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abstract: The aim of this paper is to characterize η-Einstein N(k)-contact metric manifolds admits η-Ricci
soliton. Several consequences of this result are discussed. Beside these, we also study η-Einstein N(k)-contact
metric manifolds satisfying certain curvature conditions. Among others it is shown that such a manifold is
either locally isometric to the Riemannian product En+1(0) × Sn(4) or a Sasakian manifold. Finally, we
construct an example to verify some results.
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1. Introduction

In 1982, Hamilton [9] made the fundamental observation that Ricci flow is an excellent tool for
simplifying the structure of a manifold. It is a process which deforms the metric of M by smoothing out
the irregularities. It is given by

∂g

∂t
= −2Ric, (1.1)

where Ric is the Ricci tensor of M . Ricci soliton is a special solution to the Ricci flow and is a natural
generalization of an Einstein metric. It is defined as a triplet (g, V, λ) with g as Riemannian metric, V a
vector field and λ a real scalar such that

1

2
(LV g)(X,Y ) + S(X,Y ) + λ g(X,Y ) = 0, (1.2)

where S is the Ricci tensor of M and LV denote the Lie derivative operator along the vector field V .
The Ricci soliton is said to be shrinking, steady and expanding accordingly as λ is negative, zero

and positive respectively. In [20], Sharma initiated the study of Ricci solitons in contact Riemannian
geometry. Later Tripathi [23], Nagaraja et al. [16] and others extensively studied Ricci solitons in contact
metric manifolds. It is well known that, if the potential vector field is zero or Killing then the Ricci soliton
is an Einstein metric. In [7], [10], [13] the authors proved that there are no Einstein real hypersurfaces of
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non-flat complex space forms. Motivated by this the authors Cho and Kimura [8] introduced the notion of
η-Ricci solitons and gave a classification of real hypersurfaces in non-flat complex space forms admitting
η-Ricci solitons. Later Blaga [4] studied η-Ricci solitons in para-Kenmotsu manifolds. Recently, this
notion have been studied by various authors in different structures of manifolds [11], [12], [17], [19], [24],
[25], [26], [27], [28], [29].

A contact manifold is a smooth (2n+ 1)-dimensional manifold M2n+1 equipped with a global 1-form
η such that η ∧ (dη)n

, 0 everywhere. Given a contact form η, there exists a unique vector field ξ, called
the characteristic vector field of η, satisfying η(ξ)=1 and dη(X, ξ)=0 for any vector field X on M2n+1.
A Riemannian metric g is said to be associated metric if there exists a tensor field φ of type (1, 1) such
that

η(X) = g(X, ξ), dη(X,Y ) = g(X,φY ), φ2(X) = −X + η(X)ξ, (1.3)

for all vector fields X,Y on M2n+1. Then the structure (φ, ξ, η, g) on M2n+1 is called a contact metric
structure and the manifold M2n+1 equipped with such a structure is said to be a contact metric manifold
[1]. It can be easily seen that in a contact metric manifold, the following relations hold.

φξ = 0, η ◦ φ = 0, g(φX, φY ) = g(X,Y ) − η(X)η(Y ), (1.4)

for any vector field X,Y on M2n+1.
Given a contact metric manifold M2n+1, we define a (1, 1)-tensor field h by h = 1

2Lξφ. Then h is
symmetric and satisfies,

hξ = 0, hφ = −φh, T r.h = Tr.φh = 0. (1.5)

If ∇ denotes the Riemannian connection of g, then we have the following relation

∇Xξ = −φX − φhX, (1.6)

A contact metric manifold M2n+1 for which ξ is a Killing vector field is called a K-contact manifold. A
contact metric manifold is Sasakian if and only if

R(X,Y )ξ = η(Y )X − η(X)Y, (1.7)

where R is the Riemannian curvature tensor of type (1, 3).
In 1988, Tanno [22] introduced the notion of k-nullity distribution of a contact metric manifold as a
distribution such that the characteristic vector field ξ of the contact metric manifold belongs to the
distribution. The contact metric manifold with ξ belonging to the k-nullity distribution is called N(k)-
contact metric manifold and such a manifold is also studied by various authors. Generalizing this notion
in 1995, Blair, Koufogiorgos and Papantoniou [3] introduced the notion of a contact metric manifold with
ξ belonging to the (k, µ)-nullity distribution, where k and µ are real constants. In particular, if µ=0,
then the notion of (k, µ)-nullity distribution reduces to the notion of k-nullity distribution.

Motivated by these studies, the present paper explores the study of η-Ricci solitons on η-Einstein
N(k)-contact metric manifold. The paper organized as follows. After introduction. Section 2 is concerned
with the fundamental concept of N(k)-contact metric manifold. We provided some known results related
to η-Einstein N(k)-contact metric manifold in section 3. In Section 4 we have investigated η-Ricci
soliton on η-Einstein N(k)-contact metric manifold and it is observed that such a manifold is Sasakian
manifold. In section 5, we consider second order parallel tensor on η-Einstein N(k)-contact metric
manifold and we obtain several results. Also we have discuss about Ricci semi symmetric η-Einstein
N(k)-contact metric manifold and prove that either the manifold is locally isometric to the Riemannian
product En+1(0)×Sn(4) or the manifold is an Einstein in section 6. In section 7, we also mention several
results for different type of W2-curvature restrictions on such manifold. Finally, we have constructed an
example of N(k)-contact metric manifold.

2. N(k)-Contact Metric Manifolds

Let us consider a contact metric manifold M2n+1(φ, ξ, η, g). The k-nullity distribution [22] of a
Riemainnian manifold (M, g) for a real number k is a distribution

Np(k) = {Z ∈ TpM : R(X,Y )Z = k[g(Y, Z)X − g(X,Z)Y ]} (2.1)
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for any X, Y ∈ TpM . Hence if the characteristic vector field ξ of a contact metric manifold belongs to
the k-nullity distribution, then we have

R(X,Y )ξ = k[η(Y )X − η(X)Y ]. (2.2)

Thus a contact metric manifold M2n+1(φ, ξ, η, g) satisfying the relation (2.2) is called a N(k)-contact
metric manifold. From (1.7) and (2.2) it follows that a N(k)-contact metric manifold is a Sasakian
manifold if and only if k=1. On the other-hand if k=0, then the manifold is locally isometric to the
product En+1(0) × Sn(4) for n > 1 and flat for n=1 [2]. Also in a N(k)-contact metric manifold, k is
always constant such that k ≤ 1 [22].

The (k, µ)-nullity distribution of a contact metric manifold M2n+1(φ, ξ, η, g) is a distribution [3]

Np(k, µ) = {Z ∈ TpM : R(X,Y )Z = k[g(Y, Z)X − g(X,Z)Y ] (2.3)

+ µ[g(Y, Z)hX − g(X,Z)hY ]}

for any X,Y ∈ TpM , where k, µ are real constants. Hence if the characteristic vector field ξ belongs to
the (k, µ)-nullity distribution, then

R(X,Y )ξ = k[η(Y )X − η(X)Y ] + µ[η(Y )hX − η(X)hY ]. (2.4)

A contact metric manifold M2n+1(φ, ξ, η, g) satisfying the relation (2.4) is called a N(k, µ)-contact
metric manifold or simply a (k, µ)-contact metric manifold. In particular, if µ=0, then the relation (2.4)
reduces to (2.2) and hence a N(k)-contact metric manifold is a N(k, 0)-contact metric manifold.

Let M2n+1(φ, ξ, η, g) be a N(k)-contact metric manifold. Then the following relations hold [21], [22].

Qφ− φQ = 4(n− 1)hφ, (2.5)

h2 = (k − 1)φ2, k ≤ 1, (2.6)

Qξ = 2nkξ, (2.7)

R(ξ,X, Y ) = k[g(X,Y )ξ − η(Y )X ], (2.8)

where Q is the Ricci operator, i.e., g(QX,Y )=S(X,Y ). In view of (1.4) and (1.5), it follows from
(2.5)-(2.8) that

Tr.h2 = 2n(1 − k), (2.9)

S(X,φY ) + S(φX, Y ) = 2(2n− 2)g(φX, hY ), (2.10)

S(φX, φY ) = S(X,Y ) − 2nkη(X)η(Y ) − 2(2n− 2)g(hX, Y ), (2.11)

Qφ+ φQ = 2φQ+ 2(2n− 2)hφ, (2.12)

η(R(X,Y )Z) = k[g(Y, Z)η(X) − g(X,Z)η(Y )], (2.13)

S(φX, ξ) = 0, (2.14)

for any vector field X and Y on M2n+1. Also in a N(k)-contact metric manifold the scalar curvature r
is given by [3], [21]

r = 2n(2n− 2 + k). (2.15)

Given a non-Sasakian (k, µ)-contact manifold, Boeckx [6] introduced an invariant

IM =
1 − µ

2√
1 − k

and showed that for two non-Sasakian (k, µ)-contact metric manifolds M1 and M2, we have IM1
= IM2

if
and only if up to a D-homothetic deformation, the two manifolds are locally isometric as contact metric
manifolds. Thus, we see that from all non-Sasakian (k, µ)-manifolds of dimension (2n+ 1) and for every
possible value of the invariant IM , one (k, µ)-manifold M can be obtained. For IM > −1 such examples
may be found from the standard contact metric structure on the tangent sphere bundle of a manifold of
constant curvature c where IM = 1+c

1−c
. Boeckx also gives a Lie algebra construction for any odd dimension

and value of IM < −1.
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Remark 2.1. Using this invariant, Blair, Kim and Tripathi [5] constructed an example of a (2n + 1)-
dimensional N(1 − 1

n
)-contact metric manifold n > 1. It is given as since the Boeckx invariant for a

(1− 1
n
, 0)-manifold is

√
n > −1, we consider the tangent sphere bundle of an (n+1)-dimensional manifold

of constant curvature c so chosen that the resulting D-homothetic deformation will be a (1− 1
n
, 0)-manifold.

That is, for k = c(2 − c) and µ = −2c, we solve

1 − 1

n
=
k + a2 − 1

a2
, 0 =

µ+ 2a− 2

a
,

for a and c. We have

c =

√
n± 1

n− 1
, a = 1 + c,

and taking c and a to be these values we obtain N(1 − 1
n

)-contact metric manifold.

Before going to our main work, we recall the following definition and proposition which will be used later
on.

Definition 2.2. [14], [15] A vector field ξ is called torse forming if it satisfies

∇Xξ = ψX + γ(X)ξ, (2.16)

for a smooth function ψ ∈ C∞(M) and γ is an 1-form, for all vector field X on M . In particular, if ψ=0
then a torse forming vector field ξ is called recurrent. Also if ψ = 1 and γ = 0 then ξ is called concurrent
vector field.

Proposition 2.3. [2] A contact metric manifold M2n+1(φ, ξ, η, g) satisfying the condition R(X,Y )ξ = 0
for all X,Y is locally isometric to the Riemannian product of a flat (n+ 1)-dimensional manifold and an
n-dimensional manifold of positive curvature 4, i.e., En+1(0) × Sn(4) for n > 1 and flat for n=1.

3. η-Einstein N(k)-Contact Metric Manifold

Definition 3.1. A N(k)-contact metric manifold M2n+1(φ, ξ, η, g) is said to be η-Einstein if

S = c1g + c2η ⊗ η,

where c1, c2 are smooth functions on M2n+1.

Proposition 3.2. In an η-Einstein N(k)-contact metric manifold M2n+1(φ, ξ, η, g, c1, c2),
(n > 1), the following relations satisfy

S(X,Y ) = (2n− 2)g(X,Y ) + (2n(k − 1) + 2)η(X)η(Y ), (3.1)

S(φX, φY ) = −S(X,Y ) − 2nkη(X)η(Y ), (3.2)

S(φX, Y ) = −S(X,φY ) = (2n− 2)g(φX, Y ), (3.3)

S(X, ξ) = 2nkη(X), (3.4)

S(ξ, ξ) = 2nk. (3.5)

4. η-Ricci solitons on M2n+1(φ, ξ, η, g)

The governing equation of η-Ricci soliton is given by [8]

1

2
(LV g) + S(X,Y ) + λ g(X,Y ) + µη(X)η(Y ) = 0, (4.1)

where λ, µ are real constants. In view of (1.6), the equation (4.1) becomes

S(X,Y ) = −λ g(X,Y ) − µη(X)η(Y ) + g(φhX, Y ). (4.2)
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From (4.2), we have
QX = −λX − µη(X)ξ + φhX, (4.3)

Qξ = −(λ+ µ)ξ, (4.4)

r = −(2n+ 1)λ− µ, (4.5)

where r is the scalar curvature. There are two natural situations regarding the vector field V : V ∈ Span ξ

and V⊥ξ. Here we investigate only the case V=ξ. Consequently, we prove the following result.

Theorem 4.1. An η-Einstein N(k)-contact metric manifold M2n+1(φ, ξ, η, g, c1, c2), (n > 1) admits
η-Ricci soliton whose potential vector field is the Reeb vector field ξ if and only if the manifold is Sasakian.

Proof. In view of (3.4) and (4.4), we obtain

λ+ µ = −2nk. (4.6)

Using (4.6) in (4.2), we get

S(X,Y ) = −λ g(X,Y ) + (λ+ 2nk)η(X)η(Y ) + g(φhX, Y ). (4.7)

Replacing X by φX in (4.7) it yield

S(φX, Y ) = −λ g(φX, Y ) − g(hX, Y ). (4.8)

Also from (3.3), we have
S(φX, Y ) = (2n− 2)g(φX, Y ). (4.9)

Equating the right hand side of (4.8) and (4.9), we get

g(hX, Y ) = (λ+ 2n− 2)g(X,φY ). (4.10)

Again replacing X by Y in (4.10) it turn up

g(hY,X) = (λ+ 2n− 2)g(Y, φX). (4.11)

Adding (4.10) and (4.11), we gave g(hX, Y )=0, which gives h=0 and hence from (2.6) it follows that
k=1. Therefore the manifold is Sasakian. The converse is trivial. This prove the theorem. �

Theorem 4.2. If M2n+1(φ, ξ, η, g, λ, µ, c1, c2), (n > 1) be an η-Ricci soliton on an η-Einstein N(k)-
contact metric manifold, the we have (i)λ+µ = −2nk, (ii) ξ is a geodesic vector field, (iii) (∇ξφ)ξ = 0,
(iv) ∇ξS = 0, ∇ξQ = 0.

Proof. Again, we consider M2n+1(φ, ξ, η, g, λ, µ, c1, c2), (n > 1) be an η-Ricci soliton on η-Einstein
N(k)-contact metric manifold. Then from (1.2) and (3.1), we have

g(∇Xξ, Y ) + g(X,∇Y ξ) + [2λ+ 2(2n− 2)]g(X,Y ) (4.12)

+ [2µ+ 2(2n(k − 1) + 2)]η(X)η(X) = 0.

Replacing X and Y by ξ in (4.12) and using (1.6), we get λ + µ = −2nk. Since ξ has a constant norm.
Thus we get the result (i). Also from (4.12), we have

g(∇Xξ, Y ) + g(X,∇Y ξ) + (2λ+ 2(2n− 2))[g(X,Y ) − η(X)η(X)] = 0. (4.13)

Taking Y=ξ in (4.13), we get g(∇ξξ,X)=0 for any vector field X on M . This implies that ξ is a geodesic
vector field. So we get the result(ii). As per this consequence we can easily obtain the results (iii) and
(iv). Thus the proof is complete �
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Theorem 4.3. If ξ is a torse forming η-Ricci soliton on an η-Einstein N(k)-contact metric manifold
M2n+1(φ, ξ, η, g, λ, µ, c1, c2), (n > 1) then we have (i) ψ = −2(λ + 2n − 2), η is closed, (ii) k = (2λ +
4n− 2)2 , (iii) µ = λ+ 2n(2n+ 4n− 4)2.

Proof. We consider ξ is a torse forming on M2n+1(φ, ξ, η, g, λ, µ, c1, c2), (n > 1). Then we get from
(2.16) γ = −ψη. So equation (2.16) reduces to

∇Xξ = ψ[X − η(X)ξ]. (4.14)

In view of (4.13) and (4.14), we obtain

(ψ + 2(λ+ 2n− 2)) {g(X,Y ) − η(X)η(Y )} = 0.

This implies that ψ = −2(λ+ 2n− 2). Consequently (4.14) reduces to

∇Xξ = 2(λ+ 2n− 2)[−X + η(X)ξ]. (4.15)

It is clear that ∇Xξ is collinear to φ2X for all X . Thus we get η is closed.
On the other-hand, we have

R(X,Y )ξ = ∇X∇Y ξ − ∇Y ∇Xξ − ∇[X,Y ]ξ. (4.16)

Taking account of equations (4.15) and (4.16), we obtain

R(X,Y )ξ = (2λ+ 2n− 2)2[η(X)Y − η(Y )X ], (4.17)

S(X, ξ) = 2n(2λ+ 2n− 2)2η(X). (4.18)

With the help of (3.4), we get from (4.18) that k = (2λ+ 4n− 2)2 and µ = λ+ 2n(2n+ 4n− 4)2. Thus
we get required result. �

If ξ is recurrent then ψ=0 and hence λ=-(2n−n). Therefore from (4.14), we have the following result.

Corollary 4.4. If ξ is a recurrent torse forming η-Ricci soliton on an η-Einstein N(k)-contact metric
manifold M2n+1(φ, ξ, η, g, λ, µ, c1, c2), (n > 1) then (i) ξ is concurrent vector field, (ii) ξ is Killing vector
field.

Corollary 4.5. If ξ is a torse forming Ricci soliton on an η-Einstein N(k)-contact metric manifold
M2n+1(φ, ξ, η, λ, c1, c2, g), (n > 1) then the Ricci soliton is always shrinking.

5. Second order parallel tensors on η-Einstein N(k)-Contact Metric manifold

Definition 5.1. A tensor α of second order is said to be a parallel tensor if ∇α = 0, where ∇ denotes
the operator of covariant differentiation with respect to the metric tensor g.

Let ξ be a torse forming η-Ricci soliton on M2n+1(φ, ξ, η, g, λ, µ, c1, c2), (n > 1). If α be a symmetric
tensor field of type (0, 2) such that ∇α = 0. Then it follows that

α(R(X,Y )Z,W ) + α(Z,R(X,Y )W ) = 0, (5.1)

for arbitrary vector fields X,Y, Z and Z on M2n+1(φ, ξ, η, g, λ, µ, c1, c2). The substitution of X=Z=W
=ξ in (5.1) which gives us α(ξ, R(ξ, Y )ξ) = 0, since α is symmetric. Using (4.17) in the above equation,
we get

(2λ+ 2n− 2)2 {α(Y, ξ) − η(Y )α(ξ, ξ)} = 0. (5.2)

From (5.2) it follows that λ+ n− 1 , 0. Hence we have

α(Y, ξ) − η(Y )α(ξ, ξ) = 0. (5.3)

Moreover, by differentiating (5.3) covariantly along X and using (4.15), we obtain

α(X,Y ) = α(ξ, ξ)g(X,Y ). (5.4)

Differentiating (5.4) covariantly along any vector field on M , it can be easily seen that α(ξ, ξ) is constant.
Hence we can state the following theorem
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Theorem 5.2. If the torse forming η-Ricci soliton on an η-Einstein N(k)-contact metric manifold
M2n+1(φ,
, ξ, η, g, λ, µ, c1, c2), (n > 1) is regular, then any parallel symmetric (0, 2) tensor field is a constant
multiple of the metric.

Corollary 5.3. The η-Ricci soliton on an η-Einstein N(k)-contact metric manifold M2n+1(φ, ξ, η, g,
, λ, µ, c1, c2) is regular if λ+ n− 1 , 0.

Next, we prove the following result.

Theorem 5.4. If the Ricci tensor S of an η-Einstein N(k)-contact metric manifold
M2n+1(φ, ξ, η, g, c1, c2), (n > 1) is one of the followings: (i) cyclic parallel, then k=1 − 1

n
, that is,

it is locally isometric to Example 2.1 or Sasakian. (ii) cyclic parallel η-recurrent, then the manifold is
locally isometric to the Riemannian product En+1(0) × Sn(4).

Proof. It is well known that

(∇XS)(Y, Z) = XS(Y, Z) + S(∇XY, Z) + S(Y,∇XZ). (5.5)

In view of (1.6) and (3.1), the equation (5.5) reduces to

(∇XS)(Y, Z) = −(2n(k − 1) + 2) {g(Y, φX) + g(Y, φhX)} η(Z)
+ {g(Z, φX) + g(Z, φhX)} η(Z)

(5.6)

If possible, we suppose that the Ricci tensor S of M is cyclic parallel, that is,

(∇XS)(Y, Z) + (∇Y S)(Z,X) + (∇ZS)(X,Y ) = 0. (5.7)

The cyclic sum of (5.6) together with the last argument at Y=ξ and (5.7) give

(2n(k − 1) + 2) {g(φZ, φhX) − g(φZ, φX)} = 0. (5.8)

It follows from (5.8) that either k=1 − 1
n

or,

g(φZ, φhX) − g(φZ, φX) = 0. (5.9)

If k = 1 − 1
n

. Then we required result (i), that is, it is locally isometric to Remark 2.1.
Next, putting Z by φZ in (5.9) and using (1.3), we get

g(Z, φX) − g(Z, φhX) = 0. (5.10)

Again, replacing X by φX in (5.10) and using (1.5) we obtain

−g(Z,X) + η(Z)η(X) − g(Z, hX) = 0. (5.11)

In view of (5.10) and (5.11), it yield
g(Z, hX) = 0,

for all X. Therefore, we must have h=0 and hence from (2.6) it follows that k=1. So the manifold is
Sasakian.
To prove the result (ii), we suppose that manifold is η-recurrent, that is, (∇XS)(Y, Z) = η(X)S(Y, Z),
∀X,Y, Z ∈ χ(M). If the Ricci tensor S of the η-recurrent η-Einstein N(k)-contact metric manifold is
cyclic parallel, then

η(X)S(Y, Z) + η(Y )S(Z,X) + η(Z)S(X,Y ) (5.12)

=(2n− 2)[g(Y, Z)η(X) + g(Z,X)η(Y ) + g(X,Y )η(Z)]

+ 6n(k − 1) + 2[η(X)η(Y )η(Z)],

for any X,Y, Z ∈ χ(M).
Taking Y=Z=ξ in (5.12), we obtain 6nk η(X)=0, for any X ∈ χ(M). It follows that k=0, then from
(2.2) we have R(X,Y )ξ=0, for all X,Y . So by Proposition 2.1, it follows that the manifold is locally
isometric to the Riemannian product En+1(0) × Sn(4). Thus theorem is proved. �
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In particular, if consider a cyclic parallel 3-dimensional η-Einstein N(k)-contact metric manifold.
Then n=1 and in that case, we have k=0. Hence, in view of Proposition 2.1, we have the result.

Corollary 5.5. A 3-dimensional η-Einstein N(k)-contact metric manifold is cyclic parallel if and only
if the manifold is flat.

.

6. Ricci semisymmetric η-Einstein N(k)-Contact Metric manifold

In this section we discuss about the Ricci semisymmetric η-Einstein N(k)-contact metric manifolds.
Then

R(X,Y ) · S = 0.

This is equivalent to
(R(X,Y ) · S)(U, V ) = 0, (6.1)

for any X,Y, U, V ∈ χ(M). From (6.1), we have

S(R(X,Y )U, V ) + S(U,R(X,Y )V ) = 0. (6.2)

Substituting X=U=ξ in (6.2), we get

S(R(ξ, Y )ξ, V ) + S(ξ, R(ξ, Y )V ) = 0. (6.3)

Using (2.8) and (3.4) we have from (6.3) that

k {2nkg(Y, V ) − S(Y, V )} = 0.

This implies either k=0 or
S(Y, V ) = 2nkg(Y, V ). (6.4)

If k=0, then from (2.2) we have
R(X,Y )ξ = 0,

for all X,Y .
Therefore by virtue of Proposition 2.3, it follows that the manifold is locally isometric to the Rieman-

nian product En+1(0) × Sn(4). Also (6.4) implies that the manifold is an Einstein. Hence we can state
the following result.

Theorem 6.1. If an η-Einstein N(k)-contact metric manifold M2n+1(φ, ξ, η, g), (n > 1), is Ricci
semisymmetric then either the manifold is locally isometric to the Riemannian product En+1(0) × Sn(4)
or the manifold is an Einstein.

Again, Ricci symmetry (∇S = 0) implies Ricci semisymmetric (R ·S = 0), thus we have the following.

Corollary 6.2. If an η-Einstein N(k)-contact metric manifold M2n+1(φ, ξ, η, g), (n > 1), is Ricci
symmetric then either the manifold is locally isometric to the Riemannian product En+1(0) × Sn(4) or
the manifold is an Einstein.

7. η-Einstein N(k)-contact metric manifold satisfying certain curvature conditions

In 1970, Pokhariyal et al. [18] defined and studied the properties of W2-curvature tenor, and is given
by

W2(X,Y )Z = R(X,Y )Z +
1

n− 1
{g(X,Z)QY − g(Y, Z)QX} (7.1)

for any X,Y, Z ∈ χ(M).
We discuss certain curvature conditions, that is, R(ξ,X) · S = 0, S · R(ξ,X) = 0, W2(ξ,X) · S = 0

and S ·W2(ξ,X) = 0 on an η-Einstein N(k)-contact metric manifolds and deduce some results.
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Theorem 7.1. If an η-Einstein N(k)-contact metric manifold M2n+1(φ, ξ, η, g, c1, c2), (n > 1) satisfies
R(ξ,X) · S = 0 then either the manifold is locally isometric to the Riemannian product En+1(0) × Sn(4)
or the manifold is an Einstein.

Proof. Suppose M2n+1(φ, ξ, η, g, c1, c2) satisfies the condition R(ξ,X) · S = 0. Then we have

S(R(ξ,X)Y, Z) + S(Y,R(ξ,X)Z) = 0, (7.2)

for any X,Y, Z ∈ χ(M). Using (2.8) and (3.4) in (7.2), we get

k {2nkg(X,Y )η(Z) − S(X,Z)η(X) + 2nkg(X,Z)η(Y ) − S(X,Y )η(Z)} = 0. (7.3)

For Z=ξ, equation (7.3), have
k[2nkg(X,Y ) − S(X,Y )] = 0. (7.4)

This implies either k = 0 or,
S(X,Y ) = 2nkg(X,Y ).

If k = 0, then from (2.2) we obtain
R(X,Y )ξ = 0,

for all X,Y .
Consequently, it follows that the manifold is either locally isometric to the Riemannian product

En+1(0) × Sn(4) or an Einstein. This complete the proof. �

Theorem 7.2. If an η-Einstein N(k)-contact metric manifold M2n+1(φ, ξ, η, g, c1, c2), (n > 1) satisfies
S(ξ,X) ·R = 0 then either the manifold is locally isometric to the Riemannian product En+1(0) × Sn(4)
or an η-Einstein.

Proof. Let the condition S(ξ,X) ·R = 0 holds on M2n+1(φ, ξ, η, g, c1, c2). Then this implies that

S(R(ξ,X)Y, Z) + S(Y,R(ξ,X)Z) = 0, (7.5)

for any X,Y, Z ∈ χ(M).
Equation (7.5) can be written as

S(X,R(Y, Z)W )ξ − S(ξ, R(Y, Z)W )X + S(X,Y )R(ξ, Z)W (7.6)

− S(ξ, Y )R(X,Z)W + S(X,Z)R(Y, ξ)W − S(ξ, Z)R(Y,X)W

+ S(X,W )R(Y, Z)ξ − S(ξ,W )R(Y, Z)X = 0.

Taking the inner product with ξ, the relation (7.6) turn up

S(X,R(Y, Z)W ) − S(ξ, R(Y, Z)W )η(X) + S(X,Y )η(R(ξ, Z)W ) (7.7)

− S(ξ, Y )η(R(X,Z)W ) + S(X,Z)η(R(Y, ξ)W )

−S(ξ, Z)η(R(Y,X)W ) + S(X,W )η(R(Y, Z)ξ) − S(ξ,W )η(R(Y, Z)X) = 0.

With the help of (2.2), (2.8), (2.13) and (3.4), Equation (7.7) reduces to for Z=W=ξ.

k[S(X,Y ) + 2nkg(X,Y ) − 4nkη(X)η(Y )] = 0.

This implies either k=0 or,

S(X,Y ) = −2nkg(X,Y ) + 4nkη(X)η(Y ).

If k=0, then from (2.2) we have
R(X,Y )ξ = 0,

for all X,Y . Thus by Proposition 2.3, it follows that the manifold is locally isometric to the Riemannian
product En+1(0) × Sn(4) or an η-Einstein. This leads to the proof. �
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Theorem 7.3. If an η-Einstein N(k)-contact metric manifolds M2n+1(φ, ξ, η, g, c1, c2), (n > 1) satisfies
W2(ξ,X) ·S = 0 then either the manifold is locally isometric to the Riemannian product En+1(0)×Sn(4)
or an η-Einstein.

Proof. The condition satisfied by S is W2(ξ,X) · S = 0. Therefore

S(W2(ξ,X)Y, Z) + S(Y,W2(ξ,X)Z) = 0, (7.8)

for any X,Y, Z ∈ χ(M).
Using (2.8),(3.4),(3.5) and (7.1) in (7.8) it yields

k{2nkg(X,Y )η(Z) − S(X,Z)η(Y ) + 2nkg(X,Z)η(Y ) − S(X,Y )η(Z)} (7.9)

+
1

2n
{2nkS(X,Z)η(Y ) − (2nk)2g(X,Y )η(Z)

+ 2nkS(X,Y )η(Z) − (2nk)2g(X,Z)η(Y )} = 0

Replacing Z by ξ in (7.9), we obtain

k[S(X,Y ) + 2nkg(X,Y ) − 4nkη(X)η(Y )] = 0.

This implies either k=0 or
S(X,Y ) = −2nkg(X,Y ) + 4nkη(X)η(Y ).

If k=0, then from (2.2) we have
R(X,Y )ξ = 0,

for all X,Y .
As per guideline of Proposition 2.3, it follows that the manifold is locally isometric to the Riemannian

product En+1(0) × Sn(4) or an η-Einstein. This complete the proof. �

Theorem 7.4. If an η-Einstein N(k)-contact metric manifold M2n+1(φ, ξ, η, g, c1, c2), (n > 1) satisfies
S(ξ,X) · W2 = 0 then the manifold is locally isometric to the Riemannian product En+1(0) × Sn(4) or
an η-Einstein.

Proof. The condition S(ξ,X) ·W2 = 0 on M2n+1(φ, ξ, η, g, c1, c2) indicate that

S(X,W2(Y, Z)V )ξ − S(ξ,W2(Y, Z)V )X + S(X,Y )W2(ξ, Z)V (7.10)

− S(ξ, Y )W2(X,Z)V + S(X,Z)W2(Y, ξ)V − S(ξ, Z)W2(Y,X)V

+ S(X,V )W2(Y, Z)ξ − S(ξ, V )W2(Y, Z)X = 0

for any X,Y, Z, V ∈ χ(M).
Taking the inner product with ξ, the relation (7.10) reduces to

S(X,W2(Y, Z)V ) − S(ξ,W2(Y, Z)V )η(X) + S(X,Y )η(W2(ξ, Z)V ) (7.11)

− S(ξ, Y )η(W2(X,Z)V ) + S(X,Z)η(W2(Y, ξ)V ) − S(ξ, Z)η(W2(Y,X)V )

+ S(X,V )η(W2(Y, Z)ξ) − S(ξ, V )η(W2(Y, Z)X) = 0

For Z=V=ξ, Equation (7.11) takes the form

S(X,W2(Y, ξ)ξ) − S(ξ,W2(Y, ξ)ξ)η(X) + S(X,Y )η(W2(ξ, ξ)ξ) (7.12)

− S(ξ, Y )η(W2(X, ξ)ξ) + S(X, ξ)η(W2(Y, ξ)ξ) − S(ξ, ξ)η(W2(Y,X)ξ)

+ S(X, ξ)η(W2(Y, ξ)ξ) − S(ξ, ξ)η(W2(Y, ξ)X) = 0.

In view of (2.2), (2.8), (3.4), (3.5) and (7.12), we get

k[S(X,Y ) + 2nkg(X,Y ) − 4nkη(X)η(Y )] = 0.
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This implies either k=0 or
S(X,Y ) = −2nkg(X,Y ) + 4nkη(X)η(Y ).

If k=0, then from (2.2) we have
R(X,Y )ξ = 0,

for all X,Y .
According to Proposition 2.3, it follows that the manifold is locally isometric to the Riemannian

product En+1(0) × Sn(4) or an η-Einstein. Thus we get desired result. �

8. Example of 5-dimensional N(k)-Contact Metric manifold

We consider a 5-dimensional differentiable manifold

M5 = {(x, y, z, u, v) ∈ R5 | (x, y, z, u, v) , (0, 0, 0)},

where (x, y, z, u, v) denote the standard coordinate in R5. Let (e1, e2, e3, e4, e5) are five vector fields in
R

5 which satisfies
[e1, e2] = −λe2, [e1, e3] = −λe3, [e1, e4] = 0, [e1, e5] = 0,

[ei, ej ] = 0, where i, j = 2, 3, 4, 5.

We also define the Riemannian metric g by

g(e1, e1) = g(e2, e2) = g(e3, e3) = g(e4, e4) = g(e5, e5) = 1.

g(e1, ei) = g(ei, ej) = 0, for i , j; i, j = 2, 3, 4, 5.

Let the 1−form η be η(Z) = g(Z, e1) for any Z ∈ χ(M5). Let φ be the (1, 1)-tensor field defined by

φ(e1) = 0, φ(e2) = e4, φ(e3) = e5, φ(e4) = −e2, φ(e5) = −e3.

By the linearity properties of φ and g, we have

φ2X = −X + η(X)e1, η(e1) = 1, g(φX, φY ) = g(X,Y ) − η(X)η(Y )

for arbitrary vector fields X,Y ∈ χ(M5). Moreover,

he1 = 0, he2 =
λ

2
e4, he3 =

λ

2
e5, he4 =

λ

2
e2, he5 =

λ

2
e3.

We recall the Koszul’s formula as

2g(∇XY, Z) = Xg(Y, Z) + Y g(X,Z) − Zg(X,Y )

−g(X, [Y, Z]) − g(Y, [X,Z]) + g(Z, [X,Y ])

for arbitrary vector fields X,Y, Z ∈ χ(M5). It is obvious from Koszul’s formula that

∇e1
e1 = 0, ∇e1

e2 = 0, ∇e1
e3 = 0, ∇e1

e4 = 0, ∇e1
e5 = e1,

∇e2
e1 = −e4 +

λ

2
e2, ∇e2

e2 = −λe1, ∇e2
e3 = 0, ∇e2

e4 = 0, ∇e2
e5 = 0,

∇e3
e1 = −e5 +

λ

2
e3, ∇e3

e2 = 0, ∇e3
e3 = −λe1, ∇e3

e4 = 0, ∇e3
e5 = 0,

∇e4
e1 = e2 − λ

2
e4, ∇e4

e2 = 0, ∇e4
e3 = 0, ∇e4

e4 = 0, ∇e4
e5 = 0,

∇e5
e1 = e3 − λ

2
e5, ∇e5

e2 = 0, ∇e5
e3 = 0, ∇e5

e4 = 0, ∇e5
e5 = 0.

With the help of above relation, it is notice that ∇Xξ = −φX−φhX for ξ = e1. Therefore, the manifold
is a contact metric manifold with the contact structure (φ, η, ξ, g).
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Now, we find the curvature tensors as follows

R(e1, e2)e1 = λ2e2, R(e1, e2)e2 = −λ2e1, R(e1, e3)e1 = λ2e3, R(e1, e3)e3 = −λ2e1,

R(e1, e4)e1 = 0, R(e1, e4)e4 = 0, R(e1, e5)e1 = 0, R(e1, e5)e5 = 0,

R(e2, e3)e2 = −λ2e3, R(e2, e3)e3 = −λ2e2, R(e2, e4)e2 = 0, R(e2, e4)e4 = 0,

R(e2, e5)e2 = 0, R(e2, e5)e5 = 0, R(e3, e4)e3 = 0, R(e3, e4)e4 = 0,

R(e3, e5)e3 = 0, R(e3, e5)e5 = 0, R(e4, e5)e4 = 0, R(e4, e5)e5 = 0.

In view of the expressions of the curvature tensors we conclude that the manifold is a N(−λ2)-contact
metric manifold. Using the expressions of the curvature tensor we find the values of the Ricci tensors S
as follows

S(e1, e1) = S(e2, e2) = S(e3, e3) = −2λ2, S(e4, e4) = S(e5, e5) = 0.

This shows that the manifold is Ricci semisymmetric. Let X and Y are any two vector fields given by

X = a1e1 + a2e2 + a3e3 + a4e4 + a5e5,

Y = b1e1 + b2e2 + b3e3 + b4e4 + b5e5,

where a1, a2, a3, a4, a5, b1, b2, b3, b4, b5 ∈ R \ {0}, a4b4 + a5b5 , 0.
Then we have

g(X,Y ) = a1b1 + a2b2 + a3b3 S(X,Y ) = −2λ2[a1b1 + a2b2 + a3b3]

Therefore, we notice that S(X,Y )=-2λ2g(X,Y ),that is, the manifold M is an Einstein manifold. Thus
Theorem 6.1 is verified.
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