

Bol. Soc. Paran. Mat. ©SPM -ISSN-2175-1188 ON LINE SPM: www.spm.uem.br/bspm (3s.) **v. 2023 (41)** : 1–4. ISSN-0037-8712 IN PRESS doi:10.5269/bspm.52858

The Canonical Form of Multiplication Modules

Brahim Boudine and Mohammed Elhassani Charkani

ABSTRACT: Let R be a commutative ring with unit. An R-module M is called a multiplication module if for every submodule N of M, there is an ideal I of R such that N = IM. M is called also a CF-module if there is a chain of ideals $I_1 \subseteq ... \subseteq I_n$ of R such that $M \simeq R/I_1 \bigoplus R/I_2 \bigoplus ... \bigoplus R/I_n$. In this paper, we use some new results about $\mu_R(M)$ the minimal number of generators of M to show that a finitely generated multiplication module is a CF-module if and only if it is a cyclic module.

Key Words: Multiplication modules, canonical forms of modules, minimal number of generators.

Contents

Introduction
Preliminaries
Main result

1. Introduction

Let R be a commutative nonzero ring with unit. An R-module M is called a multiplication module if for every submodule N of M, there is an ideal I of R such that N = IM. The multiplication modules are largely used to study the prime modules like in [1] and [2]. On the other hand, the classification of R-modules is always wanted for commutative algebra, K-theory, representation theory... Then the invariant factors was often investigated. When R is a principal ideal domain (PID), the classification of R-modules can be obtained by studying the elementary divisors (see [3] and [4]). This advantage of PIDs was generalized for every ring R by the CF-modules, that are the R-modules which have a canonical form: there exists a chain of ideals $I_1 \subseteq ... \subseteq I_n$ of R such that $M \simeq R/I_1 \bigoplus R/I_2 \bigoplus ... \bigoplus R/I_n$ (see [4], [5], [11] and [12] ...).

In this paper, we investigate when a finitely generated multiplication module will be a CF-module. We use for that: $\mu_R(M)$ the minimal number of generators. This parameter $\mu_R(M)$ has its particular importance for example to minimize the size of syzygies [6] and the size of the matrix representation of R-modules [7]. It was studied by Gilmer and Heinzer [8] and Kumar [9]... in some particular cases. We show a constructive approach introduced by Charkani and Akharraz [5] to study $\mu_R(M)$ by using the Fitting ideals. Recall that $F_k(M)$ the k-th Fitting ideal of M is the (n-k)-th determinantal ideal where n is the number of generators of M (not necessary the minimal number of generators), for more informations please see the beautiful work done by Brown [10]. Recall that $F_0(M) \subseteq F_1(M) \subseteq ... \subseteq F_{\mu_R(M)}(M) = R$ [10] and we set $\nu_R(M) = min\{k \in \mathbb{N} \mid F_k(M) = R\}$.

In the second section we show some properties in commutative algebra as preliminaries and we define a μ -module. Then, in the third section we prove our main result:

Theorem 2.1. Let R be a commutative ring with unit and M be a nonzero finitely generated R-module. Then the following statements are equivalents:

- 1. M is a multiplication CF-module.
- 2. M is a cyclic R-module.
- 3. $\mu_R(M) = 1$.
- 4. $\nu_R(M) = 1$ and M is a μ -module.

1

 $\mathbf{2}$

 $\mathbf{2}$

²⁰¹⁰ Mathematics Subject Classification: 13C05, 13C13. Submitted March 30, 2020. Published June 10, 2021

B. BOUDINE AND M. E. CHARKANI

2. Preliminaries

We start this section by some properties about the localization:

Lemma 2.1. Let R be a commutative ring with unit, x be an element of R and max(R) the set of maximal ideals of R. Then:

$$[(\forall m \in max(R)): (xR)_m = 0R_m] \Leftrightarrow x = 0$$

Proof. Let m be a maximal ideal $(xR)_m = 0$ implies that there exist $t_m \notin m$ such that $t_m x = 0$. Then, Ann(x) is not contained in m. This is true for every $m \in max(R)$. Then, Ann(x) is not contained in any maximal ideal. Therefore, Ann(x) = R. Hence, x = 0 (Because $1 \in Ann(x)$)

Corollary 2.2. Let R be a commutative ring with unit, I be an ideal of R and max(R) the set of maximal ideals of R. Then:

$$[(\forall m \in max(R)): I_m = 0R_m] \Leftrightarrow I = 0$$

Proof. Let $x \in I$, then $(xR)_m \subseteq I_m = 0R_m$. Then, $(xR)_m = 0R_m$. By 2.1, this implies that x = 0. Thus, $I = (0)_R$.

Corollary 2.3. Let R be a commutative ring with unit, I and J be two ideals of R and max(R) the set of maximal ideals of R. Then:

$$[(\forall m \in max(R)): I_m = J_m] \Leftrightarrow I = J$$

Proof. In R/I: $J_m/I_m = (0)_{R_m}$. Since $J_m/I_m = (J_m + I_m)/I_m = ((J + I)/I)_m$, $(J + I)/I = 0_{R/I}$ (By 2.2). Thus, J + I = I. Hence $J \subseteq I$. As far as in R/J we get $I \subseteq J$. Therefore, I = J.

It is known in general that $\mu_R(M) \ge \nu_R(M)$, we show now one particular case when $\mu_R(M) \le \nu_R(M)$:

Lemma 2.4. Let R be a commutative ring with unit and M be a free R-module. Then, $\mu_R(E) = \nu_R(M)$.

Proof. When M is a free R-module of rank $r = \mu_R(M)$ then the k-th determinantal ideal $I_k(M) = 0$ for all $k \in \{1, ..., r\}$ [10]. Thus, the first Fitting ideal that is equal to R is the $\mu_R(M)$ -th Fitting ideal. Hence $\mu_R(M) = \nu_R(M)$.

Finally we define the μ -module:

Definition 2.5. Let R be a commutative ring with unit. an R-module is called a μ -module if $\mu_R(M) = max\{\mu_{B_m}(M_m) \mid m \text{ is a maximal ideal of } R\}.$

Example 2.6. If R is a local ring it is obvious that all R-module is μ -module. If M is a finitely generated multiplication module not cyclic. Then, M is not a μ -module. Indeed M is locally cyclic [13] and not cyclic: $\mu_R(M) \neq 1$ and $\max\{\mu_{R_m}(M_m) \mid m \text{ is a maximal ideal of } R\} = 1$.

3. Main result

Theorem 3.1. Let R be a commutative ring with unit and M be a nonzero finitely generated R-module. Then the following statements are equivalents:

- 1. M is a multiplication CF-module.
- 2. M is a cyclic R-module.
- 3. $\mu_R(M) = 1$.
- 4. $\nu_R(M) = 1$ and M is a μ -module.

Proof. Let M be a nonzero finitely generated R-module.

If M is a CF-module, then there is a chain of ideals $I_1 \subseteq ... \subseteq I_n$ of R such that

$$M \simeq R/I_1 \bigoplus R/I_2 \bigoplus \dots \bigoplus R/I_n$$

By [5], for any $k \in \{0, ..., n-1\}$, $F_k(M) = I_{k+1}.I_{k+2}...I_n$. Thus, $F_0(M) = I_1...I_n$ and $F_1(M) = I_2...I_n$. Further, if M is a multiplication R-module, then it is locally cyclic (there is an equivalence proved in [Prop. 4, [13]]). Then for any maximal ideal m of R, $F_1(M_m) = R_m$. By [13.38, p.161, [10]], for each multiplicative closed set S of R, $S^{-1}F_k(M) \simeq F_k(S^{-1}M)$. Then, $F_1(M_m) = (F_1(M))_m = R_m$ for each maximal ideal m of R. Therefore, by 2.3 $F_1(M) = R$. Thus, $I_2...I_n = R$. Hence $I_2 = ... = I_n = R$ and $F_0(M) = I_1$. Namely $M \simeq R/I_1$. So that, there is an isomorphism: $\varphi : M \to R/I_1$, let $x \in M$ which verify $\varphi(x) = \overline{1}$, then M = xR.

Conversely, if M is cyclic then there exists $x \in M$ such that M = xR. It is obvious that M is a multiplication module and $M \simeq R/Ann(x)$ is a CF-module.

It is also obvious that $\mu_B(M) = 1$ if and only if M is cyclic.

Further, we have proved that $F_1(M) = R$ and $F_0(M) = I_1$. If $I_1 = R$ we get M = 0 but we have assumed that M is nonzero. Then $\nu_R(M) = 1$.

Conversely, if $\nu_R(M) = 1$, then $F_1(M) = R$. Thus, for any maximal ideal m of R, $(F_1(M))_m = F_1(M_m) = R_m$. On the other hand, $F_1(M_m/mM_m) = F_1(R_m/mR_m \bigotimes M_m) = F_1(M_m).R_m/mR_m$ [Cor. 20.5, p.498, [14]]. Thus, $F_1(M_m/mM_m) = R_m/mR_m$. Since M_m/mM_m is a R_m/mR_m -vector space, by 2.4 $\mu_{R_m}(M_m/mM_m) = 1$. Since R_m is local, M_m is generated by the same number of generators of the quotient M_m/mM_m . That is $\mu_{R_m}(M_m) = 1$ for any maximal ideal m of R. Therefore, M is finitely generated locally cyclic module that is M is a multiplication module [13]. Then $max\{\mu_R(M_m) \mid m$ is a maximal ideal of $R\} = 1$. When M is μ -module, $\mu_R(M) = 1$.

References

- 1. El-Bast, Z.A., Smith, P.F., Multiplication modules. Comm. Algebra 16,755-779, (1988)
- 2. Azizi, A., Shiraz, Weak multiplication modules. Czechoslovak mathematical journal 53(128), 529-534, (2003)
- 3. Lang, S., Algebra. 3rd Edition, Addison-Wesley, (1993).
- 4. Kaplansky, I., Elementary Divisors and Modules. Tran. Ame. Math. Soc. 66, 153-169, (1949).
- M.E. Charkani, M.E., Akharraz, I., Fitting ideals and cyclic decomposition of finitely generated modules. Arabian Journal for Science and Engineering 25(2), 151-156, (2000).
- 6. Cayley, A., On the theory of involution in geometry, Cambridge Math. 11, 52-61, (1847).
- Lombardi, H., Quitte, C., Algebre Commutative, Methodes Constructives: Modules Projectifs de Type Fini, Calvage et Mounet, (2016).
- 8. Gilmer, R., Heinzer, W., On the Number of Generators of an Invertible Ideal, Journal of Algebra 14, 139-151, (1970).
- 9. Kumar, N.M., On Two Conjectures About Polynomial Rings, Inventiones Math. 46, 225-236, (1978).
- 10. Brown, W.C., Matrices over commutative rings. Marcel Decker Inc, New York, 149-175, (1993).
- 11. Shores, T., Wiegand, R., Rings whose finitely generated modules are direct sums of cyclics. Journal of Algebra 32, 152-172, (1974).
- 12. Lafond, J.P., Anneaux locaux commutatifs sur lesquels tout module de type fini est somme directe de modules monogènes. Journal of Algebra 17, 575 591, (1971).
- 13. Barnard, A., Multiplication modules. Journal of Algebra 71, 174-178, (1981).
- Eisenbud, D., Commutative Algebra with a view towards Algebraic Geometry. GTM 150, Springer Verlag, New York (1994).

B. BOUDINE AND M. E. CHARKANI

Brahim Boudine, Department of Mathematics, Faculty of science Dhar Mahraz, Sidi Mohamed Ben Abdellah university Fez, Morocco. E-mail address: brahimboudine.bb@gmail.com

and

Mohammed Elhassani Charkani, Department of Mathematics, Faculty of science Dhar Mahraz, Sidi Mohamed Ben Abdellah university Fez, Morocco. E-mail address: mcharkani@gmail.com

4