The Canonical Form of Multiplication Modules

Brahim Boudine and Mohammed Elhassani Charkani

Abstract

Let R be a commutative ring with unit. An R-module M is called a multiplication module if for every submodule N of M, there is an ideal I of R such that $N=I M . M$ is called also a CF-module if there is a chain of ideals $I_{1} \subseteq \ldots \subseteq I_{n}$ of R such that $M \simeq R / I_{1} \bigoplus R / I_{2} \bigoplus \ldots \bigoplus R / I_{n}$. In this paper, we use some new results about $\mu_{R}(M)$ the minimal number of generators of M to show that a finitely generated multiplication module is a CF-module if and only if it is a cyclic module.

Key Words: Multiplication modules, canonical forms of modules, minimal number of generators.

Contents

1 Introduction

2 Preliminaries 2
3 Main result 2

1. Introduction

Let R be a commutative nonzero ring with unit. An R-module M is called a multiplication module if for every submodule N of M, there is an ideal I of R such that $N=I M$. The multiplication modules are largely used to study the prime modules like in [1] and [2]. On the other hand, the classification of R-modules is always wanted for commutative algebra, K-theory, representation theory... Then the invariant factors was often investigated. When R is a principal ideal domain (PID), the classification of R-modules can be obtained by studying the elementary divisors (see [3] and [4]). This advantage of PIDs was generalized for every ring R by the CF-modules, that are the R-modules which have a canonical form: there exists a chain of ideals $I_{1} \subseteq \ldots \subseteq I_{n}$ of R such that $M \simeq R / I_{1} \bigoplus R / I_{2} \bigoplus \ldots \bigoplus R / I_{n}$ (see [4], [5], [11] and [12] ...).

In this paper, we investigate when a finitely generated multiplication module will be a CF-module. We use for that: $\mu_{R}(M)$ the minimal number of generators. This parameter $\mu_{R}(M)$ has its particular importance for example to minimize the size of syzygies [6] and the size of the matrix representation of R-modules [7]. It was studied by Gilmer and Heinzer [8] and Kumar [9]... in some particular cases. We show a constructive approach introduced by Charkani and Akharraz [5] to study $\mu_{R}(M)$ by using the Fitting ideals. Recall that $F_{k}(M)$ the k-th Fitting ideal of M is the $(n-k)$-th determinantal ideal where n is the number of generators of M (not necessary the minimal number of generators), for more informations please see the beautiful work done by Brown [10]. Recall that $F_{0}(M) \subseteq F_{1}(M) \subseteq \ldots \subseteq F_{\mu_{R}(M)}(M)=R$ [10] and we set $\nu_{R}(M)=\min \left\{k \in \mathbb{N} \mid F_{k}(M)=R\right\}$.

In the second section we show some properties in commutative algebra as preliminaries and we define a μ-module. Then, in the third section we prove our main result:

Theorem 2.1. Let R be a commutative ring with unit and M be a nonzero finitely generated R-module. Then the following statements are equivalents:

1. M is a multiplication CF-module.
2. M is a cyclic R-module.
3. $\mu_{R}(M)=1$.
4. $\nu_{R}(M)=1$ and M is a μ-module.

2010 Mathematics Subject Classification: 13C05, 13C13.
Submitted March 30, 2020. Published June 10, 2021

2. Preliminaries

We start this section by some properties about the localization:
Lemma 2.1. Let R be a commutative ring with unit, x be an element of R and $\max (R)$ the set of maximal ideals of R. Then:

$$
\left[(\forall m \in \max (R)):(x R)_{m}=0 R_{m}\right] \Leftrightarrow x=0
$$

Proof. Let m be a maximal ideal $(x R)_{m}=0$ implies that there exist $t_{m} \notin m$ such that $t_{m} x=0$. Then, $\operatorname{Ann}(x)$ is not contained in m. This is true for every $m \in \max (R)$. Then, $\operatorname{Ann}(x)$ is not contained in any maximal ideal. Therefore, $\operatorname{Ann}(x)=R$. Hence, $x=0$ (Because $1 \in \operatorname{Ann}(x)$)

Corollary 2.2. Let R be a commutative ring with unit, I be an ideal of R and $\max (R)$ the set of maximal ideals of R. Then:

$$
\left[(\forall m \in \max (R)): I_{m}=0 R_{m}\right] \Leftrightarrow I=0
$$

Proof. Let $x \in I$, then $(x R)_{m} \subseteq I_{m}=0 R_{m}$. Then, $(x R)_{m}=0 R_{m}$. By 2.1, this implies that $x=0$. Thus, $I=(0)_{R}$.

Corollary 2.3. Let R be a commutative ring with unit, I and J be two ideals of R and max (R) the set of maximal ideals of R. Then:

$$
\left[(\forall m \in \max (R)): I_{m}=J_{m}\right] \Leftrightarrow I=J
$$

Proof. In $R / I: J_{m} / I_{m}=(0)_{R_{m}}$. Since $J_{m} / I_{m}=\left(J_{m}+I_{m}\right) / I_{m}=((J+I) / I)_{m},(J+I) / I=0_{R / I}$ (By 2.2). Thus, $J+I=I$. Hence $J \subseteq I$.

As far as in R / J we get $I \subseteq J$. Therefore, $I=J$.

It is known in general that $\mu_{R}(M) \geq \nu_{R}(M)$, we show now one particular case when $\mu_{R}(M) \leq \nu_{R}(M)$:
Lemma 2.4. Let R be a commutative ring with unit and M be a free R-module. Then, $\mu_{R}(E)=\nu_{R}(M)$.
Proof. When M is a free R-module of rank $r=\mu_{R}(M)$ then the k-th determinantal ideal $I_{k}(M)=0$ for all $k \in\{1, \ldots, r\}[10]$. Thus, the first Fitting ideal that is equal to R is the $\mu_{R}(M)$-th Fitting ideal. Hence $\mu_{R}(M)=\nu_{R}(M)$.

Finally we define the μ-module:
Definition 2.5. Let R be a commutative ring with unit. an R-module is called a μ-module if $\mu_{R}(M)=$ $\max \left\{\mu_{R_{m}}\left(M_{m}\right) \mid m\right.$ is a maximal ideal of $\left.R\right\}$.

Example 2.6. If R is a local ring it is obvious that all R-module is μ-module.
If M is a finitely generated multiplication module not cyclic. Then, M is not a μ-module. Indeed M is locally cyclic [13] and not cyclic: $\mu_{R}(M) \neq 1$ and $\max \left\{\mu_{R_{m}}\left(M_{m}\right) \mid m\right.$ is a maximal ideal of $\left.R\right\}=1$.

3. Main result

Theorem 3.1. Let R be a commutative ring with unit and M be a nonzero finitely generated R-module. Then the following statements are equivalents:

1. M is a multiplication $C F$-module.
2. M is a cyclic R-module.
3. $\mu_{R}(M)=1$.
4. $\nu_{R}(M)=1$ and M is a μ-module.

Proof. Let M be a nonzero finitely generated R-module.
If M is a CF-module, then there is a chain of ideals $I_{1} \subseteq \ldots \subseteq I_{n}$ of R such that

$$
M \simeq R / I_{1} \bigoplus R / I_{2} \bigoplus \ldots \bigoplus R / I_{n}
$$

By [5], for any $k \in\{0, \ldots, n-1\}, F_{k}(M)=I_{k+1} . I_{k+2} \ldots I_{n}$. Thus, $F_{0}(M)=I_{1} \ldots I_{n}$ and $F_{1}(M)=I_{2} \ldots I_{n}$. Further, if M is a multiplication R-module, then it is locally cyclic (there is an equivalence proved in [Prop. 4, [13]]). Then for any maximal ideal m of $R, F_{1}\left(M_{m}\right)=R_{m}$. By [13.38, p.161, [10]], for each multiplicative closed set S of $R, S^{-1} F_{k}(M) \simeq F_{k}\left(S^{-1} M\right)$. Then, $F_{1}\left(M_{m}\right)=\left(F_{1}(M)\right)_{m}=R_{m}$ for each maximal ideal m of R. Therefore, by $2.3 F_{1}(M)=R$. Thus, $I_{2} \ldots I_{n}=R$. Hence $I_{2}=\ldots=I_{n}=R$ and $F_{0}(M)=I_{1}$. Namely $M \simeq R / I_{1}$. So that, there is an isomorphism: $\varphi: M \rightarrow R / I_{1}$, let $x \in M$ which verify $\varphi(x)=\overline{1}$, then $M=x R$.
Conversely, if M is cyclic then there exists $x \in M$ such that $M=x R$. It is obvious that M is a multiplication module and $M \simeq R / \operatorname{Ann}(x)$ is a CF-module.
It is also obvious that $\mu_{R}(M)=1$ if and only if M is cyclic.
Further, we have proved that $F_{1}(M)=R$ and $F_{0}(M)=I_{1}$. If $I_{1}=R$ we get $M=0$ but we have assumed that M is nonzero. Then $\nu_{R}(M)=1$.
Conversely, if $\nu_{R}(M)=1$, then $F_{1}(M)=R$. Thus, for any maximal ideal m of $R,\left(F_{1}(M)\right)_{m}=$ $F_{1}\left(M_{m}\right)=R_{m}$. On the other hand, $F_{1}\left(M_{m} / m M_{m}\right)=F_{1}\left(R_{m} / m R_{m} \otimes M_{m}\right)=F_{1}\left(M_{m}\right) . R_{m} / m R_{m}$ [Cor. 20.5, p.498, [14]]. Thus, $F_{1}\left(M_{m} / m M_{m}\right)=R_{m} / m R_{m}$. Since $M_{m} / m M_{m}$ is a $R_{m} / m R_{m}$-vector space, by $2.4 \mu_{R_{m}}\left(M_{m} / m M_{m}\right)=1$. Since R_{m} is local, M_{m} is generated by the same number of generators of the quotient $M_{m} / m M_{m}$. That is $\mu_{R_{m}}\left(M_{m}\right)=1$ for any maximal ideal m of R. Therefore, M is finitely generated locally cyclic module that is M is a multiplication module [13]. Then $\max \left\{\mu_{R}\left(M_{m}\right) \mid m\right.$ is a maximal ideal of $R\}=1$. When M is μ-module, $\mu_{R}(M)=1$.

References

1. El-Bast,Z.A., Smith, P.F., Multiplication modules. Comm. Algebra 16,755-779, (1988)
2. Azizi,A., Shiraz, Weak multiplication modules. Czechoslovak mathematical journal 53(128), 529-534, (2003)
3. Lang, S., Algebra. 3rd Edition, Addison-Wesley, (1993).
4. Kaplansky, I., Elementary Divisors and Modules. Tran. Ame. Math. Soc. 66, 153-169, (1949).
5. M.E. Charkani, M.E., Akharraz, I., Fitting ideals and cyclic decomposition of finitely generated modules. Arabian Journal for Science and Engineering 25(2), 151-156, (2000).
6. Cayley, A., On the theory of involution in geometry, Cambridge Math. 11, 52-61, (1847).
7. Lombardi, H., Quitte,C., Algebre Commutative, Methodes Constructives: Modules Projectifs de Type Fini, Calvage et Mounet, (2016).
8. Gilmer, R., Heinzer, W., On the Number of Generators of an Invertible Ideal, Journal of Algebra 14, 139-151, (1970).
9. Kumar, N.M., On Two Conjectures About Polynomial Rings, Inventiones Math. 46, 225-236, (1978).
10. Brown, W.C., Matrices over commutative rings. Marcel Decker Inc, New York, 149-175, (1993).
11. Shores, T., Wiegand, R., Rings whose finitely generated modules are direct sums of cyclics. Journal of Algebra 32, 152-172, (1974).
12. Lafond, J.P., Anneaux locaux commutatifs sur lesquels tout module de type fini est somme directe de modules monogènes. Journal of Algebra 17, 575-591, (1971).
13. Barnard, A., Multiplication modules. Journal of Algebra 71, 174-178, (1981).
14. Eisenbud, D., Commutative Algebra with a view towards Algebraic Geometry. GTM 150, Springer Verlag, New York (1994).

Brahim Boudine,
Department of Mathematics,
Faculty of science Dhar Mahraz,
Sidi Mohamed Ben Abdellah university
Fez, Morocco.
E-mail address: brahimboudine.bb@gmail.com
and
Mohammed Elhassani Charkani,
Department of Mathematics,
Faculty of science Dhar Mahraz,
Sidi Mohamed Ben Abdellah university
Fez, Morocco.
E-mail address: mcharkani@gmail.com

