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On Contact Screen Conformal Null Submanifolds ∗
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abstract: First, we prove that indefinite Sasakian manifolds do not admit any screen conformal r-null
submanifolds, tangent to the structure vector field. We, therefore, define a special class of null submanifolds,
called; contact screen conformal r-null submanifold of indefinite Sasakian manifolds. Several characterisation
results, on the above class of null submanifolds, are proved. In particular, we prove that such null submanifolds
exists in indefinite Sasakian space forms of constant holomorphic sectional curvatures of −3.
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1. Introduction

In the theory of non-degenerate submanifolds, the second fundamental forms and their respective
shape operators are related by means of the metric tensor. Contrary to this, there are interrelations be-
tween the second fundamental forms of null submanifold and its screen distribution and their respective
shape operators. These interrelations indicates that the null geometry depends on a choice of screen dis-
tribution as explained in [5]. While we know that the second fundamental forms of the null submanifolds
are independent of a screen (see Theorem 5.1.2 of [5, p. 199]), the same is not true for the fundamental
forms of the screens, which is the main cause of non-uniqueness anomaly in the null geometry. Since, in
general, it is impossible to remove this anomaly, the authors in [5] considered null hypersurfaces and half
null submanifolds for which the null and screen second fundamental forms are conformally related. Such
classes of null submanifolds are called screen conformal (see Definition 2.2.1 of [5, p. 51] and Definition
4.4.1 of [5, p. 179]). However, this condition can not be used for the case of general r-null submanifolds.
For this reason, Duggal-Sahin [5], extended the concept of screen conformal to general null submanifolds
of semi-Riemannian manifolds (see Definition 5.2.2 of [5]).

In case the ambient manifold is an indefinite Sasakian manifold, we note that the above concept is
not applicable due to some obvious contradictions as proved in Theorem 3.3. Therefore, we introduce
the notion of contact screen conformal null submanifolds to cover this gap. Null submanifolds have
numerous applications in mathematical physics, particularly in general relativity and electromagnetism,
see [4,5] for more details. Many research papers have been published on null geometry, for example
[1,2,3,6,7,8,9,10,11,12,14], and many more references cited therein. The main objective of this paper
is define the concept of contact screen conformal r-null submanifolds of indefinite Sasakian manifolds.
We prove that such null submanifolds exists in indefinite Sasakian space forms of constant holomorphic
sectional curvatures of −3. The rest of the paper is arranged as follows; In section 2 we give basic notions
needed in the rest of the paper and in Section 3, we present our main results.
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2. Preliminaries

Let (M, g) be a real (m + n)-dimensional semi-Riemannian manifold of constant index ν such that
m, n ≥ 1, 1 ≤ ν ≤ m + n − 1, and let (M, g) be an m-dimensional submanifold of M . In case g is
degenerate on the tangent bundle T M of M , we say that M a null submanifold [4]. We denote the set
of smooth sections of a vector bundle Ξ by Γ(Ξ). For a degenerate metric tensor g = g|T M , there exists
locally a non-zero vector field ξ ∈ Γ(T M) such that g(ξ, X) = 0, for any X ∈ Γ(T M). Then, for each
tangent space TxM , x ∈ M , we have TxM⊥ = {u ∈ TxM : g(u, v) = 0, ∀ v ∈ TxM}, which is a degenerate
n-dimensional subspace of TxM . The radical or null subspace of M is denoted by Rad TxM and is given
by Rad TxM = {ξx ∈ TxM : g(ξx, X) = 0, ∀ X ∈ TxM}. Notice that Rad TxM = TxM ∩ TxM⊥ and
its dimension depends on x ∈ M . A submanifold M of M is called r-null if the mapping Rad T M :
x −→ Rad TxM, defines a smooth distribution of rank r > 0, where Rad T M is called the radical (null)
distribution on M . Let S(T M) be a screen distribution which is a semi-Riemannian complementary
distribution of Rad T M in T M , and is given by T M = Rad T M ⊥ S(T M). Note that the distribution
S(T M) is not unique and canonically isomorphic to the factor vector bundle T M/Rad T M [4]. Choose
a screen transversal bundle S(T M⊥), which is semi-Riemannian complementary to Rad T M in T M⊥.
Since, for any local basis {ξi} of Rad T M , there exists a local null frame {Ni} of sections with values in
the orthogonal complement of S(T M⊥) in S(T M)⊥ such that g(ξi, Nj) = δij , it follows that there exists
a null transversal vector bundle ltr(T M) locally spanned by {Ni} [4]. Let tr(T M) be complementary
(but not orthogonal) vector bundle to T M in T M . Then,

tr(T M) = ltr(T M) ⊥ S(T M⊥),

and T M = S(T M) ⊥ S(T M⊥) ⊥ {Rad T M ⊕ ltr(T M)} = T M ⊕ tr(T M).

We say that a null submanifold M of M is

1. r-null if 1 ≤ r < min{m, n},

2. co-isotropic if 1 ≤ r = n < m, S(T M⊥) = {0},

3. isotropic if 1 ≤ r = m < n, S(T M) = {0},

4. totally null if r = n = m, S(T M) = S(T M⊥) = {0}.

Details on the above classes of null submanifolds with examples are found in [4,5]. Let M be a
coisotropic null submanifold and consider a local quasi-orthonormal fields of frames of M along M , on U

as {ξ1, · · · , ξr, N1, · · · , Nr, Zr+1, · · · , Zm}, where {Zr+1, · · · , Zm} is an orthogonal basis of Γ(S(T M)|U)
and that ǫa = g(Za, Za) is the signature of {Za}. The following range of indices will be used. i, j, k ∈
{1, · · · , r}. Let P be the projection morphism of T M onto S(T M). Then, the Gauss-Weingartein equa-
tions [5] of a coisotropic submanifold M and S(T M) are

∇XY = ∇XY +

r<m∑

i=1

hl
i(X, Y )Ni, (2.1)

∇XNi = −ANi
X +

r<m∑

j=1

τ ij(X)Nj , (2.2)

∇XP Y = ∇∗
XP Y +

r<m∑

i=1

h∗
i (X, P Y )ξi, (2.3)

∇Xξi = −A∗
ξi

X −

r<m∑

j=1

τ ji(X)ξj , (2.4)

for all X, Y ∈ Γ(T M) where ∇ and ∇∗ are the induced connections on T M and S(T M) respectively,
hl

i’s are symmetric bilinear forms known as local null fundamental forms of T M . Also, h∗
i ’s are the

local second fundamental forms of S(T M). On the other hand, ANi
’s and A∗

ξi
’s are linear operators on



Contact Screen Conformal Null Submanifolds 3

T M while τ ij ’s are 1-forms on T M . It is easy to see from (2.1) that hl
i(X, Y ) = g(∇XY, ξi), for all

X, Y ∈ Γ(T M), from which we deduce the independence of hl
is on the choice of S(T M). It is easy to see

that ∇∗ is a metric connection on S(T M) while ∇ is generally not a metric connection and satisfies the
relation

(∇Xg)(Y, Z) =

r∑

i=1

{hl
i(X, Y )θi(Z) + hl

i(X, Z)θi(Y )}, (2.5)

for any X, Y ∈ Γ(T M) and 1-forms θi given by θi(X) = g(X, Ni), for all X ∈ Γ(T M). The above
two types of local second fundamental forms are related to their shape operators by the following set of
equations

g(A∗
ξi

X, Y ) = hl
i(X, Y ) +

r∑

j=1

hl
j(X, ξi)θj(Y ), ḡ(A∗

ξi
X, Nj) = 0, (2.6)

g(ANi
X, Y ) = h∗

i (X, P Y ), θj(ANi
X) + θi(ANj

X), ∀ X, Y ∈ Γ(T M). (2.7)

Let (M, g, S(T M)) be an m-dimensional r-null coisotropic submanifold of (M, g). Let R and R denote
the curvature tensors of ∇ and ∇ respectively. The following curvature identities are needed in this paper
(see [4] or [5] for details)

R(X, Y )Z = R(X,Y )Z +

r∑

i=1

{hl
i(X, Z)ANi

Y − hl
i(Y, Z)ANi

X} +

r∑

i=1

{(∇Xhl
i)(Y, Z)

− (∇Y hl
i)(X, Z) +

r∑

j=1

{τ ji(X)hj(Y, Z) − τ ji(Y )hj(X, Z)}}Ni, (2.8)

R(X, Y )P Z = R∗(X, Y )P Z +
r∑

i=1

{h∗
i (X, P Z)A∗

ξi
Y − h∗

i (Y, P Z)A∗
ξi

X} +
r∑

i=1

{(∇Xh∗
i )(Y, P Z)

− (∇Y h∗
i )(X, P Z) +

r∑

j=1

{τ ij(Y )h∗
j (X, P Z) − τ ij(X)h∗

j (Y, P Z)}}ξi, (2.9)

for all X, Y, Z ∈ Γ(T M). An odd dimensional smooth manifold (M, g) is called a contact metric manifold
[5] if there exist a (1,1) -tensor field φ, a vector field ζ, called the characteristic vector field, and its 1-form
η satisfying

φ
2
X = −X + η(X)ζ, φζ = 0, η ◦ φ = 0, η(ζ) = 1, (2.10)

g(φX, φY ) = g(X, Y ) − η(X)η(Y ), η(X) = g(ζ, X), (2.11)

dη(X, Y ) = g(φX, Y ), ∀ X, Y ∈ Γ(T M). (2.12)

Then, the set (φ, η, ζ, g) is called a contact metric structure on M . Furthermore, M has a normal contact
structure [5] if Nφ + 2dη ⊗ ζ = 0, where Nφ is the Nijenhuis tensor field of φ. A normal contact metric

manifold is called Sasakian [5] for which we have

(∇Xφ)(Y ) = g(X, Y )ζ − η(Y )X, ∀ X, Y ∈ Γ(T M), (2.13)

where ∇ is a metric connection on M . A Sasakian manifold M = (M, φ, ζ, η, g) is called an indefinite
Sasakian manifold [5] if (M, g) is a semi-Riemannian manifold of index ν(> 0). Replacing Y by ζ in
(2.13), and using (2.10), we get

∇Xζ = −φX, ∀ X ∈ Γ(T M). (2.14)

A plane section π in TxM of a Sasakian manifold M is called a φ-section if it is spanned by a unit
vector X orthogonal to ζ and φX , where X is a non-null vector field on M . The sectional curvature
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K(X, φX) of a φ-section is called a φ-sectional curvature. If M has a φ-sectional curvature c which does
not depend on the φ-section at each point, then, c is constant in M and M is called a Sasakian space
form, denoted by M(c). Moreover, the curvature tensor R of M satisfies (see [5] for more detailes)

4R(X, Y )Z = (c + 3){g(Y, Z)X − g(X, Z)Y } + (c − 1){η(X)η(Z)Y − η(Y )η(Z)X

+ g(X, Z)η(Y )ζ − g(Y, Z)η(X)ζ + g(φY, Z)φX − g(φX, Z)φY − 2g(φX, Y )φZ}, (2.15)

for X , Y , Z tangent to M .

Let (M, g) be a null submanifold of an indefinite Sasakian manifold (M, g). If the characteristic
vector field ζ is tangent to M , then it is obvious that ζ does not belong to Rad T M . This enables
one to choose a screen distribution S(T M) which contains ζ. This implies that if ζ is tangent to M ,
then it belongs to S(T M) (see Calin [2] for more details). Let M be a coisotropic null submanifold
of an indefinite Sasakian M . Furthermore, we assume that φRad T M and φltr(T M) are subbundles of
S(T M). It follows that S(T M) = {φRad T M ⊕ φltr(T M)} ⊥ D0 ⊥ Rζ, where D0 is a non-degenerate
almost complex distribution with respect to φ, and Rζ is a line bundle spanned by ζ. Then, we have
T M = D ⊕ D′ ⊥ Rζ, where D = Rad T M ⊥ φRad T M ⊥ D0 and D′ = φltr(T M). Consider local null
vector fields Ui,Vi, for each i ∈ {1, . . . , r}, and their 1-forms ui, vi defined by

Ui = −φNi, Vi = −φξi, (2.16)

ui(X) = g(X, Vi), vi(X) = g(X, Ui). (2.17)

Let S be the projection morphism of T M onto D. Then, for any X ∈ Γ(T M),

φX = φX +

r∑

i=1

ui(X)Ni, (2.18)

where φ is a tensor field of type (1,1) globally defined on M by φ = φ ◦ S. By a direct calculation using
(2.1)–(2.4), (2.16)–(2.18), we derive

hl
j(X, Ui) = h∗

i (X, Vj), hl
j(X, Vi) = hl

i(X, Vj), (2.19)

∇XUi = φANi
X +

r∑

j=1

τ ij(X)Uj − θi(X)ζ, (2.20)

∇XVi = φA∗
ξi

X −
r∑

j=1

τ ji(X)Vj +
r∑

j=1

hl
j(X, ξi)Uj , (2.21)

for all X, ∈ Γ(T M). On the other hand, using (2.14), (2.1)–(2.4), we have

hl
i(X, ζ) = −ui(X), h∗

i (X, ζ) = −vi(X), (2.22)

for all X ∈ Γ(T M).

3. Contact screen conformal submanifolds

On a null hypersurface of a semi-Riemannian manifold, the screen and null shape operators A∗
ξ and

AN , respectively, where ξ ∈ Γ(T M⊥) and N ∈ Γ(tr(T M)), are both screen-valued operators. Due to this
fact, it is always possible to link the two operators via a non-vanishing smooth function to give rise to a
class of hypersurfaces called; screen conformal null hypersurfaces (see [5, Definition 2.2.1], you may also
see the paper [14]). A similar consideration is done for half null submanifolds (see [5, Definition 4.4.1]
and the paper [6]) . However, this cannot be considered for a general null submanifold due to the fact
that the shape operators ANi

, for all i ∈ {1 . . . , r}, are generally not screen-valued. For the above reason,
Duggal-Sahin [5] defined a certain type of screen conformality for a coisotropic submanifold as follows;
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Definition 3.1 ( [5]). A coisotropic null submanifold (M, g, S(T M)) of a semi-Riemannian manifold
(M, g) is called a screen locally conformal submanifold if the fundamental forms h∗

i of S(T M) are con-
formally related to the corresponding null fundamental forms hl

i of M by

h∗
i (X, P Y ) = ϕih

l
i(X, Y ), ∀ X, Y ∈ Γ(T M), i ∈ {i, . . . , r}, (3.1)

where the ϕ′
is are smooth functions on the neighbourhood U of M .

It is then proved, in Theorem 5.2.3 of [5, p. 204], that any screen distribution satisfying Definition 3.1
is integrable. Further still, the definition is extended to r-null submanifolds in which similar conclusions
on the integrability of S(T M) are reached (see Theorem 5.2.6 of [5, p. 219]).

Example 3.2 ( [5]). Let us consider the coisotropic submanifold x2 = (x2
3 + x2

5)1/2, x4 = x1, x3, x5 > 0
of M = (R5

2, g), where R5
2 is a semi-Euclidean space of signature (−, −, +, +.+) with respect to the

canonical basis {∂x1, ∂x2, ∂x3, ∂x4, ∂x5}. Then, it is easy to check that S(T M) = Span{X}, Rad T M =
Span{ξ1, ξ2} and ltr(T M) = Span{N1, N2}, where X = x5∂x2 + x2∂x5, ξ1 = ∂1 + ∂4, ξ2 = x2∂x2 +
x3∂x3 + x5∂5, N1 = (1/2)(−∂x1 + ∂x4) and N2 = (1/2x2

3)(−x2∂x2 + x3∂x3 − x5∂x5). Then, a direct a
direct calculation reveals that ∇ξ

1
X = 0, ∇ξ

2
X = X , ∇ξ

1
ξ2 = 0 and ∇XX = x2∂x2 + x5∂x5. Next,

by Gauss’ formulae, we have ∇XX = (1/2)ξ2, h∗
1(X, X) = 0, h∗

1(ξ1, X) = h∗
2(ξ1, X) = 0, h∗

1(ξ2, X) =
h∗

2(ξ2, X) = hl
1(ξ1, X) = hl

2(ξ2, X) = 0, hl
1 = 0, hl

2(X, X) = −x2
3 and h∗

2 = 1/2. It follows that M is
screen conformal with ϕ1 arbitrary and ϕ2 = −1/2x2

3.

However, it is very important to note that when the ambient space is an indefinite Sasakian manifold,
such screen conformal null submanifolds, tangent to ζ, i.e. ζ ∈ Γ(T M), do not exist. In fact, we have
have the following result.

Theorem 3.3. There does not exist any screen locally conformal null subamnifolds (M, g, S(T M)),
tangent to the structure vector field ζ, of an indefinite Sasakian manifold (M, g).

Proof. Assume, on contrary, that M is locally screen conformal, then from (2.22) and (3.1) of Definition
3.1, we have

−vi(X) = h∗
i (X, ζ) = ϕih

l
i(X, ζ) = −ϕiui(X), (3.2)

for all X ∈ Γ(T M). Setting X = Vj in (3.2) we get −vi(Vj) = −δij = 0, for all i, j ∈ {1, . . . , r}, which is
a contradiction. On the other hand letting X = Uj in (3.2), we get −ϕiui(Uj) = 0. As ϕi’s are nonzero,
it follows that −ui(Uj) = −δij = 0, which is also a contradiction. Hence, M can not be locally screen
conformal in an indefinite Sasakian manifold. �

Based on Theorem 3.3, we notice that Definition 3.1 fails for null submanifolds of indefinite Sasakian
manifolds, mainly in portions of T M containing the structure vector field ζ. This can be rectified by
defining the concept of screen conformality of h∗

i and hl
i on D ⊕ D′, instead of T M = D ⊕ D′ ⊥ Rζ. To

this end, let P̃ be the projection morphism of T M onto the subbundle D ⊕ D′. It then follows easily that
any X ∈ Γ(T M) can be written as X = P̃ X + η(X)ζ. Then, by a direct calculation, we have

h∗
i (P̃ X, P̃P Y ) = h∗

i (X, Y ) − η(Y )h∗
i (X, ζ) − η(X)h∗

i (ζ, Y ), (3.3)

for all X, Y ∈ Γ(T M), in which we have used (2.22) to deduce that h∗
i (ζ, ζ) = −vi(ζ) = 0. We also have,

hl
i(P̃ X, P̃Y ) = hl

i(X, Y ) − η(Y )hl
i(X, ζ) − η(X)hl

i(ζ, Y ), (3.4)

for all X, Y ∈ Γ(T M), in which we have used the fact that hl
i(ζ, ζ) = −ui(ζ) = 0.

Then, we have the following definition;

Definition 3.4. Let (M, φ, ζ, η, g) be an indefinite almost contact manifold. A null submanifold
(M, g, S(T M)), tangent to the structure vector field ζ, is called contact locally screen conformal if the
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fundamental forms h∗
i of S(T M) are conformally related to the corresponding null fundamental forms hl

i

of M , on the subbundle D ⊕ D′ by

h∗
i (P̃ X, P̃P Y ) = ϕih

l
i(P̃ X, P̃Y ), ∀ X, Y ∈ Γ(T M), i ∈ {i, . . . , r}, (3.5)

where the ϕ′
is are smooth functions on the neighbourhood U of M . In view of (2.22), (3.3) and (3.4), M

is contact locally screen conformal if

h∗
i (X, P Y ) = ϕi{hl

i(X, Y ) + ui(X)η(Y ) + ui(Y )η(X)} − vi(X)η(Y ) + h∗
i (ζ, Y )η(X), (3.6)

for all X, Y ∈ Γ(T M).

It has been established (see Theorem 5.2.3 of [5, p. 204]) that when M is locally screen conformal,
then S(T M) is integrable. However, this is not generally true for a contact locally screen conformal null
submanifold. In fact, we have the following result.

Theorem 3.5. The screen distribution S(T M) of a contact locally screen conformal null submanifold of

an indefinite Sasakian manifold is integrable if and only if h∗
i (ζ, P X) = −vi(X), for all X ∈ Γ(T M).

Proof. In view of (3.6) and the symmetry of hl
i’s, we have

h∗
i (X, Y ) − h∗

i (Y, X) = vi(Y )η(X) − vi(X)η(Y ) + h∗
i (ζ, Y )η(X) − h∗

i (ζ, X)η(Y ), (3.7)

for all X, Y ∈ Γ(S(T M)). Now, if S(T M) is integrable then all ANi
are symmetric on S(T M) by Theorem

5.1.5 of [5]. Hence, the left hand side of (3.7) vanishes which further implies that

vi(Y )η(X) − vi(X)η(Y ) + h∗
i (ζ, Y )η(X) − h∗

i (ζ, X)η(Y ) = 0, (3.8)

for all X, Y ∈ Γ(S(T M)). Letting Y = ζ in (3.8), we get

−vi(X) + h∗
i (ζ, ζ)η(X) − h∗

i (ζ, X) = 0. (3.9)

But, by (2.22), we see that h∗
i (ζ, ζ) = −vi(ζ) = 0. Hence, from (3.9), we have h∗

i (ζ, X) = −vi(X). The
converse is obvious, which completes the proof. �

Theorem 3.6. Let (M, g) be a contact screen conformal coisotropic null submanifold, tangent to ζ, of an

indefinite Sasakian space form M(c). Then, c = −3. Moreover, the functions ϕi, i ∈ {i, . . . , r}, satisfies

the differential equations

(ξjϕi)h
l
i(Vi, Ui) −

r∑

k=1

(ϕkτ ik(ξj) + ϕiτki(ξj))hl
k(Vi, Ui) = 0, (3.10)

and the curvature tensor of (M, g) takes the form

R(X, Y )Z = −

r∑

i=1

{hl
i(X, Z)ANi

Y − hl
i(Y, Z)ANi

X} − η(X)η(Z)Y + η(Y )η(Z)X

− g(X, Z)η(Y )ζ + g(Y, Z)η(X)ζ − g(φY, Z)φX + g(φX, Z)φY + 2g(φX, Y )φZ, (3.11)

for any X, Y and Z tangent to M .

Proof. For all X, Y, Z ∈ Γ(D ⊕ D′), relations (2.22) and (3.5) leads to

(∇Xh∗
i )(Y, P Z) = (Xϕi)h

l
i(Y, P Z) + ϕi{Xhl

i(Y, P Z) − hl
i(P̃ ∇XY, P Z)

− hl
i(Y, P̃ ∇∗

XP Z)} − h∗
i (ζ, P Z)η(∇XY ) + vi(Y )η(∇∗

XP Z). (3.12)
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On the other hand, using (3.12), we have

(∇Xhl
i)(Y, P Z) = Xhl

i(Y, P Z) − hl
i(P̃ ∇XY, P Z) − hl

i(Y, P̃ ∇∗
XP Z)

+ ui(P Z)η(∇XY ) + ui(Y )η(∇XP Z), (3.13)

for all X, Y, Z ∈ Γ(D ⊕ D′). Using (3.12) and (3.13), we derive

(∇Xh∗
i )(Y, P Z) = (Xϕi)h

l
i(Y, P Z) + ϕi{(∇Xhl

i)(Y, P Z) − ui(P Z)η(∇XY )

− uj(Y )η(∇∗
XP Z)} − h∗

i (ζ, P Z)η(∇XY ) + vi(Y )η(∇∗
XP Z). (3.14)

Interchanging X and Y in (3.14), subtracting the two relations and then use (2.8) and (2.9), we get

g(R(X, Y )P Z, Ni) − ϕig(R(X, Y )P Z, ξi) = (Xϕi)h
l
i(Y, P Z) − (Y ϕi)h

l
i(X, P Z)

+ ϕi{ui(P Z)η(∇Y X) − ui(P Z)η(∇XY ) + ui(X)η(∇∗
Y P Z) − ui(Y )η(∇∗

XP Z)}

+ h∗
i (ζ, P Z)η(∇Y X) − h∗

i (ζ, P Z)η(∇XY ) + vi(Y )η(∇∗
XP Z) − vi(X)η(∇∗

Y P Z)

+
r∑

j=1

ϕj{hl
j(X, P Z)τ ij(Y ) − hl

j(Y, P Z)τ ij(X)} −
r∑

j=1

ϕi{hj(Y, P Z)τ ji(X)

− hl
j(X, P Z)τ ji(Y )}. (3.15)

Then, applying (2.15) to (3.15) and then let X = ξk, we derive

c + 3

4
g(Y, P Z)δik +

c − 1

4
{uk(P Z)vi(Y ) + 2uk(Y )vi(P Z)}

−
c − 1

4
ϕi{uk(P Z)ui(Y ) + 2uk(Y )ui(P Z)} = (ξkϕi)h

l
i(Y, P Z)

+ ϕi{ui(P Z)uk(Y ) − ui(P Z)η(∇ξk
Y ) − ui(Y )η(∇∗

ξk
P Z)}

+ h∗
i (ζ, P Z)uk(Y ) − h∗

i (ζ, P Z)η(∇ξk
Y ) + vi(Y )η(∇∗

ξk
P Z)

−

r∑

j=1

ϕjhl
j(Y, P Z)τ ij(ξk) −

r∑

j=1

ϕih
l
j(Y, P Z)τ ji(ξk), (3.16)

for all Y, Z ∈ Γ(D ⊕ D′). Interchanging j and k in (3.16) and then substitute Y = Vℓ and P Z = Uℓ, we
get

c + 3

4
δij +

c − 1

4
δiℓδjℓ = (ξjϕi)h

l
i(Vℓ, Uℓ) − ϕiη(∇ξj

Vℓ)δiℓ − h∗
i (ζ, Uℓ)η(∇ξj

Vℓ)

+ η(∇ξj
Uℓ)δiℓ −

r∑

k=1

ϕkhl
k(Vℓ, Uℓ)τ ik(ξj) −

r∑

k=1

ϕih
l
k(Vℓ, Uℓ)τki(ξj). (3.17)

But, in view of (2.20) and (2.21), we have

η(∇ξj
Uℓ) = η(φANℓ

ξj) +

r∑

k=1

τ ℓk(ξj)η(Uk) − θℓ(ξj)η(ζ) = −δℓj , (3.18)

η(∇ξj
Vℓ) = η(φA∗

ξℓ
ξj) −

r∑

k=1

τkℓ(ξj)η(Vk) +
r∑

k=1

hl
k(ξj , ξℓ)η(Uk) = 0. (3.19)

Replacing (3.18) and (3.19) in (3.17), we get

c + 3

4
{δij + δℓiδℓj} = (ξjϕi)h

l
i(Vℓ, Uℓ) −

r∑

k=1

ϕkhl
k(Vℓ, Uℓ)τ ik(ξj) −

r∑

k=1

ϕih
l
k(Vℓ, Uℓ)τki(ξj). (3.20)
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Setting i = ℓ in (3.20), we get

c + 3

2
δij = (ξjϕi)h

l
i(Vi, Ui) −

r∑

k=1

ϕkhl
k(Vi, Ui)τ ik(ξj) −

r∑

k=1

ϕih
l
k(Vi, Ui)τki(ξj). (3.21)

On the other hand, if we set Y = Uℓ and P Z = Vℓ in (3.16), and then following the simplifications in
(3.17)-(3.21), we have

3

4
(c + 3)δij = (ξjϕi)h

l
i(Vi, Ui) −

r∑

k=1

ϕkhl
k(Vi, Ui)τ ik(ξj) −

r∑

k=1

ϕih
l
k(Vi, Ui)τki(ξj). (3.22)

Then, from (3.21) and (3.22), we have c+3
4 = 0 or simply c = −3. Moreover, we also have

(ξjϕi)h
l
i(Vi, Ui) −

r∑

k=1

ϕkhl
k(Vi, Ui)τ ik(ξj) −

r∑

k=1

ϕih
l
k(Vi, Ui)τki(ξj) = 0,

which proves (3.10). Finally, (3.11) follows from (2.8) and (2.15) with c = −3, which completes the proof.
�

The following result also follows from Theorem 3.6.

Corollary 3.7. There does not exist any contact screen conformal coisotropic submanfold, tangent to ζ,

of an indefinite Sasakian space form M(c , −3).
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