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The Canonical Form of Multiplication Modules

Brahim Boudine and Mohammed Elhassani Charkani

ABSTRACT: Let R be a commutative ring with unit. An R-module M is called a multiplication module if
for every submodule N of M, there is an ideal I of R such that N = IM. M is called also a CF-module if
there is a chain of ideals I1 C ... C I,, of R such that M ~ R/I; @R/IQ @@R/In In this paper, we

use some new results about pp (M) the minimal number of generators of M to show that a finitely generated
multiplication module is a CF-module if and only if it is a cyclic module.
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1. Introduction

Let R be a commutative nonzero ring with unit. An R-module M is called a multiplication module
if for every submodule N of M, there is an ideal I of R such that NV = IM. The multiplication modules
are largely used to study the prime modules like in [1] and [2]. On the other hand, the classification
of R-modules is always wanted for commutative algebra, K-theory, representation theory... Then the
invariant factors was often investigated. When R is a principal ideal domain (PID), the classification
of R-modules can be obtained by studying the elementary divisors (see [3] and [4]). This advantage of
PIDs was generalized for every ring R by the CF-modules, that are the R-modules which have a canonical
form: there exists a chain of ideals I; C ... C I, of R such that M ~ R/Iy @ R/L. P ... R/I,, (see [4],
[5], [11] and [12] ...).

In this paper, we investigate when a finitely generated multiplication module will be a CF-module.
We use for that: pp(M) the minimal number of generators. This parameter (M) has its particular
importance for example to minimize the size of syzygies [6] and the size of the matrix representation of
R-modules [7]. Tt was studied by Gilmer and Heinzer [8] and Kumar [9]... in some particular cases. We
show a constructive approach introduced by Charkani and Akharraz [5] to study pp(M) by using the
Fitting ideals. Recall that Fj, (M) the k-th Fitting ideal of M is the (n—k)-th determinantal ideal where n
is the number of generators of M (not necessary the minimal number of generators), for more informations
please see the beautiful work done by Brown [10]. Recall that Fo(M) C F1(M) C ... C F, (M) =R
[10] and we set vr(M) = min{k € N | F,(M) = R}.

In the second section we show some properties in commutative algebra as preliminaries and we define
a p-module. Then, in the third section we prove our main result:

Theorem 2.1. Let R be a commutative ring with unit and M be a nonzero finitely generated
R-module. Then the following statements are equivalents:

1. M is a multiplication CF-module.
2. M is a cyclic R-module.
3. MR(M) - ]..

4. vpr(M) =1 and M is a y-module.

2010 Mathematics Subject Classification: 13C05, 13C13.
Submitted March 30, 2020. Published June 10, 2021

Typeset by Esﬁstyle.
1 © Soc. Paran. de Mat.


www.spm.uem.br/bspm
http://dx.doi.org/10.5269/bspm.52858

2 B. BOUDINE AND M. E. CHARKANI

2. Preliminaries

We start this section by some properties about the localization:

Lemma 2.1. Let R be a commutative ring with unit, x be an element of R and max(R) the set of
maximal ideals of R. Then:

[(Vm € maz(R)): (zR)m =0R,] < 2 =10

Proof. Let m be a maximal ideal (zR),, = 0 implies that there exist ¢,, ¢ m such that ¢,,2 = 0. Then,
Ann(x) is not contained in m. This is true for every m € max(R). Then, Ann(z) is not contained in
any maximal ideal. Therefore, Ann(z) = R. Hence, x = 0 ( Because 1 € Ann(x)) o

Corollary 2.2. Let R be a commutative ring with unit, I be an ideal of R and max(R) the set of mazimal
ideals of R. Then:
[(Vm € maz(R)): I, =0R,] < 1=0

Proof. Let = € I, then (zR),, C I, = OR,,. Then, (zR),, = OR,,. By 2.1, this implies that = = 0.
Thus, I = (0)g. o

Corollary 2.3. Let R be a commutative ring with unit, I and J be two ideals of R and max(R) the set
of maximal ideals of R. Then:

[(Vm € max(R)): Ln=Jn] < I1=J

Proof. In R/I: Jpm/Im = (0)R,,. Since Jo /Il = (Jon + L) /I = (J +1)/1) s, (J +1)/I = 0g/r (By
2.2). Thus, J + I =1. Hence J C I.
As far as in R/.J we get I C J. Therefore, I = J. mi

It is known in general that gz (M) > vr(M), we show now one particular case when pp(M) < vr(M):
Lemma 2.4. Let R be a commutative ring with unit and M be a free R-module. Then, pup(E) = vr(M).

Proof. When M is a free R-module of rank r = pp(M) then the k-th determinantal ideal I (M) = 0

for all k € {1,...,r} [10]. Thus, the first Fitting ideal that is equal to R is the pup(M)-th Fitting ideal.

Hence pp(M) = vi(M). mi
Finally we define the p-module:

Definition 2.5. Let R be a commutative ring with unit. an R-module is called a p-module if pp(M) =
max{pg (My,)|m is a mazimal ideal of R}.

Example 2.6. If R is a local ring it is obvious that all R-module is p-module.
If M is a finitely generated multiplication module not cyclic. Then, M is not a p-module. Indeed M 1is
locally cyclic [13] and not cyclic: pr(M) # 1 and max{ug, (Mp) | m is a mazimal ideal of R} = 1.

3. Main result

Theorem 3.1. Let R be a commutative ring with unit and M be a nonzero finitely generated R-module.
Then the following statements are equivalents:

1. M is a multiplication CF-module.
2. M is a cyclic R-module.

3, MR(M) - ].,

4. vR(M) =1 and M is a pu-module.
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Proof. Let M be a nonzero finitely generated R-module.
If M is a CF-module, then there is a chain of ideals I; C ... C I,, of R such that

M~R/LEPR/LE ... R/

By [5], for any k € {0,....,n — 1}, Fi(M) = Lyi1.Iepo.Tn. Thus, Fo(M) = I1...I, and Fy(M) = I...I,.
Further, if M is a multiplication R-module, then it is locally cyclic (there is an equivalence proved in
[Prop. 4, [13]]). Then for any maximal ideal m of R, F1(M,,) = R,,. By [13.38, p.161, [10]], for each
multiplicative closed set S of R, ST Fy(M) ~ F,(S™'M). Then, Fy(M,,) = (F1(M)),, = R, for each
maximal ideal m of R. Therefore, by 2.3 F1 (M) = R. Thus, I5...I, = R. Hence I = ... = I,, = R and
Fo(M) = I,. Namely M ~ R/I;. So that, there is an isomorphism: ¢ : M — R/I;, let x € M which
verify ¢(z) =1, then M = zR.

Conversely, if M is cyclic then there exists z € M such that M = xR. It is obvious that M is a
multiplication module and M ~ R/Ann(z) is a CF-module.

It is also obvious that pyp(M) =1 if and only if M is cyclic.

Further, we have proved that F1 (M) = R and Fo(M) = I,. If I; = R we get M = 0 but we have assumed
that M is nonzero. Then vr(M) = 1.

Conversely, if vp(M) = 1, then Fy(M) = R. Thus, for any maximal ideal m of R, (Fy(M)),, =
Fi(M,,) = Ry,. On the other hand, Fy(M,,/mM,,) = Fi(Ry/mRy @ M,,) = F1(M,,).Rym/mR,y, [Cor.
20.5, p.498, [14]]. Thus, Fy(M,,/mM,,) = Ry/mR,,. Since M,,/mM,, is a R,,/mR,,-vector space,
by 2.4 pp (Mpy/mM,,) = 1. Since R,, is local, M,, is generated by the same number of generators of
the quotient M,,/mM,,. That is up (M,,) = 1 for any maximal ideal m of R. Therefore, M is finitely
generated locally cyclic module that is M is a multiplication module [13]. Then maxz{ugz(M,,) | m is a
maximal ideal of R} = 1. When M is p-module, up(M) = 1. o
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