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The Canonical Form of Multiplication Modules

Brahim Boudine and Mohammed Elhassani Charkani

abstract: Let R be a commutative ring with unit. An R-module M is called a multiplication module if
for every submodule N of M , there is an ideal I of R such that N = IM . M is called also a CF-module if
there is a chain of ideals I1 ⊆ ... ⊆ In of R such that M ≃ R/I1

⊕
R/I2

⊕
...

⊕
R/In. In this paper, we

use some new results about µR(M) the minimal number of generators of M to show that a finitely generated
multiplication module is a CF-module if and only if it is a cyclic module.
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1. Introduction

Let R be a commutative nonzero ring with unit. An R-module M is called a multiplication module
if for every submodule N of M , there is an ideal I of R such that N = IM . The multiplication modules
are largely used to study the prime modules like in [1] and [2]. On the other hand, the classification
of R-modules is always wanted for commutative algebra, K-theory, representation theory... Then the
invariant factors was often investigated. When R is a principal ideal domain (PID), the classification
of R-modules can be obtained by studying the elementary divisors (see [3] and [4]). This advantage of
PIDs was generalized for every ring R by the CF-modules, that are the R-modules which have a canonical
form: there exists a chain of ideals I1 ⊆ ... ⊆ In of R such that M ≃ R/I1

⊕
R/I2

⊕
...

⊕
R/In (see [4],

[5], [11] and [12] ...).
In this paper, we investigate when a finitely generated multiplication module will be a CF-module.

We use for that: µR(M) the minimal number of generators. This parameter µR(M) has its particular
importance for example to minimize the size of syzygies [6] and the size of the matrix representation of
R-modules [7]. It was studied by Gilmer and Heinzer [8] and Kumar [9]... in some particular cases. We
show a constructive approach introduced by Charkani and Akharraz [5] to study µR(M) by using the
Fitting ideals. Recall that Fk(M) the k-th Fitting ideal of M is the (n−k)-th determinantal ideal where n
is the number of generators of M (not necessary the minimal number of generators), for more informations
please see the beautiful work done by Brown [10]. Recall that F0(M) ⊆ F1(M) ⊆ ... ⊆ Fµ

R
(M)(M) = R

[10] and we set νR(M) = min{k ∈ N | Fk(M) = R}.
In the second section we show some properties in commutative algebra as preliminaries and we define

a µ-module. Then, in the third section we prove our main result:
Theorem 2.1. Let R be a commutative ring with unit and M be a nonzero finitely generated

R-module. Then the following statements are equivalents:

1. M is a multiplication CF-module.

2. M is a cyclic R-module.

3. µR(M) = 1.

4. νR(M) = 1 and M is a µ-module.
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2. Preliminaries

We start this section by some properties about the localization:

Lemma 2.1. Let R be a commutative ring with unit, x be an element of R and max(R) the set of
maximal ideals of R. Then:

[(∀m ∈ max(R)) : (xR)m = 0Rm] ⇔ x = 0

Proof. Let m be a maximal ideal (xR)m = 0 implies that there exist tm < m such that tmx = 0. Then,
Ann(x) is not contained in m. This is true for every m ∈ max(R). Then, Ann(x) is not contained in
any maximal ideal. Therefore, Ann(x) = R. Hence, x = 0 ( Because 1 ∈ Ann(x)) �

Corollary 2.2. Let R be a commutative ring with unit, I be an ideal of R and max(R) the set of maximal
ideals of R. Then:

[(∀m ∈ max(R)) : Im = 0Rm] ⇔ I = 0

Proof. Let x ∈ I, then (xR)m ⊆ Im = 0Rm. Then, (xR)m = 0Rm. By 2.1, this implies that x = 0.
Thus, I = (0)R. �

Corollary 2.3. Let R be a commutative ring with unit, I and J be two ideals of R and max(R) the set
of maximal ideals of R. Then:

[(∀m ∈ max(R)) : Im = Jm] ⇔ I = J

Proof. In R/I: Jm/Im = (0)Rm
. Since Jm/Im = (Jm + Im)/Im = ((J + I)/I)m, (J + I)/I = 0R/I (By

2.2). Thus, J + I = I. Hence J ⊆ I.
As far as in R/J we get I ⊆ J . Therefore, I = J . �

It is known in general that µR(M) ≥ νR(M), we show now one particular case when µR(M) ≤ νR(M):

Lemma 2.4. Let R be a commutative ring with unit and M be a free R-module. Then, µR(E) = νR(M).

Proof. When M is a free R-module of rank r = µR(M) then the k-th determinantal ideal Ik(M) = 0
for all k ∈ {1, ..., r} [10]. Thus, the first Fitting ideal that is equal to R is the µR(M)-th Fitting ideal.
Hence µR(M) = νR(M). �

Finally we define the µ-module:

Definition 2.5. Let R be a commutative ring with unit. an R-module is called a µ-module if µR(M) =
max{µRm

(Mm) | m is a maximal ideal of R}.

Example 2.6. If R is a local ring it is obvious that all R-module is µ-module.
If M is a finitely generated multiplication module not cyclic. Then, M is not a µ-module. Indeed M is
locally cyclic [13] and not cyclic: µR(M) , 1 and max{µRm

(Mm) | m is a maximal ideal of R} = 1.

3. Main result

Theorem 3.1. Let R be a commutative ring with unit and M be a nonzero finitely generated R-module.
Then the following statements are equivalents:

1. M is a multiplication CF-module.

2. M is a cyclic R-module.

3. µR(M) = 1.

4. νR(M) = 1 and M is a µ-module.
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Proof. Let M be a nonzero finitely generated R-module.
If M is a CF-module, then there is a chain of ideals I1 ⊆ ... ⊆ In of R such that

M ≃ R/I1

⊕
R/I2

⊕
...

⊕
R/In.

By [5], for any k ∈ {0, ..., n − 1}, Fk(M) = Ik+1.Ik+2...In. Thus, F0(M) = I1...In and F1(M) = I2...In.
Further, if M is a multiplication R-module, then it is locally cyclic (there is an equivalence proved in
[Prop. 4, [13]]). Then for any maximal ideal m of R, F1(Mm) = Rm. By [13.38, p.161, [10]], for each
multiplicative closed set S of R, S−1Fk(M) ≃ Fk(S−1M). Then, F1(Mm) = (F1(M))m = Rm for each
maximal ideal m of R. Therefore, by 2.3 F1(M) = R. Thus, I2...In = R. Hence I2 = ... = In = R and
F0(M) = I1. Namely M ≃ R/I1. So that, there is an isomorphism: ϕ : M → R/I1, let x ∈ M which
verify ϕ(x) = 1, then M = xR.
Conversely, if M is cyclic then there exists x ∈ M such that M = xR. It is obvious that M is a
multiplication module and M ≃ R/Ann(x) is a CF-module.
It is also obvious that µR(M) = 1 if and only if M is cyclic.
Further, we have proved that F1(M) = R and F0(M) = I1. If I1 = R we get M = 0 but we have assumed
that M is nonzero. Then νR(M) = 1.
Conversely, if νR(M) = 1, then F1(M) = R. Thus, for any maximal ideal m of R, (F1(M))m =
F1(Mm) = Rm. On the other hand, F1(Mm/mMm) = F1(Rm/mRm

⊗
Mm) = F1(Mm).Rm/mRm [Cor.

20.5, p.498, [14]]. Thus, F1(Mm/mMm) = Rm/mRm. Since Mm/mMm is a Rm/mRm-vector space,
by 2.4 µRm

(Mm/mMm) = 1. Since Rm is local, Mm is generated by the same number of generators of
the quotient Mm/mMm. That is µRm

(Mm) = 1 for any maximal ideal m of R. Therefore, M is finitely
generated locally cyclic module that is M is a multiplication module [13]. Then max{µR(Mm) | m is a
maximal ideal of R} = 1. When M is µ-module, µR(M) = 1. �
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