn〉 + ||βnJ1u + (1 − βn)J1wn||2
≤ ||p||2 − 2βn〈p, J1u〉 − 2(1 − βn)〈p, J1wn〉 + βn||u||2 + (1 − βn)||wn||2

−βn(1 − βn)g(||J1u − J1wn||)
= βnφ(p, u) + (1 − βn)φ(p, wn) − βn(1 − βn)g(||J1u − J1wn||)
= βnφ(p, u) + (1 − βn)φ(p, KΘ

s vn) − βn(1 − βn)g(||J1u − J1wn||)
≤ βnφ(p, u) + (1 − βn)φ(p, vn) − βn(1 − βn)g(||J1u − J1wn||)
≤ βnφ(p, u) + (1 − βn)φ(p, yn) − βn(1 − βn)g(||J1u − J1wn||)
≤ βnφ(p, u) + (1 − βn)φ(p, xn) − βn(1 − βn)g(||J1u − J1wn||)
≤ βnφ(p, u) + (1 − βn)φ(p, xn)

≤ max{φ(p, u), φ(p, xn)}
...

≤ max{φ(p, u), φ(p, x0)}. (3.11)

Therefore, {φ(p, xn)} is bounded. Consequently, the sequences {xn}, {yn} and {zn} are bounded. �

We now present our main theorem.
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Theorem 3.3. Let C be a nonempty, closed and convex subset of a 2-uniformly convex and uniformly
smooth Banach space E1 and Q is a nonempty, closed and convex subset of a smooth, strictly convex and
reflexive Banach space E2. Let Θ : C × C → R be a bifunction satisfying assumptions I, Ψ : C → E∗

1 be
a continuous and monotone mapping and ϕ : C → R ∪ {+∞} be a proper lower semi-continuous convex
function. For each i = 1, · · · N, let Ai : E1 → 2E∗

1 be a finite family of maximal monotone operators and
Bi : E1 → E∗

1 be a finite family αi-inverse strongly monotone operators, such that ∩N
i=1(Ai+Bi)

−1(0) , ∅.

Let Tj : E2 → E2, be a finite family of η-demimetric and demiclosed mapping such that ∩M
j=1F (Tj) , ∅.

Assume Γ = {p ∈ GMEP (Θ, Ψ, ϕ) ∩ (∩N
i=1(Ai + Bi)

−1(0) ∩ S−1(∩M
j=1F (Tj))} , ∅. Then, the sequence

{xn} generated by x0 ∈ C and (3.2) converges strongly to p ∈ Γ.

Proof. Fix p ∈ Γ, then by (2.2) and (3.2), we have

φ(p, xn+1) = φ(p, J−1
1 (βnJ1u + (1 − βn)J1wn))

= V (p, βnJ1u + (1 − βn)J1wn)

≤ V (p, βnJ1u + (1 − βn)J1wn − βn(J1u − J1p)) + 2〈J−1
1 (βnJ1u + (1 − βn)J1wn)

−p, βn(J1u − J1p)〉
= βnV (p, J1p) + (1 − βn)V (p, J1wn) + 2βn〈xn+1 − p, J1u − J1p〉
= βnφ(p, p) + (1 − βn)φ(p, wn) + 2βn〈xn+1 − p, J1u − J1p〉
≤ (1 − βn)φ(p, zn) + 2βn〈xn+1 − p, J1u − J1p〉
≤ (1 − βn)φ(p, yn) + 2βn〈xn+1 − p, J1u − J1p〉
≤ (1 − βn)φ(p, xn) + 2βn〈xn+1 − p, J1u − J1p〉. (3.12)

Now, we consider the following two possible cases:
Case 1: Suppose there exists n0 ∈ N such that {φ(p, xn)} is motonically nonincreasing for n ≥ n0. Then,
{xn} is a convergent sequence. We have from (3.3), that

µn[(1 − η) − 2µn||S||2k2]||(I − Tjn
)Sxn||2 ≤ φ(p, xn) − φ(p, xn+1) → 0, n → ∞. (3.13)

Since µn[(1 − η) − 2µn||S||2k2] > 0, we obtain

lim
n→∞

||Sxn − Tjn
Sxn|| = 0. (3.14)

Observe that

φ(xn, yn) = φ(xn, J−1
1 (J1xn − µnS∗J2(I − Tjn

)Sxn))

= ||xn||2 − 2〈xn, J1xn − µnS∗J2(I − Tjn
)〉 + ||J1xn − µnS∗J2(I − Tjn

)Sxn||2
≤ ||x||2 − 2〈xn, J1xn〉 + 2µn〈xn, S∗J2(I − Tjn

)Sxn〉 + ||xn||2 − 2µn〈xn, S∗J2(I − Tjn
)Sxn〉

+2µ2
nk2||S||2||(I − Tjn

)Sxn||2
= φ(xn, xn) + 2µ2

nk2||S||2||(I − Tjn
)Sxn||2.

Thus, by (3.14), we have φ(xn, yn) → 0 as n → ∞. By Lemma 2.2 and the boundedness of {xn}, we
obtain

lim
n→∞

||xn − yn|| = 0. (3.15)

So it follows from the definition of yn, that

lim
n→∞

||xn − yj,n|| = 0. (3.16)

Since J1 is uniformly norm-to-norm continuous on bounded subsets of E, we have

lim
n→∞

||J1xn − J1yj,n|| = 0.
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Thus, we have from (3.2), that

lim
n→∞

||Sxn − TjSxn|| = lim
n→∞

1

µn||S||2 ||J1xn − J1yj,n|| = 0. (3.17)

Observe also from (3.10) and (3.11), that

φ(p, xn+1) ≤ βφ(p, u) + (1 − βn)φ(p, wn)

≤ βφ(p, u) + (1 − βn)φ(p, vn)

≤ βnφ(p, u) + (1 − βn)φ(p, yn) − (1 − βn)(1 − 2k2r2c

α2
)φ(zn, yn)

≤ βnφ(p, u) + (1 − βn)φ(p, xn) − (1 − βn)(1 − 2k2r2c

α2
)φ(zn, yn),

which implies

(1 − βn)(1 − 2k2r2c

α2
)φ(zn, yn) ≤ βnφ(p, u) + (1 − βn)φ(p, xn) − φ(p, xn+1) → 0, as n → ∞.

Now since (1 − βn)(1 − 2k2r2c

α2
) > 0, we obtain that φ(zn, yn) → 0 as n → ∞. By Lemma 2.2 and the

boundedness of {zn}, we get

lim
n→∞

||zn − yn|| = 0. (3.18)

From (3.2), we have

φ(zn, vn) = φ(zn, J−1
1 (J1zn − r(Bin

zn − Bin
yn)))

= ||zn||2 − 2〈zn, J1zn − r(Bin
zn − Bin

yn)〉 + ||J1zn − r(Bin
zn − Bin

yn)||2
≤ ||zn||2 − 2〈zn, J1zn〉 + 2r〈zn, Bin

zn − Bin
yn〉 + ||zn||2 − 2r〈zn, (Bin

zn − Bin
yn)〉

+2k2||r(Bin
zn − Bin

yn)||2
= φ(zn, zn) + 2k2r2||Bin

zn − Bin
yn||2

≤ φ(zn, zn) +
2k2r2

α2
||zn − yn|| → 0, as n → ∞.

By Lemma 2.2 and the boundedness of {yn}, we get

lim
n→∞

||zn − vn|| = 0. (3.19)

Now, using Lemma 2.9 (f) and (3.11), we have

φ(vn, KΘ
s vn) ≤ φ(p, vn) − φ(p, KΘ

s vn)

= φ(p, vn) − φ(p, wn)

≤ φ(p, yn) + βnφ(p, u) − βnφ(p, wn) − φ(p, xn+1)

≤ φ(p, xn) + βnφ(p, u) − βnφ(p, wn) − φ(p, xn+1) → 0, as n → ∞. (3.20)

It follows immediately by Lemma 2.2 and the boundedness of {vn} that ||vn − KΘ
s vn|| → 0 as n → ∞.

Next, we show that φ(vn, xn+1) → 0, as n → ∞. From (3.2), we have

φ(vn, xn+1) = φ(vn, J−1
1 (βnJ1u + (1 − βn)J1wn))

= ||vn||2 − 2〈vn, βnJ1u + (1 − βn)J1wn〉 + ||βnJ1 + (1 − βn)J1wn||2

≤ ||vn||2 − 2βn〈vn, J1u〉 − 2(1 − βn)〈vn, J1wn〉 + βn||u||2 + (1 − βn)||wn||2
− βn(1 − βn)g(||J1u − J1wn||)
= βnφ(vn, u) + (1 − βn)φ(vn, wn) − βn(1 − βn)g(||J1u − J1wn||)
= βnφ(vn, u) + (1 − βn)φ(vn, KΘ

s vn) − βn(1 − βn)g(||J1u − J1wn||), (3.21)
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hence, by using condition (i) and (3.20), we obtain

φ(vn, xn+1) → 0, as n → ∞.

By Lemma 2.2, we have

lim
n→∞

||vn − xn+1|| = 0. (3.22)

Now, from (3.2), (3.15) and (3.18), we obtain

||xn − zi,n|| ≤ ||xn − zn|| ≤ ||xn − yn|| + ||yn − zn|| → 0, as n → ∞. (3.23)

Also

lim
n→∞

||xn − vn|| = lim
n→∞

(||xn − yn|| + ||yn − zn|| + ||zn − vn||) = 0. (3.24)

Using (3.22) and (3.24), we get

||xn+1 − xn|| = ||xn+1 − vn|| + ||vn − xn|| → 0 as n → ∞. (3.25)

Since {xn} is bounded, there exists a subsequence {xnk
} of {xn} such that xnk

⇀ q ∈ C. We have
from (3.15) and (3.24), that {ynk

} of {yn} and {znk
} of {zn} both converge weakly to q. Hence, by

(3.15), (3.23) and Lemma 3.1, we have q ∈ ∩N
i=1(Ai + Bi)

−1(0). Also, by using (3.20) , we obtain
q ∈ F (KΘ

s ) = GMEP (Θ, Ψ, ϕ). Thus, we have q ∈ GMEP (Θ, Ψ, ϕ) ∩ (∩N
i=1(Ai + Bi)

−1(0)). Now, using
the linearity of S, we obtain Sxnk

⇀ Sq, by (3.17) and the demiclosedeness of Tj for each j, we have
q ∈ S−1F (Tj). Hence q ∈ Γ.

Finally, we show that {xn} converges strongly to p ∈ Γ. To do this, we only need to show that
lim sup

n→∞
〈xn+1 − p, J1u − J1p〉 ≤ 0 in (3.12). Indeed, choose a subsequence {xnk

} of {xn} such that

xnk
⇀ q and

lim
n→∞

〈xn+1 − p, J1u − J1p〉 = lim sup
k→∞

〈xnk+1 − p, J1u − J1p〉.

Since ||xn+1 − xn|| → 0 as n → ∞, we obtain xnk+1 ⇀ q. From (2.9) in Lemma 2.4, we obtain

lim
n→∞

〈xn+1 − p, J1u − J1p〉 = lim sup
k→∞

〈xnk+1 − p, J1u − J1p〉.

= 〈q − p, J1u − J1p〉
≤ 0. (3.26)

By using Lemma 2.4, Lemma 2.7 and (3.26), we obtain that {xn} converges strongly to p.

Case 2: Assume {Φn = ||xn − p||} is monotonically nondecreasing. For some n0 large enough, define a
mapping

τ (n) := max{j ∈ N : j ≤ n, Φj ≤ Φj+1}.

Clearly, τ so defined is a nondecreasing sequence, τ (n) → 0 as n → ∞ and

0 ≤ Φτ(n) ≤ Φτ(n)+1, ∀n ≥ n0. (3.27)

By the same argument as in Case 1, we have ||(I − Tjτ(n)
)Sxτ(n)|| → 0, ||vτ(n) − KΘ

s vτ(n)|| → 0 and
||xτ(n)+1 −xτ(n)|| → 0 as n → ∞ and lim sup

n→∞
〈xn+1 −p, JE1u−JE1p〉 ≤ 0. Since {xτ(n)} is bounded, there

exists a subsequence {xτ(n)} denoted again by {xτ(n)} which converges weakly to q̄ ∈ C. Also by the
linearity of S, we have Sxτ(n) ⇀ Sq̄ ∈ Q. Following the same arguments as in the first case, we conclude
that q̄ ∈ Γ. Recall from (3.12), that

Φτ(n)+1 ≤ (1 − βτ(n))Φτ(n) + βτ(n)δτ(n). (3.28)
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Where δτ(n) = 2〈xτ(n)+1 − p, JE1u − JE1p〉. Note that βτ(n) → 0 as n → ∞ and lim sup
n→∞

δτ(n) ≤ 0. Since

Φτ(n) ≤ Φτ(n+1) and βτ(n) > 0, we have

||xτ(n) − p|| ≤ δτ(n).

This implies

lim sup
n→∞

||xτ(n) − p||2 ≤ 0,

hence

lim
n→∞

||xτ(n) − p|| = 0. (3.29)

By using lim
n→∞

||xτ(n)+1 − xτ(n)|| = 0 and (3.29), we have that

lim
n→∞

||xτ(n)+1 − p|| ≤ lim
n→∞

(||xτ(n)+1 − xτ(n)|| + ||xτ(n) − p||) = 0. (3.30)

Furthermore, for n ≥ n0, it is easy to see that Φτ(n) ≤ Φτ(n)+1 if n , τ (n) (that is τ (n) < n), because
Φj ≥ Φj+1 for τ (n) + 1 ≤ j ≤ n. As a consequence, we obtain for all n ≥ n0

0 ≤ Φn ≤ max{Φτ(n), Φτ(n)+1} = Φτ(n)+1. (3.31)

By using (3.30), we can conclude that lim
n→∞

Φn = 0, that is {xn} converges strongly to p. Thus completing

the proof. �

The following are deduced results from our main Theorem 3.3:
If we take M = N = 1 (3.2), we have the following corollary:

Corollary 3.4. Let C be a nonempty, closed and convex subset of a 2-uniformly convex and uniformly
smooth Banach space E1 and Q is a nonempty, closed and convex subset of a smooth, strictly convex and
reflexive Banach space E2. Let Θ : C × C → R be a bifunction satisfying assumptions I, Ψ : C → E∗

1 be a
continuous and monotone mapping and ϕ : C → R∪ {+∞} is a nonlinear mapping. Let A : E1 → 2E∗

1 be
a maximal monotone operator and B : E1 → E∗

1 be an α-inverse strongly monotone operator, such that
(A + B)−1(0) , ∅. Let T : E2 → E2 be an η-demimetric and demiclosed mapping such that F (T ) , ∅.

Assume Γ = {p ∈ GMEP (Θ, Ψ, ϕ) ∩ (A + B)−1(0) ∩ S−1(F (T ))} , ∅. Let {xn} be a sequence generated
by x0 ∈ C and



































yn = J−1
1 (J1xn − µnS∗J2(I − T )Sxn),

zn = J−1
1 ((J1 + rA)−1J1J−1

1 (J1 − rB)yn),

vn = J−1
1 (J1zn − r(Bzn − Byn)),

Θ(wn, y) + 〈y − wn, Ψwn〉 + ϕ(y) − ϕ(wn) +
1

s
〈y − wn, J1wn − J1vn〉 ≥ 0, ∀y ∈ C,

xn+1 = J−1
1 (βnJ1u + (1 − βn)J1wn), n ≥ 0,

where s > 0, is a positive parameter, {µn} is a sequence of positive real numbers and {βn} is a sequence
in (0, 1) satisfying the following conditions:

(i) lim
n→∞

βn = 0,
∞
∑

n=0
βn = 0;

(ii) 0 ≤ µn ≤ 1 − η

k2||S||2 ;

(iii) 0 < a ≤ r ≤ b <
α

k
√

2c
.
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Then, {xn} converges strongly to p ∈ Γ.

If the underlying spaces are Hilbert spaces, that is E1 = H1 and E2 = H2 in Theorem 3.3, we obtain the
following result:

Corollary 3.5. Let C and Q be nonempty, closed and convex subset of real Hilbert spaces H1 and H2

respectively. Let Θ : C × C → R be a bifunction satisfying assumptions I, Ψ : C → H1 be a continuous
and monotone mapping and ϕ : C → R ∪ {+∞} is a nonlinear mapping. For each i = 1, · · · N, let
Ai : H1 → 2H1 be a finite family of maximal monotone operators and Bi : H1 → H1 be a finite family of
αi-inverse strongly monotone operators with α = min{α1, · · · , αN }, such that ∩N

i=1(Ai +Bi)
−1(0) , ∅. Let

Tj : Q → Q be a finite family of ηj-demimetric and demiclosed mapping with η = max{η1, η2, . . . , ηM }
such that ∩M

j=1F (Tj) , ∅. Assume Γ = {p ∈ GMEP (Θ, Ψ, ϕ)∩ (∩N
i=1(Ai +Bi)

−1(0)∩S−1(∩M
j=1F (Tj))} ,

∅. Let {xn} be the sequence generated by x0 ∈ C and



























































































yj,n = xn − µnS∗(I − Tj)Sxn

choose jn : ||yjn,n − xn|| = max{||yj,n − xn|| : j = 1, · · · , M},

yjn,n = yn,

zi,n = (I + rAi)
−1(I − rBi)yn

choose in : ||zin,n − xn|| = max{||zi,n − xn|| : i = 1, · · · , N},

zin,n = zn,

vn = zn − r(Bizn − Biyn),

choose in : ||vin,n − xn|| = max{||vi,n − xn|| : i = 1, · · · , N},

vin,n = vn,

Θ(wn, y) + 〈y − wn, Ψwn〉 + ϕ(y) − ϕ(wn) +
1

s
〈y − wn, wn − vn〉 ≥ 0, ∀y ∈ C,

xn+1 = βnu + (1 − βn)wn, n ≥ 0,

(3.32)

where s > 0, is a positive parameter, {µn} is a sequence of positive real numbers and {βn} is a sequence
in (0, 1) satisfying the following conditions:

(i) lim
n→∞

βn = 0,
∞
∑

n=0

βn = 0;

(ii) 0 ≤ µn ≤ 1 − η

||S||2 ;

(iii) 0 < a ≤ r ≤ b < α.

Then, {xn} converges strongly to p ∈ Γ.

4. Numerical Experiment

In this section, we present a numerical example to illustrate the performance of our algorithm.

Example 4.1. Let E1 = E2 = ℓ2(R) be the linear spaces whose elements are all 2-summable sequences
{xk}∞

k=1 of scalars in R, that is

ℓ2(R) :=

{

x = (x1, x2 · · · , xk · · · ), xk ∈ R and
∞

∑

k=1

|xk|2 < ∞
}

,

with the inner product 〈·, ·〉 : ℓ2×ℓ2 → R defined by 〈x, y〉 :=
∞
∑

k=1

xkyk and the norm ||·|| : ℓ2 → R by ||x|| :=
√

∞
∑

k=1

|xk|2, where x = {xk}∞
k=1, y = {yk}∞

k=1. Let S : ℓ2 → ℓ2 be given by Sx =
(x1

5
,

x2

5
, · · · ,

xk

5
, · · · ,

)
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Table 1: Computation result for Example 4.1, Case (i); Time: 0.0316sec.

Iteration xk+1 ||xk+1 − xk||ℓ2

1 (3.6048, −1.9835, 1.9555, 0, . . . , 0, . . . )T 3.3814
2 (3.5826, −1.9520, 1.9682, 0, . . . , 0, . . . )T 0.0406
3 (3.5829, −1.9524, 1.9680, 0, . . . , 0, . . . )T 4.87e−4

4 (3.5829, −1.9524, 1.9680, 0, . . . , 0, . . . )T 5.84e−6

Table 2: Computation result for Example 4.1, Case (ii); Time: 0.1568sec.

Iteration xk+1 ||xk+1 − xk||ℓ2

1 (3.6048, −1.9441, 1.9327, 0, . . . , 0, . . . )T 3.5745
2 (3.5826, −1.9525, 1.9684, 0, . . . , 0, . . . )T 0.0429
3 (3.5829, −1.9524, 1.9680, 0, . . . , 0, . . . )T 5.15e−6

4 (3.5829, −1.9524, 1.9680, 0, . . . , 0, . . . )T 6.17e−9

for all x = {xk}∞
k=1 ∈ ℓ2. Then S∗y =

(y1

5
,

y2

5
, · · · ,

yk

5
, · · · ,

)

for each y = {yk}∞
k=1 ∈ ℓ2. Define the sets

C := {x ∈ ℓ2 : ||x|| ≤ 1} and Q := {y ∈ ℓ2 : ||y|| ≤ 1}. Let the bifunction Θ : C × C → R be defined by
g(x, y) = xy + 5y − 5x − x2. Let ϕ(x) := x, for all x = {xk}∞

k=1 ∈ ℓ2 and y = {yk}∞
k=1 ∈ ℓ2. It is easy to

check that

KΘ
s (x) =

x − 30s

5(s + 1)
.

For j = 1, 2, . . . , M, define Tj : C → C by Tj(x) =

(

x1

2j
,

x2

2j
, · · · ,

xk

2j
, · · · ,

)

for all x = {xk}∞
k=1 ∈ ℓ2 and

all j. It is easy to show that F (T ) = {0}.

Also, for i = 1, 2, . . . , N, let Ai : ℓ2 → ℓ2 be defined by Ai(x) = (2ix1, 2ix2, · · · , 2ixk, · · · ), for each
x = {xk}∞

k=1 ∈ ℓ2, it is clear that Ai is maximal monotone for each x = {xk}∞
k=1 ∈ ℓ2, and each i. Let

Bi : ℓ2 → ℓ2 be defined by Bi(x) = (ix1, ix2, · · · ixk, · · · ), for all x = {xk}∞
k=1 ∈ ℓ2 and each i. Then, Bi

is α-inverse strongly monotone with α = min{αi}∞
i=1 = 1. It is easy to see that

Gr(x) =

(

i − r

r + 2i

)

x.

We choose N = M = 30, r = 1
40 , s = 0.25, µn = 0.01, βn = 1

n+3 , αn = 1
5 + 2n−1

3n+7 ,

u = (5.2345, −2.2344, 3.0555, 0, . . . , 0, . . . )T . Using
||xk+1−xk||ℓ2

||x2−x1||ℓ2
< 10−5 as the stopping criterion, we test

our Algorithm (3.2) for different values of x0 as follows:

Case (i) x0 = (1.7601, 0.6457, 3.0129, 0, . . . , 0, . . . )T ,

Case (ii) x0 = (1.7601, −2.6457, 4.9129, 0, . . . , 0, . . . )T .

We then plot the graphs of error ’||xk+1 − xk||ℓ2 ’ against the number of iteration in each case. The
computational results can be found in Table 1, 2 and Figure 1. These show that the change in the initial
value does not have a significant effect on the performance of the algorithm.
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Figure 1: Example 4.1, Top Left: Case (i); Top Right: Case (ii).
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