General Decay for Semilinear Abstract Second-order Viscoelastic Equation in Hilbert Spaces with Time Delay

Houria Chellaoua and Yamna Boukhatem

Abstract

The paper is concerned with semilinear abstract second-order viscoelastic equation with time delay and a relaxation function satisfying $h^{\prime}(t) \leq-\zeta(t) G(h(t))$. Under suitable conditions, we establish explicit and general decay rate results of the energy by introducing a suitable Lyaponov functional and some proprieties of the convex functions. Finally, some applications are given. This work generalizes the previous results without time delay term to those with delay.

Key Words: Abstract viscoelastic equation, general decay, Hilbert spaces, time delay.

Contents

1 Introduction1
2 Preliminary results 2
3 Technical Lemmas 7
4 Stability results 10
5 Applications 15
5.1 More general model 16
5.2 Wave equations 16
5.3 Coupled systems 16

1. Introduction

Let H be a real Hilbert space with inner product and related norm denoted by $\langle.,$.$\rangle and \|$.$\| ,$ respectively. Let $A: D(A) \longrightarrow H$ and $B: D(B) \longrightarrow H$ be a self-adjoint linear positive operator with domains $D(A) \subset D(B) \subset H$ such that the embeddings are dense and compact. $h: \mathbb{R}_{+} \longrightarrow \mathbb{R}_{+}$is the kernel of the memory term, $\tau>0$ represents a time delay and $F: D\left(A^{\frac{1}{2}}\right) \rightarrow H$ is function satisfying some conditions to be specified later.

In this work, we consider the following semilinear abstract second-order evolution equation

$$
\begin{cases}u_{t t}(t)+A u(t)-\int_{0}^{t} h(t-s) B u(s) d s+\mu_{1} u_{t}(t)+\mu_{2} u_{t}(t-\tau)=F(u(t)), & t \in(0,+\infty) \tag{1.1}\\ u_{t}(t-\tau)=f_{0}(t-\tau) & t \in(0, \tau) \\ u(0)=u_{0}, \quad u_{t}(0)=u_{1}\end{cases}
$$

where the initial datum $\left(u_{0}, u_{1}, f_{0}\right)$ belongs to suitable spaces, μ_{1} is a positive constant and μ_{2} is a real number such that

$$
\begin{equation*}
\left|\mu_{2}\right| \leq \mu_{1} \tag{1.2}
\end{equation*}
$$

In the absence of delay $\left(\mu_{2}=0\right)$, there exist in the literature different stability results for this type of problems. Dafermos in [14] studied the system (1.1) where $\mu_{1}=0$. He showed that the energy tends asymptotically to zero, but he didn't give the decay rate.
Under the following condition on h

$$
\begin{equation*}
\exists \delta>0: \quad h^{\prime}(t) \leq-\delta h(t), \quad \forall t \in \mathbb{R}_{+} \tag{1.3}
\end{equation*}
$$

[^0]Many authors have established the exponential decay of solutions of this system, see [24,25,16,33] and references therein.

Messaoudi in [22] gave a general decay rate of which the exponential and the polynomial decay rates are special cases. Precisely, he considered relaxation functions satisfying

$$
\begin{equation*}
h^{\prime}(t) \leq-\zeta(t) h(t), \quad \forall t \in \mathbb{R}_{+} \tag{1.4}
\end{equation*}
$$

where ζ is a nonincreasing positive differentiable function. After that, Alabau-Boussouira et al. [2] introduced the following condition

$$
h^{\prime}(t) \leq-G(h(t)), \quad \forall t \in \mathbb{R}_{+}
$$

where G is a convex function which appeared in many papers, see [11,20,34,26].
Recently, Mustafa in [28] established an explicit energy decay result where the exponential and the polynomial decay rates are recovered, under a general condition on the relaxation function, $h^{\prime}(t) \leq$ $-\zeta(t) h^{p}(t)$, with $1 \leq p<2$. In [29], the same author established an optimal explicit and general decay result when the relaxation function h satisfy

$$
\begin{equation*}
h^{\prime}(t) \leq-\zeta(t) G(h(t)), \quad \forall t \in \mathbb{R}_{+} \tag{1.5}
\end{equation*}
$$

where G is an increasing and convex function. For some works used (1.5), we refer to read [30,23,6,17]
Time delays arises in many applications and practical problems and in many cases, even small delay may destabilize a system which is asymptotically stable in the absence of delay, in this sense, see [15,5,31]. A large part in the literature is available addressing the stability, instability and the connection between the memory term, the frictional damping and the delay terms. In particular, for wave equation with constant or variable delay, we refer to read [3,31,32]. They showed that the frictional damping term is strong enough to stabilize the system when the weight of the delay be sufficiently small. In [19], Kirane and Said-Houari considered the following wave equation

$$
u_{t t}(t)-\Delta u(t)+\int_{0}^{t} h(t-s) \Delta u(s) d s+\mu_{1} u_{t}(t)+\mu_{2} u_{t}(t-\tau)=0
$$

where μ_{1} and μ_{2} are positive constants. They established the energy decay under the condition $\mu_{2} \leq \mu_{1}$ in the case of relaxation functions satisfy (1.4). Recently, there are different results according to the general decay for several problems with internal or boundary feedback and for constant or variable delay. For instance, Chellaoua and Boukhatem in [13] considered the following abstract viscoelastic equation with time-varying delay

$$
u_{t t}(t)+A u(t)-\int_{0}^{t} h(t-s) B u(s) d s+\mu_{1} u_{t}(t)+\mu_{2} u_{t}(t-\tau(t))=0
$$

They established optimal decay results of the stability of energy for a wider class of kernel memory functions; condition (1.5), under the condition $\left|\mu_{2}\right| \leq \frac{2(1-d)}{2-d} \mu_{1}$, where the constant d satisfies $\tau^{\prime}(t) \leq d<$ 1 , for all $t>0$. In [12], the same results have been established by the previous authors for problem (1.1) in the absence of source term $(F=0)$ and infinite memory. For more papers have been concerned with the study of general decay results in the case of constant or varying time delay, see $[27,7,21,9,18,8]$ and references therein.

In this work, we are interested in giving optimal, explicit and general decay rates of solution of problem (1.1) under some suitable assumptions. More precisely, we are intending to extend the results of Messaoudi [23] and Mustafa [30] to the abstract viscoelastic equation with time delay in Hilbert spaces; the system (1.1). To the best of our knowledge, there is no decay result for problems with delay where the relaxation functions satisfy (1.5) in the abstract form and the presence of source term. Moreover, our problem generalizes the earlier problems without time delay term to those with time delay.

The paper is organized as follows. In Section 2, we state and prove some preliminary results under suitable hypothesis. In Section 3, we present some technical lemmas needed for our work. Then, we establish the decay results of the energy by using the energy method to produce a suitable Lyapunov functional in the Section 4. Finally, Section 5 is devoted to give some concrete applications to illustrate our abstract result.

2. Preliminary results

In this section, we present some material that we shall use in order to present our results and we state the existence result of problem (1.1). Let us consider the following assumptions:
(A1) There exist positive constants a, b and d satisfying

$$
\begin{gather*}
b\|u\|^{2} \leq\left\|B^{\frac{1}{2}} u\right\|^{2} \leq a\left\|A^{\frac{1}{2}} u\right\|^{2}, \quad \forall u \in D\left(A^{\frac{1}{2}}\right) \tag{2.1}\\
\left\|A^{\frac{1}{2}} u\right\|^{2} \leq d\left\|B^{\frac{1}{2}} u\right\|^{2}, \quad \forall u \in D\left(A^{\frac{1}{2}}\right) \tag{2.2}
\end{gather*}
$$

(A2) The kernel memory function $h: \mathbb{R}_{+} \longrightarrow \mathbb{R}_{+}$is nonincreasing function of class C^{1} satisfying

$$
\begin{equation*}
h(0)>0, \quad h_{0}=\int_{0}^{+\infty} h(s) d s<\frac{1}{a} \tag{2.3}
\end{equation*}
$$

Moreover, there exists a C^{1} function $G:[0,+\infty) \rightarrow[0,+\infty)$ which is linear or it is strictly increasing and strictly convex C^{2} function on $(0, r], r \leq h(0)$, with $G(0)=G^{\prime}(0)=0$, such that

$$
\begin{equation*}
h^{\prime}(t) \leq-\zeta(t) G(h(t)), \quad \forall t \geq 0 \tag{2.4}
\end{equation*}
$$

where $\zeta: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is a nonincreasing differentiable function.
(A3) The functions F is locally lipschitz mapping and there exist a continuous and differentiable mapping $\mathscr{F}: D\left(A^{\frac{1}{2}}\right) \rightarrow[0,+\infty)$ satisfying $D \mathscr{F}=F$ and

$$
\begin{equation*}
\langle F(u), u\rangle \geq \mathscr{F}(u), \quad \forall u \in D\left(A^{\frac{1}{2}}\right) \tag{2.5}
\end{equation*}
$$

Moreover, there exists an increasing continuous function $\psi:[0,+\infty) \rightarrow[0,+\infty)$, with $\psi(0)=0$, such that

$$
\begin{equation*}
|\langle F(u), v\rangle| \leq \psi\left(\left\|A^{\frac{1}{2}} u\right\|\right)\left\|A^{\frac{1}{2}} u\right\|\left\|A^{\frac{1}{2}} v\right\|, \quad \forall u, v \in D\left(A^{\frac{1}{2}}\right) \tag{2.6}
\end{equation*}
$$

Remark 2.1. If G is a strictly increasing and strictly convex C^{2} function on $(0, r]$, with $G(0)=G^{\prime}(0)=$ 0 , then G has an extension \bar{G} which is a strictly increasing and strictly convex C^{2} function on $[0,+\infty)$. Moreover, we can define \bar{G} by

$$
\begin{equation*}
\bar{G}(t)=\frac{c}{2} t^{2}+(b-c r) t+\left(a+\frac{c}{2} r^{2}-b r\right), \quad \text { for } \quad t>r \tag{2.7}
\end{equation*}
$$

where $a=G(r), b=G^{\prime}(r)$ and $c=G^{\prime \prime}(r)$.
Lemma 2.1. For δ and t_{1} be positive constants, we have

$$
h^{\prime}(t) \leq-\delta h(t), \quad \forall t \in\left[0, t_{1}\right]
$$

Proof: Similarly to [30], from assumption (A2), we clearly deduce that $\lim _{t \rightarrow+\infty} h(s)=0$. Therefore, there exists $t_{1}>0$ large enough such that

$$
\begin{equation*}
h\left(t_{1}\right)=r \quad \text { and } \quad h(t) \leq r, \quad \forall t \geq t_{1} \tag{2.8}
\end{equation*}
$$

By using the fact that h and ζ are positive nonincreasing continuous and G is a positive continuous function, we get, for all $t \in\left[0, t_{1}\right]$,

$$
\left\{\begin{aligned}
0<h\left(t_{1}\right) & \leq h(t) \leq h(0) \\
0<\zeta\left(t_{1}\right) & \leq \zeta(t) \leq \zeta(0)
\end{aligned}\right.
$$

which gives, for two positive constants δ_{1} and δ_{2},

$$
\delta_{1} \leq \zeta(t) G(h(t)) \leq \delta_{2}
$$

Consequently, for all $t \in\left[0, t_{1}\right]$,

$$
\begin{equation*}
h^{\prime}(t) \leq-\zeta(t) G(h(t)) \leq-\frac{\delta_{1}}{h(0)} h(0) \leq-\frac{\delta_{1}}{h(0)} h(t) \tag{2.9}
\end{equation*}
$$

In the following remark, we present the inequality of Jensen which will be used in establishing our main result.

Remark 2.2. If Q is a convex function on $[a, b], f: \Omega \rightarrow[a, b]$ and h are integrable functions on $\Omega, h(x) \geq 0$, and $\int_{\Omega} h(x) d x=k>0$, then Jensen's inequality states that

$$
Q\left[\frac{1}{k} \int_{\Omega} f(x) h(x) d x\right] \leq \frac{1}{k} \int_{\Omega} Q[f(x)] h(x) d x
$$

In the following result, we state, without proof, the local existence, uniqueness and regularity of (2.10), see [7,10].

Proposition 2.1. Under the assumptions (A1)-(A3), for an initial datum $\left(u_{0}, u_{1}\right) \in D\left(A^{\frac{1}{2}}\right) \times H$, the system (2.10) has a unique local mild solution u such that

$$
u \in C\left(0, T ; D\left(A^{\frac{1}{2}}\right)\right) \cap C^{1}(0, T ; H)
$$

Moreover, if $\left(u_{0}, u_{1}\right) \in D\left(A^{\frac{1}{2}}\right) \times D\left(A^{\frac{1}{2}}\right)$, then the solution of (2.10) satisfies (classical solution)

$$
u \in C\left(0, T ; D\left(A^{\frac{1}{2}}\right)\right) \cap C^{1}\left(0, T ; D\left(A^{\frac{1}{2}}\right)\right) \cap C^{2}(0, T ; H)
$$

In order to state and prove the desired results, as in [31], we introduce the variable z by

$$
z(\rho, t)=u_{t}(t-\rho \tau), \quad \rho \in(0,1), t>0
$$

therefore, the problem (1.1) takes the following form

$$
\begin{cases}u_{t t}(t)+A u(t)-\int_{0}^{t} h(t-s) B u(s) d s+\mu_{1} u_{t}(t)+\mu_{2} z(1, t)=F(u(t)), & t \in(0,+\infty) \tag{2.10}\\ \tau z_{t}(\rho, t)+z_{\rho}(\rho, t)=0, & \rho \in(0,1), t>0 \\ z(\rho, 0)=f_{0}(-\rho \tau), & \rho \in(0,1) \\ z(0, t)=u_{t}(t) & t \geq 0 \\ u(0)=u_{0}, \quad u_{t}(0)=u_{1}, & t \geq 0\end{cases}
$$

Now, let us define the modified energy functional E associated with problem (2.10) by

$$
\begin{equation*}
E(t)=\frac{1}{2}\left(\left\|A^{\frac{1}{2}} u\right\|^{2}-\int_{0}^{t} h(s) d s\left\|B^{\frac{1}{2}} u\right\|^{2}+\left\|u_{t}\right\|^{2}+\left(h \diamond B^{\frac{1}{2}} u\right)(t)-2 \mathscr{F}(u)+\xi \tau \int_{0}^{1}\|z(\rho, t)\|^{2} d \rho\right), \tag{2.11}
\end{equation*}
$$

for all $t \in \mathbb{R}_{+}$and the initial energy is given by

$$
\begin{equation*}
E(t)=\frac{1}{2}\left(\left\|A^{\frac{1}{2}} u_{0}\right\|^{2}+\left\|u_{1}\right\|^{2}-2 \mathscr{F}\left(u_{0}\right)+\xi \tau \int_{-\tau}^{0}\left\|f_{0}(s)\right\|^{2} d s\right) \tag{2.12}
\end{equation*}
$$

where

$$
\begin{equation*}
\left(h \diamond B^{\frac{1}{2}} u\right)(t)=\int_{0}^{t} h(t-s)\left\|B^{\frac{1}{2}} u(t)-B^{\frac{1}{2}} u(s)\right\|^{2} d s \tag{2.13}
\end{equation*}
$$

and ξ is a positive constant (note that ξ exists according to (1.2)) such that

$$
\begin{equation*}
\left|\mu_{2}\right| \leq \xi \leq 2 \mu_{1}-\left|\mu_{2}\right| \tag{2.14}
\end{equation*}
$$

Lemma 2.2. Assume that (A1)-(A3) hold. Then, the energy functional defined by (2.11) satisfies

$$
\begin{equation*}
E^{\prime}(t) \leq \frac{1}{2}\left(h^{\prime} \diamond B^{\frac{1}{2}} u\right)(t) \leq 0, \quad \forall t \in \mathbb{R}_{+} \tag{2.15}
\end{equation*}
$$

Proof: By using the first equation of (2.10), we get

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\left(\left\|u_{t}\right\|^{2}+\left\|A^{\frac{1}{2}} u\right\|^{2}-2 \mathscr{F}(u)\right)+\mu_{1}\left\|u_{t}\right\|^{2}+\mu_{2}\left\langle z(1, t), u_{t}\right\rangle=\int_{0}^{t} h(t-s)\left\langle B u(s), u_{t}(t)\right\rangle d s . \tag{2.16}
\end{equation*}
$$

On the other hand, we can easily check that
$2 \int_{0}^{t} h(t-s)\left\langle B u(s), u_{t}(t)\right\rangle d s=\frac{d}{d t}\left[\int_{0}^{t} h(s) d s\left\|B^{\frac{1}{2}} u\right\|^{2}-\left(h \diamond B^{\frac{1}{2}} u\right)(t)\right]+\left(h^{\prime} \diamond B^{\frac{1}{2}} u\right)(t)-h(t)\left\|B^{\frac{1}{2}} u\right\|^{2}$.
Similarly, by the second equation of (2.10), we have

$$
\begin{equation*}
\xi \tau \frac{d}{d t}\|z(\rho, t)\|^{2}+\xi \frac{\partial}{\partial \rho}\|z(\rho, t)\|^{2}=0 . \tag{2.17}
\end{equation*}
$$

Integration over $(0,1)$, with respect to ρ, yields

$$
\begin{equation*}
\xi \tau \int_{0}^{1} \frac{d}{d t}\|z(\rho, t)\|^{2} d \rho=\xi\left(\left\|u_{t}(t)\right\|^{2}-\|z(1, t)\|^{2}\right) \tag{2.18}
\end{equation*}
$$

Then, by using Cauchy-Schwarz's and Young's inequalities and inserting (2.17) and (2.18) in (2.16), we get

$$
\begin{aligned}
E^{\prime}(t) & \leq \frac{1}{2}\left(h^{\prime} \diamond B^{\frac{1}{2}} u\right)(t)-\frac{1}{2} h(t)\left\|B^{\frac{1}{2}} u\right\|^{2}+\left(\frac{\left|\mu_{2}\right|}{2}-\mu_{1}+\frac{\xi}{2}\right)\left\|u_{t}(t)\right\|^{2}+\left(\frac{\left|\mu_{2}\right|}{2}-\frac{\xi}{2}\right)\|z(1, t)\|^{2} \\
& \leq \frac{1}{2}\left(h^{\prime} \diamond B^{\frac{1}{2}} u\right)(t)-\frac{1}{2} h(t)\left\|B^{\frac{1}{2}} u\right\|^{2}-C\left(\left\|u_{t}(t)\right\|^{2}+\|z(1, t)\|^{2}\right),
\end{aligned}
$$

where

$$
C=\min \left\{\mu_{1}-\frac{\left|\mu_{2}\right|}{2}-\frac{\xi}{2}, \frac{\xi}{2}-\frac{\left|\mu_{2}\right|}{2}\right\}
$$

which is positive by (2.14). This completes the proof of the Lemma.
By using Lemma 2.2, we prove the global existence of solution of problem (2.10) under small initial conditions.
Theorem 2.1. Assume that (A1)-(A3) hold and there exist a positive constant ρ_{0} such that for any $\left(u_{0}, u_{1}, f_{0}\right) \in D\left(A^{\frac{1}{2}}\right) \times H \times L^{2}(-\tau, 0 ; H)$ satisfying

$$
\left(\left\|A^{\frac{1}{2}} u_{0}\right\|+\left\|u_{1}\right\|^{2}+\int_{-\tau}^{0}\left\|f_{0}(s)\right\|^{2} d s\right)^{\frac{1}{2}}<\rho_{0}
$$

The problem (2.10) admits a unique mild solution u on $[0,+\infty)$.
Proof: From the proposition 2.1, the problem admits a unique local solution u in a maximal time interval $[0, T)$. Now, similarly to [1] and by using (2.5), (2.6) and (2.12), we have

$$
E(0) \geq \frac{1}{2}\left\|u_{1}\right\|^{2}+\frac{1}{2}\left\|A^{\frac{1}{2}} u_{0}\right\|^{2}-\mathscr{F}\left(u_{0}\right) \geq \frac{1}{2}\left\|u_{1}\right\|^{2}+\frac{l}{4}\left\|A^{\frac{1}{2}} u_{0}\right\|^{2} \geq 0
$$

if $\psi\left(\left\|A^{\frac{1}{2}} u\right\|\right)<\frac{l}{4}$ where $l=\left(1-a h_{0}\right)$. Furthermore, we show that if

$$
\begin{equation*}
\psi\left(\left\|A^{\frac{1}{2}} u\right\|\right)<\frac{l}{4} \quad \text { and } \quad \psi\left(2\left(\frac{E(0)}{l}\right)^{\frac{1}{2}}\right)<\frac{l}{4} \tag{2.19}
\end{equation*}
$$

then

$$
\begin{align*}
E(t) & \geq \frac{1}{2}\left\|u_{t}(t)\right\|^{2}+\frac{1}{2}\left\|A^{\frac{1}{2}} u(t)\right\|^{2}-\frac{\int_{0}^{t} h(s) d s}{2}\left\|B^{\frac{1}{2}} u(t)\right\|^{2}-\mathscr{F}(u(t)) \\
& \geq \frac{1}{2}\left\|u_{t}(t)\right\|^{2}+\frac{1}{2}\left\|A^{\frac{1}{2}} u(t)\right\|^{2}-\frac{h_{0}}{2}\left\|B^{\frac{1}{2}} u(t)\right\|^{2}-\mathscr{F}(u(t)) \\
& \geq \frac{1}{2}\left\|u_{t}(t)\right\|^{2}+\frac{l}{4}\left\|A^{\frac{1}{2}} u(t)\right\|^{2}, \quad \forall t \in[0, T) . \tag{2.20}
\end{align*}
$$

Now, let consider r the supremum of all $s \in[0, T)$ such that (2.20) holds true for any $t \in[0, s]$. Suppose $r<T$. By continuity of the function E, we obtain

$$
\begin{equation*}
E(r) \geq \frac{1}{2}\left\|u_{t}(r)\right\|^{2}+\frac{l}{4}\left\|A^{\frac{1}{2}} u(r)\right\|^{2} \geq 0 \tag{2.21}
\end{equation*}
$$

Hence, from (2.21), we have

$$
\psi\left(\left\|A^{\frac{1}{2}} u(r)\right\|\right) \leq \psi\left(2\left(\frac{E(r)}{l}\right)^{\frac{1}{2}}\right) \leq \psi\left(2\left(\frac{E(0)}{l}\right)^{\frac{1}{2}}\right)<\frac{l}{4}
$$

which gives

$$
\begin{aligned}
E(r) & \geq \frac{1}{2}\left\|u_{t}(r)\right\|^{2}+\frac{1-a h_{0}}{2}\left\|A^{\frac{1}{2}} u(r)\right\|^{2}-\mathscr{F}(u(r)) \\
& \geq \frac{1}{2}\left\|u_{t}(r)\right\|^{2}+\left(\frac{l}{2}-\frac{l}{4}\right)\left\|A^{\frac{1}{2}} u(r)\right\|^{2}=\frac{1}{2}\left\|u_{t}(r)\right\|^{2}+\frac{l}{4}\left\|A^{\frac{1}{2}} u(r)\right\|^{2} .
\end{aligned}
$$

This contradicts the maximality of r. Let

$$
\rho_{0}=\frac{\sqrt{l}}{2} \psi^{-1}\left(\frac{l}{4}\right)>0 .
$$

then $\psi\left(\left\|A^{\frac{1}{2}} u\right\|\right)<\frac{l}{4}$. For any $u_{0} \in D\left(A^{\frac{1}{2}}\right), u_{1} \in H$ and $\left.f_{0}\right) \in L^{2}(-\tau, 0 ; H)$ such that

$$
\begin{equation*}
\left(\left\|A^{\frac{1}{2}} u_{0}\right\|^{2}+\left\|u_{1}\right\|^{2}+\int_{-\tau}^{0}\left\|f_{0}(s)\right\|^{2} d s\right)^{\frac{1}{2}}<\rho_{0} \tag{2.22}
\end{equation*}
$$

This assumption implies that $\left\|A^{\frac{1}{2}} u_{0}\right\|<\rho_{0}$, so, we have

$$
\psi\left(\left\|A^{\frac{1}{2}} u_{0}\right\|\right)<\psi\left(\rho_{0}\right)=\psi\left(\frac{\sqrt{l}}{2} \psi^{-1}\left(\frac{l}{4}\right)\right) .
$$

Moreover, by using (2.5) and (2.6), we obtain

$$
\begin{aligned}
E(0) & \leq \frac{1}{2}\left\|u_{1}\right\|^{2}+\frac{1}{2}\left\|A^{\frac{1}{2}} u_{0}\right\|+\frac{1}{2} \int_{-\tau}^{0}\left\|f_{0}(s)\right\|^{2} d s \\
& \leq\left(\left\|A^{\frac{1}{2}} u_{0}\right\|+\left\|u_{1}\right\|^{2}+\int_{-\tau}^{0}\left\|f_{0}(s)\right\|^{2} d s\right)<\rho_{0}^{2}
\end{aligned}
$$

and, by definition of ρ_{0}, we deduce that

$$
\psi\left(2\left(\frac{E(0)}{l}\right)^{\frac{1}{2}}\right)<\psi\left(\psi^{-1}\left(\frac{l}{4}\right)\right)=\frac{l}{4}
$$

In addition, under the assumption (2.22) and (2.19), we get

$$
\begin{equation*}
0 \leq \frac{1}{2}\left\|u_{t}(t)\right\|^{2}+\frac{l}{4}\left\|A^{\frac{1}{2}} u(t)\right\|^{2} \leq E(t) \leq E(0) \leq \rho_{0}^{2} \tag{2.23}
\end{equation*}
$$

Thus, the energy function is nonnegative on $[0, T)$ and bounded which means that the solution exists on $[0,+\infty)$ and from (2.23), we have

$$
\begin{equation*}
\psi\left(\left\|A^{\frac{1}{2}} u(t)\right\|\right) \leq \psi\left(2\left(\frac{E(t)}{l}\right)^{\frac{1}{2}}\right) \leq \psi\left(2\left(\frac{E(0)}{l}\right)^{\frac{1}{2}}\right)<\frac{l}{4}, \quad \forall t \geq 0 \tag{2.24}
\end{equation*}
$$

This completes the proof of Theorem 2.1.

3. Technical Lemmas

In the section, we state and prove some technical Lemmas in order to prove the desired results.
Lemma 3.1. Let u be the solution of (2.10). Then the functional

$$
\begin{equation*}
I_{1}(t)=\left\langle u_{t}(t), u(t)\right\rangle \tag{3.1}
\end{equation*}
$$

satisfies, for $\delta_{1}>0$ and for all $t \geq 0$

$$
\begin{equation*}
I_{1}^{\prime}(t) \leq\left(1+\frac{\mu_{1}}{4 \delta_{1}}\right)\left\|u_{t}\right\|^{2}-\left(\frac{l}{2}-\frac{a}{b} \delta_{1}\left(\mu_{1}+\left|\mu_{2}\right|\right)\right)\left\|A^{\frac{1}{2}} u\right\|^{2}+\frac{a C_{\alpha}}{2 l}\left(k \diamond B^{\frac{1}{2}} u\right)(t)+\frac{\left|\mu_{2}\right|}{4 \delta_{1}}\|z(1, t)\|^{2}, \tag{3.2}
\end{equation*}
$$

for any $0<\alpha<1$, where

$$
\begin{equation*}
C_{\alpha}=\int_{0}^{+\infty} \frac{h^{2}(s)}{\alpha h(s)-h^{\prime}(s)} d s \quad \text { and } \quad k(t)=\alpha h(t)-h^{\prime}(t) \tag{3.3}
\end{equation*}
$$

Proof: Differentiating (3.1) with respect to t, we find

$$
I_{1}^{\prime}(t)=\left\|u_{t}\right\|^{2}+\left\langle u_{t t}(t), u(t)\right\rangle
$$

On the other hand, multiplying the first equation of (2.10) by $u(t)$, we have

$$
\begin{aligned}
& \left\langle u_{t t}(t), u(t)\right\rangle+\langle A u(t), u(t)\rangle-\left\langle\int_{0}^{t} h(t-s) B u(s) d s, u(t)\right\rangle \\
& +\mu_{1}\left\langle u_{t}(t), u(t)\right\rangle+\mu_{2}\langle z(1, t), u(t)\rangle=\langle F(u(t)), u(t)\rangle
\end{aligned}
$$

By the definitions of $A^{\frac{1}{2}}$ and $B^{\frac{1}{2}}$, we have

$$
\begin{align*}
I_{1}^{\prime}(t)= & \left\|u_{t}\right\|^{2}-\left\|A^{\frac{1}{2}} u\right\|^{2}+\int_{0}^{t} h(s) d s\left\|B^{\frac{1}{2}} u\right\|^{2}+\left\langle\int_{0}^{t} h(t-s) B^{\frac{1}{2}}(u(s)-u(t)) d s, B^{\frac{1}{2}} u(t)\right\rangle \\
& -\mu_{1}\left\langle u_{t}(t), u(t)\right\rangle-\mu_{2}\langle z(1, t), u(t)\rangle+\langle F(u(t)), u(t)\rangle \tag{3.4}
\end{align*}
$$

By using Cauchy-Schwarz's and Young's inequalities and (2.1), we have, for $\delta_{1}>0$

$$
\begin{align*}
& -\mu_{1}\left\langle u_{t}(t), u(t)\right\rangle \leq \frac{\mu_{1}}{4 \delta_{1}}\left\|u_{t}(t)\right\|^{2}+\frac{a \mu_{1} \delta_{1}}{b}\left\|A^{\frac{1}{2}} u\right\|^{2}, \tag{3.5}\\
& -\mu_{2}\langle z(1, t), u(t)\rangle \leq \frac{\left|\mu_{2}\right|}{4 \delta_{1}}\|z(1, t)\|^{2}+\frac{a\left|\mu_{2}\right| \delta_{1}}{b}\left\|A^{\frac{1}{2}} u\right\|^{2}, \tag{3.6}\\
& \left\langle\int_{0}^{t} h(t-s) B^{\frac{1}{2}}(u(s)-u(t)) d s, B^{\frac{1}{2}} u(t)\right\rangle \leq \frac{l}{4}\left\|A^{\frac{1}{2}} u\right\|^{2}+\frac{a}{l}\left\|\int_{0}^{t} h(t-s) B^{\frac{1}{2}}(u(s)-u(t)) d s\right\|^{2} \tag{3.7}
\end{align*}
$$

and, using (2.6) and (2.24), we obtain

$$
\begin{equation*}
\langle F(u(t)), u(t)\rangle \leq \psi_{2}\left(\left\|A^{\frac{1}{2}} u\right\|\right)\left\|A^{\frac{1}{2}} u\right\|^{2} \leq \frac{l}{4}\left\|A^{\frac{1}{2}} u\right\|^{2} \tag{3.8}
\end{equation*}
$$

Moreover, we have

$$
\begin{align*}
& \left\|\int_{0}^{t} h(t-s) B^{\frac{1}{2}}(u(s)-u(t)) d s\right\|^{2} \\
\leq & \left(\int_{0}^{t} h(t-s)\left\|B^{\frac{1}{2}}(u(s)-u(t))\right\| d s\right)^{2} \\
\leq & \left(\int_{0}^{t} \frac{h(t-s)}{\sqrt{\alpha h(t-s)-h^{\prime}(t-s)}} \sqrt{\alpha h(t-s)-h^{\prime}(t-s)}\left\|B^{\frac{1}{2}}(u(s)-u(t))\right\| d s\right)^{2} \\
\leq & \left(\int_{0}^{t} \frac{h^{2}(s)}{\alpha h(s)-h^{\prime}(s)} d s\right) \int_{0}^{t}\left(\alpha h(t-s)-h^{\prime}(t-s)\right)\left\|B^{\frac{1}{2}}(u(s)-u(t))\right\|^{2} d s \\
\leq & C_{\alpha}\left(k \diamond B^{\frac{1}{2}} u\right)(t) \tag{3.9}
\end{align*}
$$

Substituting the inequalities (3.5), (3.6), (3.7) and (3.9) in (3.4), we get (3.2).
Lemma 3.2. Let u be the solution of (2.10). Then the functional

$$
\begin{equation*}
I_{2}(t)=-\left\langle u_{t}(t), \int_{0}^{t} h(t-s)(u(t)-u(s)) d s\right\rangle \tag{3.10}
\end{equation*}
$$

satisfies, for $\varepsilon>0$ and for all $t \geq 0$

$$
\begin{align*}
I_{2}^{\prime}(t) \leq & \left(\varepsilon-\int_{0}^{t} h(s) d s\right)\left\|u_{t}\right\|^{2}+\varepsilon\left\|A^{\frac{1}{2}} u\right\|^{2}+\mu_{2}\left\langle z(1, t), \int_{0}^{t} h(t-s)(u(t)-u(s)) d s\right\rangle \\
& +\frac{c\left(C_{\alpha}+1\right)}{\varepsilon}\left(k \diamond B^{\frac{1}{2}} u\right)(t) \tag{3.11}
\end{align*}
$$

where $c=\max \left\{\frac{c^{\prime}}{b}, d+\varepsilon+\frac{l^{2}}{16 b}+\frac{\mu_{1}^{2}}{2 b}+\frac{a h_{0}^{2}}{2}+\frac{\alpha^{2}}{b}\right\}$.
Proof: Differentiating (3.10) with respect to t, we find
$I_{2}^{\prime}(t)=-\left\langle u_{t t}(t), \int_{0}^{t} h(t-s)(u(t)-u(s)) d s\right\rangle-\left\langle u_{t}(t), \int_{0}^{t} h^{\prime}(t-s)(u(t)-u(s)) d s\right\rangle-\int_{0}^{t} h(s) d s\left\|u_{t}\right\|^{2}$.
Then, using the first equation of (2.10) and using the definitions of $A^{\frac{1}{2}}$ and $B^{\frac{1}{2}}$, we get

$$
\begin{align*}
I_{2}^{\prime}(t)= & -\int_{0}^{t} h(s) d s\left\|u_{t}\right\|^{2}+\mu_{1}\left\langle u_{t}(t), \int_{0}^{t} h(t-s)(u(t)-u(s)) d s\right\rangle \\
& +\mu_{2}\left\langle z(1, t), \int_{0}^{t} h(t-s)(u(t)-u(s)) d s\right\rangle-\left\langle F(u(t)), \int_{0}^{t} h(t-s)(u(t)-u(s)) d s\right\rangle \\
& -\left\langle u_{t}(t), \int_{0}^{t} h^{\prime}(t-s)(u(t)-u(s)) d s\right\rangle+\left\langle A^{\frac{1}{2}} u(t), \int_{0}^{t} h(t-s) A^{\frac{1}{2}}(u(t)-u(s)) d s\right\rangle \\
& -\int_{0}^{t} h(s) d s\left\langle B^{\frac{1}{2}} u(t), \int_{0}^{t} h(t-s) B^{\frac{1}{2}}(u(t)-u(s)) d s\right\rangle \tag{3.12}\\
& +\left\|\int_{0}^{t} h(t-s) B^{\frac{1}{2}}(u(s)-u(t)) d s\right\|^{2} \tag{3.13}
\end{align*}
$$

By using Cauchy-Schwarz's and Young's inequalities, (2.1), (2.2), (2.3) and (3.9), we get, for $\varepsilon>0$

$$
\begin{aligned}
\mu_{1}\left\langle u_{t}(t), \int_{0}^{t} h(t-s)(u(t)-u(s)) d s\right\rangle & \leq \frac{\varepsilon}{2}\left\|u_{t}(t)\right\|^{2}+\frac{\mu_{1}^{2}}{2 \varepsilon}\left\|\int_{0}^{t} h(t-s)(u(t)-u(s)) d s\right\|^{2} \\
& \leq \frac{\varepsilon}{2}\left\|u_{t}(t)\right\|^{2}+\frac{\mu_{1}^{2} C_{\alpha}}{2 b \varepsilon}\left(k \diamond B^{\frac{1}{2}} u\right)(t), \\
\left\langle A^{\frac{1}{2}} u(t), \int_{0}^{t} h(t-s) A^{\frac{1}{2}}(u(t)-u(s)) d s\right\rangle & \leq \frac{\varepsilon}{4}\left\|A^{\frac{1}{2}} u\right\|^{2}+\frac{1}{\varepsilon}\left\|\int_{0}^{t} h(t-s) A^{\frac{1}{2}}(u(t)-u(s)) d s\right\|^{2} \\
& \leq \frac{\varepsilon}{4}\left\|A^{\frac{1}{2}} u\right\|^{2}+\frac{d C_{\alpha}}{\varepsilon}\left(k \diamond B^{\frac{1}{2}} u\right)(t)
\end{aligned}
$$

and

$$
-\left\langle B^{\frac{1}{2}} u(t), \int_{0}^{t} h(t-s) B^{\frac{1}{2}}(u(t)-u(s)) d s\right\rangle \leq \frac{\varepsilon}{2 h_{0}}\left\|A^{\frac{1}{2}} u\right\|^{2}+\frac{a h_{0} C_{\alpha}}{2 \varepsilon}\left(k \diamond B^{\frac{1}{2}} u\right)(t) .
$$

Then, by using (2.6) and (2.24), we get

$$
\begin{equation*}
\left\langle F(u(t)), \int_{0}^{t} h(t-s)(u(t)-u(s)) d s\right\rangle \leq \frac{\varepsilon}{4}\left\|A^{\frac{1}{2}} u\right\|^{2}+\frac{l^{2} C_{\alpha}}{16 b \varepsilon}\left(k \diamond B^{\frac{1}{2}} u\right)(t) . \tag{3.14}
\end{equation*}
$$

On other hand, we have

$$
\begin{aligned}
& -\left\langle u_{t}(t), \int_{0}^{t} h^{\prime}(t-s)(u(t)-u(s)) d s\right\rangle \\
= & \left\langle u_{t}(t), \int_{0}^{t} k(t-s)(u(t)-u(s)) d s\right\rangle-\left\langle u_{t}(t), \int_{0}^{t} \alpha h(t-s)(u(t)-u(s)) d s\right\rangle \\
\leq & \frac{\varepsilon}{2}\left\|u_{t}(t)\right\|^{2}+\frac{1}{\varepsilon}\left(\int_{0}^{t} \sqrt{k(t-s)} \sqrt{k(t-s)}\|u(t)-u(s)\| d s\right)^{2}+\frac{\alpha^{2}}{\varepsilon}\left(\int_{0}^{t} h(t-s)\|u(t)-u(s)\| d s\right)^{2} \\
\leq & \frac{\varepsilon}{2}\left\|u_{t}(t)\right\|^{2}+\left(\frac{\int_{0}^{t} k(s) d s}{\varepsilon b}+\frac{\alpha^{2} C_{\alpha}}{\varepsilon b}\right)\left(k \diamond B^{\frac{1}{2}} u\right)(t) \leq \frac{\varepsilon}{2}\left\|u_{t}(t)\right\|^{2}+\left(\frac{c^{\prime}}{\varepsilon b}+\frac{\alpha^{2} C_{\alpha}}{\varepsilon b}\right)\left(k \diamond B^{\frac{1}{2}} u\right)(t),
\end{aligned}
$$

where $c^{\prime}=\alpha h_{0}+h(0)$. Then, inserting these five inequalities and the inequality (3.9) in (3.13), we get (3.11).

Lemma 3.3. Let u be the solution of (2.10). Then the functional

$$
\begin{equation*}
I_{3}(t)=\tau e^{2 \tau} \int_{0}^{1} e^{-2 \tau \rho}\|z(\rho, t)\|^{2} d s \tag{3.15}
\end{equation*}
$$

satisfies, for all $t \geq 0$

$$
\begin{equation*}
I_{3}^{\prime}(t) \leq-2 \tau \int_{0}^{1}\|z(\rho, t)\|^{2} d s+e^{2 \tau}\left\|u_{t}\right\|^{2}-\|z(1, t)\|^{2} \tag{3.16}
\end{equation*}
$$

Proof: By using the second equation of (2.10), we get

$$
\begin{aligned}
I_{3}^{\prime}(t) & =2 \tau e^{2 \tau} \int_{0}^{1} e^{-2 \tau \rho}\left\langle z_{t}(\rho, t), z(\rho, t)\right\rangle d \rho \\
& =-2 e^{2 \tau} \int_{0}^{1} e^{-2 \tau \rho} \frac{\partial}{\partial \rho}\|z(\rho, t)\|^{2} d \rho
\end{aligned}
$$

Then, by integrating by parts and $z(0, t)=u_{t}(t)$, we get

$$
I_{3}^{\prime}(t)=-2 \tau e^{2 \tau} \int_{0}^{1} e^{-2 \tau \rho}\|z(\rho, t)\|^{2} d s+e^{2 \tau}\left\|u_{t}\right\|^{2}-\|z(1, t)\|^{2}
$$

which is (3.16) by using the fact that $e^{-2 \tau \rho} \geq e^{-2 \tau}$, for any $\left.\rho \in\right] 0,1[$.
Lemma 3.4. Let u be the solution of (2.10). Then the functional

$$
\begin{equation*}
I_{4}(t)=\int_{0}^{t} f(t-s)\left\|B^{\frac{1}{2}} u(s)\right\|^{2} d s \tag{3.17}
\end{equation*}
$$

where $f(t)=\int_{t}^{+\infty} h(s) d s$, satisfies,

$$
\begin{equation*}
I_{4}^{\prime}(t) \leq-\frac{1}{2}\left(h \diamond B^{\frac{1}{2}} u\right)(t)+3(1-l)\left\|A^{\frac{1}{2}} u\right\|^{2}, \quad \forall t \geq 0 \tag{3.18}
\end{equation*}
$$

Proof: By differentiating (3.17), we get

$$
I_{4}^{\prime}(t)=f(0)\left\|B^{\frac{1}{2}} u\right\|^{2}+\int_{0}^{t} f^{\prime}(t-s)\left\|B^{\frac{1}{2}} u(s)\right\|^{2} d s
$$

Then, by using Young's inequality and the fact $f^{\prime}(t)=-h(t)$

$$
\begin{aligned}
I_{4}^{\prime}(t) & =f(0)\left\|B^{\frac{1}{2}} u\right\|^{2}-\int_{0}^{t} h(t-s)\left\|B^{\frac{1}{2}} u(s)\right\|^{2} d s \\
& \leq h_{0}\left\|B^{\frac{1}{2}} u\right\|^{2}-\int_{0}^{t} h(t-s)\left\|B^{\frac{1}{2}}(u(t)-u(s))\right\|^{2} d s-2\left\langle B^{\frac{1}{2}} u, \int_{0}^{t} h(t-s) B^{\frac{1}{2}}(u(t)-u(s)) d s\right\rangle
\end{aligned}
$$

But

$$
\begin{aligned}
-2\left\langle B^{\frac{1}{2}} u, \int_{0}^{t} h(t-s) B^{\frac{1}{2}}(u(t)-u(s)) d s\right\rangle \leq & \frac{\int_{0}^{t} h(s) d s}{2 h_{0}} \int_{0}^{t} h(t-s)\left\|B^{\frac{1}{2}}(u(t)-u(s))\right\|^{2} d s \\
& +2 h_{0}\left\|B^{\frac{1}{2}} u\right\|^{2}
\end{aligned}
$$

Moreover, as $\int_{0}^{t} h(s) d s \leq f(0)=h_{0}$ and by using (2.1), we get (3.18) where $a h_{0}=1-l$.

4. Stability results

In this section, we shall state and prove explicit and general decay rate results of the energy function E. For this purose, we construct a Lyapunov functional L equivalent to E, with which we can show the desired result. Let

$$
\begin{equation*}
L(t)=M E(t)+\sum_{i=1}^{3} N_{i} I_{i}(t) \tag{4.1}
\end{equation*}
$$

where M, N_{1}, N_{2} and N_{3} are positive constants.
Lemma 4.1. Assume that (A1)-(A3) hold, there exist two positive constants c_{1} and c_{2} such that

$$
\begin{equation*}
c_{1} E(t) \leq L(t) \leq c_{2} E(t) \tag{4.2}
\end{equation*}
$$

Proof: Using Cauchy-Schwarz's and Young's inequalities, we have

$$
\begin{aligned}
|L(t)-M E(t)| & \leq N_{1}\left|\left\langle u_{t}, u\right\rangle\right|+N_{2}\left|\left\langle u_{t}(t), \int_{0}^{t} h(t-s)(u(t)-u(s)) d s\right\rangle\right|+N_{3} \tau e^{2 \tau} \int_{0}^{1} e^{-2 \tau \rho}\|z(\rho, t)\|^{2} d s \\
& \leq \frac{N_{1}+N_{2}}{2}\left\|u_{t}\right\|^{2}+\frac{a N_{1}}{2 b}\left\|A^{\frac{1}{2}} u\right\|^{2}+\frac{h_{0} N_{2}}{2 b}\left(h \diamond B^{\frac{1}{2}} u\right)(t)+N_{3} \tau e^{2 \tau} \int_{0}^{1}\|z(\rho, t)\|^{2} d s \\
& \leq C E(t)
\end{aligned}
$$

Then, by choosing M so large, we have $L \sim E$.

Lemma 4.2. The Lyapunov functional L defined in (4.1) satisfies

$$
\begin{equation*}
L^{\prime}(t) \leq-3(1-l)\left\|A^{\frac{1}{2}} u\right\|^{2}-\left\|u_{t}\right\|^{2}+\frac{1}{4}\left(h \diamond B^{\frac{1}{2}} u\right)(t), \quad \forall t \geq t_{1}, \tag{4.3}
\end{equation*}
$$

under a suitable choice of M, N_{1}, N_{2} and N_{3}.
Proof: Combining (4.1), (2.15), (3.2), (3.11) and (3.16). Then, by using (3.3) and for $h_{1}=\int_{0}^{t_{1}} h(s) d s>$ 0 , where t_{1} was introduced in (2.8), we have, for all $t \geq t_{1}$,

$$
\begin{aligned}
L^{\prime}(t) \leq & -\left[\left(h_{1}-\varepsilon\right) N_{2}-\left(1+\frac{\mu_{1}}{4 \delta_{1}}\right) N_{1}-N_{3} e^{2 \tau}\right]\left\|u_{t}\right\|^{2}-\left[\left(\frac{l}{2}-\frac{a}{b} \delta_{1}\left(\mu_{1}+\left|\mu_{2}\right|\right)\right) N_{1}-\varepsilon N_{2}\right]\left\|A^{\frac{1}{2}} u\right\|^{2} \\
& +\mu_{2}\left\langle z(1, t), N_{2} \int_{0}^{t} h(t-s)(u(t)-u(s)) d s\right\rangle+\frac{\alpha M}{2}\left(h \diamond B^{\frac{1}{2}} u\right)(t)-2 N_{3} \tau \int_{0}^{1}\|z(\rho, t)\|^{2} d s \\
& -\left[\frac{M}{2}-\frac{a C_{\alpha}}{2 l} N_{1}-\frac{c\left(C_{\alpha}+1\right)}{\varepsilon} N_{2}\right]\left(k \diamond B^{\frac{1}{2}} u\right)(t)-\left(N_{3}-\frac{\left|\mu_{2}\right|}{4 \delta_{1}} N_{1}\right)\|z(1, t)\|^{2} .
\end{aligned}
$$

By using Cauchy-Schwarz's and Young's inequalities, (2.1) and (3.9), we get

$$
\left\langle\mu_{2} z(1, t), N_{2} \int_{0}^{t} h(t-s)(u(t)-u(s)) d s\right\rangle \leq\left|\mu_{2}\right|\left(\frac{1}{2}\|z(1, t)\|^{2}+\frac{C_{\alpha}}{2 b} N_{2}^{2}\left(k \diamond B^{\frac{1}{2}} u\right)(t)\right) .
$$

Consequently, by taking $\varepsilon=\frac{l}{4 N_{2}}$, we obtain

$$
\begin{aligned}
L^{\prime}(t) \leq & -\left[h_{1} N_{2}-\frac{l}{4}-\left(1+\frac{\mu_{1}}{4 \delta_{1}}\right) N_{1}-N_{3} e^{2 \tau}\right]\left\|u_{t}\right\|^{2}-\left[\left(\frac{l}{2}-\frac{a}{b} \delta_{1}\left(\mu_{1}+\left|\mu_{2}\right|\right)\right) N_{1}-\frac{l}{4}\right]\left\|A^{\frac{1}{2}} u\right\|^{2} \\
& -\left[\frac{M}{2}-\frac{a C_{\alpha}}{2 l} N_{1}-\frac{c\left(C_{\alpha}+1\right)}{\varepsilon} N_{2}-\frac{\left|\mu_{2}\right| C_{\alpha}}{2 b} N_{2}^{2}\right]\left(k \diamond B^{\frac{1}{2}} u\right)(t)+\frac{\alpha M}{2}\left(h \diamond B^{\frac{1}{2}} u\right)(t) \\
& -\left[N_{3}-\left|\mu_{2}\right|\left(\frac{N_{1}}{4 \delta_{1}}+\frac{1}{2}\right)\right]\|z(1, t)\|^{2}-2 N_{3} \tau \int_{0}^{1}\|z(\rho, t)\|^{2} d s .
\end{aligned}
$$

At this point, let take $\delta_{1}=\frac{b l}{4 a\left(\mu_{1}+\left|\mu_{2}\right|\right)}$ and choose N_{1} large enough so that

$$
\frac{l}{4} N_{1}-\frac{l}{4}>4(1-l) .
$$

Then, let pick N_{3} and N_{2} big enough so that

$$
\begin{gathered}
N_{3}-\left|\mu_{2}\right|\left(\frac{N_{1}}{4 \delta_{1}}+\frac{1}{2}\right)>0, \\
h_{1} N_{2}-\frac{l}{4}-\left(1+\frac{\mu_{1}}{4 \delta_{1}}\right) N_{1}-N_{3} e^{2 \tau}>1 .
\end{gathered}
$$

Now, as $\frac{\alpha h^{2}(s)}{\alpha h(s)-h^{\prime}(s)}<h(s)$ and by using the Lebesgue dominated convergence theorem, we have

$$
\alpha C_{\alpha}=\int_{0}^{+\infty} \frac{\alpha h^{2}(s)}{\alpha h(s)-h^{\prime}(s)} d s \rightarrow 0 \quad \text { as } \quad \alpha \rightarrow 0 .
$$

Consequently, there is $0<\alpha_{0}<1$ such that if $\alpha<\alpha_{0}$, then

$$
\alpha C_{\alpha}<\frac{1}{8\left[\frac{a}{2 l} N_{1}+\left(\frac{4 c}{l}+\frac{\left|\mu_{2}\right|}{2 b}\right) N_{2}^{2}\right]} .
$$

Then, we choose M large enough such that (4.2) is satisfied and

$$
\frac{M}{2}-\frac{4 c}{l} N_{2}^{2}>0
$$

then, for M fixed, we choose α so that

$$
\alpha=\frac{1}{2 M}<\alpha_{0}
$$

which gives

$$
\frac{M}{2}-\frac{4 c}{l} N_{2}^{2}-C_{\alpha}\left[\frac{a}{2 l} N_{1}+\left(\frac{4 c}{l}+\frac{\left|\mu_{2}\right|}{2 b}\right) N_{2}^{2}\right]>0
$$

Therefore, we arrive at

$$
L^{\prime}(t) \leq-4(1-l)\left\|A^{\frac{1}{2}} u\right\|^{2}-\left\|u_{t}\right\|^{2}+\frac{1}{4}\left(h \diamond B^{\frac{1}{2}} u\right)(t)-2 N_{3} \tau \int_{0}^{1}\|z(\rho, t)\|^{2} d s
$$

which yields (4.3).
The stability results is ensuring by the following theorem.
Theorem 4.1. Assume that (A1)-(A3) hold. Then there exist a positive constants k_{1}, k_{2}, k_{3} and k_{4} such that the solution of (1.1) satisfies, for all $t \geq t_{1}$,

$$
\begin{gather*}
E(t) \leq k_{1} e^{-k_{2} \int_{t_{1}}^{t} \zeta(s) d s}, \quad \text { if } G \text { is linear } \tag{4.4}\\
E(t) \leq k_{4} G_{1}^{-1}\left(k_{3} \int_{t_{1}}^{t} \zeta(s) d s\right), \quad \text { if } G \text { is nonlinear } \tag{4.5}
\end{gather*}
$$

where $G_{1}(t)=\int_{t}^{r} \frac{d s}{s G^{\prime}(s)}$, which is strictly decreasing and convex on $(0, r]$, with $\lim _{t \rightarrow 0} G_{1}(t)=+\infty$.
Proof: By using (2.9) and (2.15), we conclude that, for any $t \geq t_{1}$,

$$
\begin{equation*}
\int_{0}^{t_{1}} h(s)\left\|B^{\frac{1}{2}}(u(t)-u(t-s))\right\|^{2} d s \leq \frac{-h(0)}{\delta_{1}} \int_{0}^{t_{1}} h^{\prime}(s)\left\|B^{\frac{1}{2}}(u(t)-u(t-s))\right\|^{2} d s \leq-c E^{\prime}(t) \tag{4.6}
\end{equation*}
$$

Inserting this estimate in (4.3) and introducing the following function F which is equivalent to E by

$$
F(t)=L(t)+c E(t)
$$

On the other hand, we have for some constant $m>0$ and for all $t \geq t_{1}$,

$$
\begin{aligned}
L^{\prime}(t) & \leq-3(1-l)\left\|A^{\frac{1}{2}} u\right\|^{2}-\left\|u_{t}\right\|^{2}+\frac{1}{4}\left(h \diamond B^{\frac{1}{2}} u\right)(t) \\
& \leq-m E(t)+c\left(h \diamond B^{\frac{1}{2}} u\right)(t) \\
& \leq-m E(t)-c E^{\prime}(t)+c \int_{t_{1}}^{t} h(s)\left\|B^{\frac{1}{2}}(u(t)-u(t-s))\right\|^{2} d s
\end{aligned}
$$

which gives

$$
\begin{equation*}
F^{\prime}(t) \leq-m E(t)+c \int_{t_{1}}^{t} h(s)\left\|B^{\frac{1}{2}}(u(t)-u(t-s))\right\|^{2} d s \tag{4.7}
\end{equation*}
$$

Let consider the following two cases.

Case 1: G is linear.

By multiplying (4.7) by ζ and using (A2) and (2.15), we get

$$
\begin{aligned}
\zeta(t) F^{\prime}(t) & \leq-m \zeta(t) E(t)+c \zeta(t) \int_{t_{1}}^{t} h(s)\left\|B^{\frac{1}{2}}(u(t)-u(t-s))\right\|^{2} d s \\
& \leq-m \zeta(t) E(t)+c \int_{t_{1}}^{t} \zeta(t) h(s)\left\|B^{\frac{1}{2}}(u(t)-u(t-s))\right\|^{2} d s \\
& \leq-m \zeta(t) E(t)-c \int_{t_{1}}^{t} h^{\prime}(s)\left\|B^{\frac{1}{2}}(u(t)-u(t-s))\right\|^{2} d s \\
& \leq-m \zeta(t) E(t)-c E^{\prime}(t)
\end{aligned}
$$

by using the fact ζ is nonincreasing, we deduce

$$
(\zeta F+c E)^{\prime}(t) \leq-m \zeta(t) E(t), \quad \forall t \geq t_{1}
$$

Consequently, by integrating this last over $\left(t_{1}, t\right)$ and using the fact that $\zeta F+c E \sim E$, we obtain

$$
E(t) \leq k_{1} e^{-k_{2} \int_{t_{1}}^{t} \zeta(s) d s} \quad \forall t \geq t_{1}
$$

where k_{1} and k_{2} be a positive constants.

Case 2: G is nonlinear.

Firstly, we introduce the following function

$$
L_{1}(t)=L(t)+I_{4}(t)
$$

which is nonnegative by using Lemmas (3.4) and (4.2). Moreover, it satisfies

$$
L_{1}^{\prime}(t) \leq-(1-l)\left\|A^{\frac{1}{2}} u\right\|^{2}-\left\|u_{t}\right\|^{2}-\frac{1}{4}\left(h \diamond B^{\frac{1}{2}} u\right)(t) \leq-\beta E(t)
$$

Hence,

$$
\beta \int_{t_{1}}^{t} E(s) d s \leq L_{1}\left(t_{1}\right)-L_{1}(t) \leq L_{1}\left(t_{1}\right)
$$

this gives

$$
\begin{equation*}
\int_{0}^{+\infty} E(s) d s<+\infty \tag{4.8}
\end{equation*}
$$

Let now define the function I by

$$
I(t)=p \int_{t_{1}}^{t}\left\|B^{\frac{1}{2}}(u(t)-u(t-s))\right\|^{2} d s, \quad \forall t \geq t_{1}
$$

where p be a positive constant, so $I(t)>0$, for all $t \geq t_{1}$, otherwise (4.7) leads to an exponential decay. Furthermore, by a particular choice of p so that

$$
\begin{equation*}
I(t)<1 \tag{4.9}
\end{equation*}
$$

We also define the function λ by

$$
\lambda(t)=-\int_{t_{1}}^{t} h^{\prime}(s)\left\|B^{\frac{1}{2}}(u(t)-u(t-s))\right\|^{2} d s, \quad \forall t \geq t_{1}
$$

for t_{1} small enough and by (2.15), we observe that

$$
\begin{equation*}
\lambda(t) \leq-c E^{\prime}(t) \tag{4.10}
\end{equation*}
$$

Since G is strictly convex on $(0, r]$ and $G(0)=0$, then

$$
G(\theta x) \leq \theta G(x), \quad \text { for some } \quad \theta \in[0,1] \quad \text { and } \quad x \in(0, r]
$$

By using the assumption (A2), (4.9) and Jensen's inequality, we get

$$
\begin{aligned}
\lambda(t) & =\frac{1}{p I(t)} \int_{t_{1}}^{t} I(t)\left(-h^{\prime}(s)\right) p\left\|B^{\frac{1}{2}}(u(t)-u(t-s))\right\|^{2} d s \\
& \geq \frac{1}{p I(t)} \int_{t_{1}}^{t} I(t) \zeta(s) G(h(s)) p\left\|B^{\frac{1}{2}}(u(t)-u(t-s))\right\|^{2} d s \\
& \geq \frac{\zeta(t)}{p I(t)} \int_{t_{1}}^{t} G(I(t) h(s)) p\left\|B^{\frac{1}{2}}(u(t)-u(t-s))\right\|^{2} d s \\
& \geq \frac{\zeta(t)}{p} G\left(\frac{1}{I(t)} \int_{t_{1}}^{t} I(t) h(s) p\left\|B^{\frac{1}{2}}(u(t)-u(t-s))\right\|^{2} d s\right) \\
& =\frac{\zeta(t)}{p} G\left(p \int_{t_{1}}^{t} h(s)\left\|B^{\frac{1}{2}}(u(t)-u(t-s))\right\|^{2} d s\right) \\
& =\frac{\zeta(t)}{p} \bar{G}\left(p \int_{t_{1}}^{t} h(s)\left\|B^{\frac{1}{2}}(u(t)-u(t-s))\right\|^{2} d s\right)
\end{aligned}
$$

where \bar{G} is an extension of G, which is strictly increasing and strictly convex C^{2} on $[0,+\infty)$, see Remark (2.1). The use of this fact and since ζ is a positive nonincreasing function, we obtain

$$
\int_{t_{1}}^{t} h(s)\left\|B^{\frac{1}{2}}(u(t)-u(t-s))\right\|^{2} d s \leq \frac{1}{p}(\bar{G})^{-1}\left(\frac{p \lambda(t)}{\zeta(t)}\right)
$$

and (4.7) becomes

$$
\begin{equation*}
F^{\prime}(t) \leq-m E(t)+c(\bar{G})^{-1}\left(\frac{p \lambda(t)}{\zeta(t)}\right), \quad \forall t \geq t_{1} \tag{4.11}
\end{equation*}
$$

Let $0<r_{1}<r$, then we define the functional F_{1} by

$$
F_{1}(t)=\bar{G}^{\prime}\left(r_{1} \frac{E(t)}{E(0)}\right) F(t)+E(t)
$$

by using (4.11) and the fact that $E^{\prime} \leq 0, G^{\prime}>0$ and $G^{\prime \prime}>0$, we conclude that F_{1} is equivalent to E and

$$
\begin{align*}
F_{1}^{\prime}(t) & =r_{1} \frac{E^{\prime}(t)}{E(0)} \bar{G}^{\prime \prime}\left(r_{1} \frac{E(t)}{E(0)}\right) F(t)+\bar{G}^{\prime}\left(r_{1} \frac{E(t)}{E(0)}\right) F^{\prime}(t)+E^{\prime}(t) \\
& \leq-m E(t) \bar{G}^{\prime}\left(r_{1} \frac{E(t)}{E(0)}\right)+c \bar{G}^{\prime}\left(r_{1} \frac{E(t)}{E(0)}\right)(\bar{G})^{-1}\left(\frac{p \lambda(t)}{\zeta(t)}\right)+E^{\prime}(t) \tag{4.12}
\end{align*}
$$

Let \bar{G}^{*} be the convex conjugate of G in the sense of Young (see [4] pp. 61-64), which is given by

$$
\begin{equation*}
\bar{G}^{*}(s)=s\left(\bar{G}^{\prime}\right)^{-1}(s)-\bar{G}\left[\left(\bar{G}^{\prime}\right)^{-1}(s)\right] \tag{4.13}
\end{equation*}
$$

and it satisfies the following Young's inequality

$$
\begin{equation*}
A B \leq \bar{G}^{*}(A)+\bar{G}(B) \tag{4.14}
\end{equation*}
$$

By taking

$$
A=\bar{G}^{\prime}\left(r_{1} \frac{E(t)}{E(0)}\right) \quad \text { and } \quad B=(\bar{G})^{-1}\left(\frac{p \lambda(t)}{\zeta(t)}\right)
$$

and using (4.14), we obtain

$$
\begin{aligned}
\bar{G}^{\prime}\left(r_{1} \frac{E(t)}{E(0)}\right)(\bar{G})^{-1}\left(\frac{p \lambda(t)}{\zeta(t)}\right) & \leq \bar{G}^{*}\left(\bar{G}^{\prime}\left(r_{1} \frac{E(t)}{E(0)}\right)\right)+\frac{p \lambda(t)}{\zeta(t)} \\
& \leq r_{1} \frac{E(t)}{E(0)} \bar{G}^{\prime}\left(r_{1} \frac{E(t)}{E(0)}\right)-\bar{G}\left(r_{1} \frac{E(t)}{E(0)}\right)+\frac{p \lambda(t)}{\zeta(t)}
\end{aligned}
$$

then, using the fact that \bar{G} is nonnegative, we get

$$
\begin{equation*}
\bar{G}^{\prime}\left(r_{1} \frac{E(t)}{E(0)}\right)(\bar{G})^{-1}\left(\frac{p \lambda(t)}{\zeta(t)}\right) \leq r_{1} \frac{E(t)}{E(0)} \bar{G}^{\prime}\left(r_{1} \frac{E(t)}{E(0)}\right)+\frac{p \lambda(t)}{\zeta(t)} . \tag{4.15}
\end{equation*}
$$

Inserting (4.15) in (4.12), we arrive at

$$
F_{1}^{\prime}(t) \leq-m E(t) \bar{G}^{\prime}\left(r_{1} \frac{E(t)}{E(0)}\right)+c r_{1} \frac{E(t)}{E(0)} \bar{G}^{\prime}\left(r_{1} \frac{E(t)}{E(0)}\right)+c \frac{p \lambda(t)}{\zeta(t)}+E^{\prime}(t)
$$

then, multiplying by $\zeta(t)$ and using (4.10) and the fact that, as $r_{1} \frac{E(t)}{E(0)}<r, \bar{G}^{\prime}\left(r_{1} \frac{E(t)}{E(0)}\right)=G^{\prime}\left(r_{1} \frac{E(t)}{E(0)}\right)$ to obtain

$$
\zeta(t) F_{1}^{\prime}(t) \leq-m \zeta(t) E(t) G^{\prime}\left(r_{1} \frac{E(t)}{E(0)}\right)+c r_{1} \zeta(t) \frac{E(t)}{E(0)} G^{\prime}\left(r_{1} \frac{E(t)}{E(0)}\right)-c E^{\prime}(t)
$$

On the other hand, the functional $F_{2}=\zeta F_{1}+c E$ is equivalent to E which means for some γ_{1} and γ_{2}, we have

$$
\begin{equation*}
\gamma_{1} F_{2}(t) \leq E(t) \leq \gamma_{2} F_{2}(t) \tag{4.16}
\end{equation*}
$$

and under a suitable choice of r_{1} and for a positive constant k, we find

$$
\begin{equation*}
F_{2}^{\prime}(t) \leq-k \zeta(t) \frac{E(t)}{E(0)} G^{\prime}\left(r_{1} \frac{E(t)}{E(0)}\right)=-k \zeta(t) G_{2}\left(\frac{E(t)}{E(0)}\right) \tag{4.17}
\end{equation*}
$$

where $G_{2}(t)=t G^{\prime}\left(r_{1} t\right)$. Since $G_{2}^{\prime}(t)=G^{\prime}\left(r_{1} t\right)+r_{1} t G^{\prime \prime}\left(r_{1} t\right)$, and using the strict convexity of G on $(0, r]$, we find that $G_{2}, G_{2}^{\prime}>0$ on $(0,1]$. Finally, with

$$
R(t)=\gamma_{1} \frac{F_{2}(t)}{E(0)}
$$

then, by using (4.16) and (4.17), we have $R \sim E$ and for some positive constant k_{3}, (4.17) gives

$$
R^{\prime}(t) \leq-k_{3} \zeta(t) G_{2}(R(t)), \quad \forall t \geq t_{1}
$$

A simple integration over $\left(t_{1}, t\right)$, we find

$$
\int_{t_{1}}^{t} \frac{-R^{\prime}(s)}{G_{2}(R(s))} d s \geq k_{3} \int_{t_{1}}^{t} \zeta(s) d s
$$

Since $r_{1} R\left(t_{1}\right)<r$, we obtain

$$
G_{1}\left(r_{1} R(t)\right)=\int_{r_{1} R(t)}^{r_{1} R\left(t_{1}\right)} \frac{d s}{s G^{\prime}(s)} \geq k_{3} \int_{t_{1}}^{t} \zeta(s) d s
$$

Using the fact that G_{1} is strictly decreasing function on $(0, r]$ and $\lim _{t \rightarrow 0} G_{1}(t)=+\infty$. Then

$$
R(t) \leq \frac{1}{r_{1}} G_{1}^{-1}\left(k_{3} \int_{t_{1}}^{t} \zeta(s) d s\right)
$$

consequently, by using the fact that R is equivalent to E, the stability estimate (4.5) is established. This completes the proof.

Remark 4.1. The decay rate of E given by (4.1) is optimal in the sense that it's consistent with the decay rate of h given by (2.4) where (4.4) and (4.5) provide the best decay rates expected under the very general assumption on h.

Example 4.1. Assume that (A2) holds with $G(s)=s^{p}$, where $1 \leq p<2$. Then, the decay rate of E is given by

$$
E(t) \leq \begin{cases}\tilde{c} e^{-\tilde{c}_{1}} \int_{0}^{t} \zeta(s) d s & \text { if } p=1 \tag{4.18}\\ \tilde{c}_{2}\left(1+\int_{0}^{t} \zeta(s) d s\right)^{\frac{-1}{p-1}}, & \text { if } 1<p<2 .\end{cases}
$$

In this example, we can show that h not be necessarily of exponential or polynomial decay but under general assumption on the relaxation function h which gives a much larger class of functions h, the uniform stability of the system (1.1) is established with an explicit formula of the decay rates of the energy.

For more examples of relaxation functions and the decay rates of the energy, see [29,6,8].

5. Applications

We can seek our result in many problems. In this section, we present only three applications. Let Ω be a bounded and regular domain of \mathbb{R}^{n}, with $n \geq 1$.

5.1. More general model

Our first application is the abstract system (1.1) with more general form

$$
\begin{cases}u_{t t}(t)+A u(t)-\int_{0}^{t} h(t-s) B u(s) d s+C_{1} C_{1}^{*} u_{t}(t)+C_{2} C_{2}^{*} u_{t}(t-\tau)=F(u(t)), & t \in(0,+\infty), \tag{5.1}\\ C_{2}^{*} u_{t}(t-\tau)=f_{0}(t-\tau) & t \in(0, \tau), \\ u(0)=u_{0}, \quad u_{t}(0)=u_{1}, & \end{cases}
$$

where $C_{i}: W_{i} \rightarrow H$ be bounded linear operators and W_{i} be real Hilbert spaces with norm $\|\cdot\|_{W_{i}}$. Moreover, we assume that

$$
\begin{equation*}
\exists 0<\mu<1, \quad\left\|C_{2}^{*} u\right\|_{W_{2}} \leq \mu\left\|C_{1}^{*} u\right\|_{W_{1}}, \quad \forall u \in H . \tag{5.2}
\end{equation*}
$$

5.2. Wave equations

We consider the following equation

$$
\begin{cases}u_{t t}(t)+A u(t)+\int_{0}^{t} h(t-s) \Delta u(s) d s+\mu_{1} u_{t}(t)+\mu_{2} u_{t}(t-\tau)=|u(t)|^{\gamma} u(t), & t \in(0,+\infty), \tag{5.3}\\ u(x, t)=0, & x \in \partial \Omega, \\ u(0)=u_{0}, \quad u_{t}(0)=u_{1}, & x \in \Omega, \\ u_{t}(t-\tau)=f_{0}(t-\tau) & t \in(0, \tau),\end{cases}
$$

with initial data $\left(u_{0}, u_{1}, f_{0}\right) \in\left[H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right] \times H_{0}^{1}(\Omega) \times H^{1}\left(-\tau, 0 ; L^{2}(\Omega)\right)$ and γ be a positive number. Our results hold with $H=L^{2}(\Omega)$ and the operators A, B are given by

$$
\begin{gathered}
A: D(A) \longrightarrow H: u \mapsto-\sum_{i, j=1}^{n} \frac{\partial}{\partial x_{i}}\left(a_{i j}(x) \frac{\partial u}{\partial x_{j}}\right), \\
B: D(B) \longrightarrow H: u \mapsto-\Delta u
\end{gathered}
$$

where $D(A)=D(B))=H^{2}(\Omega) \cap H_{0}^{1}(\Omega) . a_{i j} \in C^{1}(\bar{\Omega})$, is symmetric and

$$
\exists a_{0}>0, \quad \sum_{i, j=1}^{n} a_{i j}(x) \zeta_{j} \zeta_{i} \geq a_{0}|\zeta|^{2}, \quad x \in \bar{\Omega}, \zeta=\left(\zeta_{1}, \cdots, \zeta_{n}\right) \in \mathbb{R}^{n}
$$

The function $F(u)=u|u|^{\gamma}$ satisfies the assumption (A3) with $0<\gamma<\frac{2}{n-2}$

5.3. Coupled systems

We can also consider the following coupled systems with Dirichlet condition:

$$
\begin{cases}w_{t t}(t)-\alpha \Delta w(t)+\int_{0}^{t} h(t-s) \operatorname{div}\left(a_{1}(x) \nabla w(s)\right) d s+\mu_{1} w_{t}(t)+\mu_{2} w_{t}(t-\tau) & \tag{5.4}\\ \quad+d v(t)=f_{1}(w(t)), & t \in(0,+\infty), \\ v_{t t}(t)-\beta \Delta v(t)+\int_{0}^{t} h(t-s) \operatorname{div}\left(a_{2}(x) \nabla v(s)\right) d s+\mu_{1} v_{t}(t)+\mu_{2} v_{t}(t-\tau) & \\ \quad+d w(t)=f_{2}(v(t)), & t \in(0,+\infty), \\ w(x, t)=v(x, t)=0, & x \in \partial \Omega, \\ w(0)=w_{0}, \quad v(0)=v_{0}, & x \in \Omega, \\ w_{t}(0)=w_{1}, \quad v_{t}(0)=v_{1}, & x \in \Omega, \\ w_{t}(t-\tau)=l_{0}(t-\tau), \quad v_{t}(t-\tau)=m_{0}(t-\tau) & t \in(0, \tau),\end{cases}
$$

where α and β are positive constants, $a_{1}, a_{2} \in C^{1}(\Omega), a_{1}(x), a_{2}(x)>0$. The above system is equivalent to (1.1) where $u=(w, v), f_{0}=\left(l_{0}, m_{0}\right)$ and $H=\left(L^{2}(\Omega)\right)^{2}$ with

$$
\left\langle\left(w_{1}, v_{1}\right),\left(w_{2}, v_{2}\right)\right\rangle=\int_{\Omega} w_{1} w_{2}+v_{1} v_{2} d x
$$

We take $D(A)=D(B))=\left(H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right)^{2}$ and the operators A, B are given by

$$
\begin{gathered}
A u=-(\alpha \Delta w, \beta \Delta v)+d(v, w) \\
B u=-\left(\operatorname{div}\left(a_{1}(x) \nabla w\right), \operatorname{div}\left(a_{2}(x) \nabla w\right)\right) .
\end{gathered}
$$

The function $F_{2}(u(t))=\left(f_{1}(w(t)), f_{2}(v(t))\right)$ satisfies (A3).

Conclusion

In conclusion, this work improves the previous results; we have considered a semilinear abstract second-order viscoelastic equation with time delay. For a much larger class of kernel functions, we have established explicit and general decay results of the energy solution by introducing a suitable Lyapunov functional and some properties of the convex functions. Moreover, we have given some applications in particular case of Hilbert space.

Acknowledgements

The authors are highly grateful to the anonymous referee for his/her valuable comments and suggestions for the improvement of the paper. This research work is supported by the General Direction of Scientific Research and Technological Development (DGRSDT), Algeria.

References

1. Alabau-Boussouira F, Cannarsa P and Sforza D. Decay estimates for second order evolution equations with memory. J. Funct. Anal. 254(2008), 1342-1372.
2. F. Alabau-Boussouira, P. Cannarsa. A general method for proving sharp energy decay rates for memory-dissipative evolution equations. C. R. Math. 347(2009), no. 15-16, 867-872.
3. K. Ammari, S. Nicaise and C. Pignotti. Feedback boundary stabilization of wave equations with interior delay. Syst. Control Lett. 59(2010), 623-628.
4. V. Arnold. Mathematical methods of classical mechanics. New York: Springer, 1989.
5. A. Bàtkai, S. Piazzera. Semigroups for delay equations. Research Notes in Mathematics, 10. AK Peters, Ltd., Wellesley, MA, (2005).
6. F. Belhannache, M. M. Algharabli and S.A. Messaoudi. Asymptotic Stability for a Viscoelastic Equation with Nonlinear Damping and Very General Type of Relaxation Functions. J. Dyna. Control Syst. 26(2020), no. 1, 45-67.
7. A. Benaissa, A. K. Benaissa and S. A. Messaoudi. Global existence and energy decay of solutions for the wave equation with a time varying delay term in the weakly nonlinear internal feedbacks. J. Math. Phys. 53(2012), no. 12, 123514

H. Chellaoua and Y. Boukhatem

8. Y. Boukhatem, B. Benabderrahmane. General decay for a viscoelastic equation of variable coefficients with a timevarying delay in the boundary feedback and acoustic boundary conditions. ACTA Math. Sci. 37(2017), no. 5, 1453 -1471.
9. Y. Boukhatem, B. Benabderrahmane. General Decay for a Viscoelastic Equation of Variable Coefficients in the Presence of Past History with Delay Term in the Boundary Feedback and Acoustic Boundary Conditions. ACTA Appl. Math. 154(2018), no. 1, 131-152.
10. Y. Boukhatem, B. Benabderrahmane, Existence and exponential decay of solutions for the variable coefficients wave equations. Analele Universitatii Oradea Fasc. Matematica, Tom XXIII (2), (2016), 93-108.
11. M.M. Cavalcanti,A.D. Cavalcanti, I. Lasiecka and X. Wang. Existence and sharp decay rate estimates for a von Karman system with long memory. NA: Real World Appl. 22(2015), 289-306.
12. H. Chellaoua, Y. Boukhatem. Optimal decay for second-order abstract viscoelastic equation in Hilbert spaces with infinite memory and time delay. Math. Meth. Appl. Sci. 44(2021), no. 2, 2071-2095.
13. H. Chellaoua, Y. Boukhatem. Stability results for second-order abstract viscoelastic equation in Hilbert spaces with time-varying delay. Z. Angew. Math. Phys. 72 (2021), no. 2, 1-18.
14. CM. Dafermos. Asymptotic stability in viscoelasticity. Arch. Rational Mech. An. 37(1970), 297-308.
15. R. Datko. Two questions concerning the boundary control of certain elastic systems, J. Differ. Equa. 92(1991), no. 1, 27-44.
16. M. Fabrizio, S. Polidoro, Asymptotic decay for some differential systems with fading memory. Appl. Anal. 81(2002), no. 6, 1245-1264.
17. J. H. Hassan, S. A. Messaoudi. General decay rate for a class of weakly dissipative second-order systems with memory. Math. Meth. Appl. Sci. 42(2019), no. 8, 2842-2853.
18. J. R. Kang. General decay for viscoelastic plate equation with p-Laplacian and time-varying delay. Bound. Value Probl. 2018(2018), no. 1, 1-11.
19. M. Kirane, B. Said-Houari, Existence and asymptotic stability of a viscoelastic wave equation with a delay. Z. Angew. Math. Phys. 62(2011), 1065-1082.
20. I. Lasiecka, S. A. Messaoudi and M. I. Mustafa. Note on intrinsic decay rates for abstract wave equations with memory. J Math Phys, 54(2013), no. 3, 031504.
21. Z. Liu, C.Gao and Z. B. Fang. A general decay estimate for the nonlinear transmission problem of weak viscoelastic equations with time-varying delay. J. Math. Phys. 60(2019), no. 10, 101507.
22. S. A. Messaoudi, General decay of solutions of a viscoelastic equation. J. Math. Anal. Appl. 341(2008), no. 2, 1457-1467.
23. Messaoudi S. General stability in viscoelasticity, viscoelastic and viscoplastic materials, Mohamed El-Amin. IntechOpen (2016). https://doi.org/10.5772/64217.
24. J. E. Muñoz Rivera, A. Peres Salvatierra, Asymptotic behaviour of the energy in partially viscoelastic materials. Q. Appl. Math. 59(2001), no. 3, 557-578.
25. J. E. Muñoz Rivera, M. G. Naso and F. M. Vegni, Asymptotic behavior of the energy for a class of weakly dissipative second-order systems with memory. J. Math. Anal. Appl. 286(2003), no. 2, 692-704.
26. M. I. Mustafa. On the control of the wave equation by memory-type boundary condition. Discrete Conti. Dyn-A, 35(2014), no. 3, 1179.
27. M. I. Mustafa. Memory-type plate system with nonlinear delay. Adv. Pure Appl. Math. 8(2017), no. 4, 227-240.
28. M. I. Mustafa. Asymptotic stability for the second order evolution equation with memory. J. Dyna. Control Syst. 25(2018), no. 2, 263-273.
29. M. I. Mustafa. Optimal decay rates for the abstract viscoelastic equation. J. Evol. Equ. (2019), 1-17.
30. M. I. Mustafa. Optimal decay rates for the viscoelastic wave equation. Math. Meth. Appl. Sci. (2017), 1-13.
31. S. Nicaise, C. Pignotti. Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks. SIAM J. Control Optim. 45(2006), 1561-1585.
32. S. Nicaise, J. Valein, Stabilization of second order evolution equations with unbounded feedback with delay. ESAIM Control Optim. Calc. Var. 16(2010), no. 2, 420-456.
33. V. Pata, Exponential stability in linear viscoelasticity. Q. Appl. Math. 64(2006), no. 3, 499-513.
34. T. J. Xiao, J. Liang. Coupled second order semilinear evolution equations indirectly damped via memory effects. J. Differ. Equa. 254(2013), no. 5, 2128-2157.

Houria Chellaoua,
Laboratory of Pure and Applied Mathematics,
University of Laghouat, P.O. BOX 37G, Laghouat (03000),
Algeria.
E-mail address: h.chellaoua@lagh-univ.dz
and
Yamna Boukhatem,
Laboratory of Pure and Applied Mathematics,
University of Laghouat, P.O. BOX 37G, Laghouat (03000),
Algeria.
E-mail address: y.boukhatem@lagh-univ.dz

[^0]: 2010 Mathematics Subject Classification: 35L90, 35B40, 26A51, 93D20.
 Submitted February 12, 2020. Published June 13, 2021

