On the logarithmic summability $(L, 1)$ of integrals on $[1, \infty)$

Gökşen Fındık and İbrahim Çanak

Abstract

Móricz [Analysis (Munich) 18(1) (1998), 1-8] characterized summability ($C, 1$) of integrals by convergence of another integral. In this work, we extend this result to logarithmic summability ($L, 1$) of integrals.

Key Words: Tauberian theorems, logarithmic summability ($L, 1$), improper integrals.

Contents

1 Introduction
2 Auxiliary results 2
3 Proof of Theorem 1.1 3

1. Introduction

Let $f:[0, \infty) \rightarrow \mathbb{C}$ be a Lebesgue integrable function on every bounded interval $[0, t]$ for $0<t$. In this case we write $f \in L_{\text {loc }}^{1}[0, \infty)$. We define

$$
k(t):=\int_{0}^{t} f(x) d x \quad \text { and } \quad \sigma(t):=\frac{1}{t} \int_{0}^{t} k(u) d u .
$$

The integral

$$
\begin{equation*}
\int_{0}^{\infty} f(x) d x \tag{1.1}
\end{equation*}
$$

is called to be summable $(C, 1)$ (or Cesàro summable of first order) to a finite complex number l if

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \sigma(t)=l . \tag{1.2}
\end{equation*}
$$

Let $f:[1, \infty) \rightarrow \mathbb{C}$ be such that $f \in L_{\text {loc }}^{1}[1, \infty)$ and $s \in L_{\text {loc }}^{1}[1, \infty)$. We define

$$
s(t):=\int_{1}^{t} f(x) d x \quad \text { and } \quad \tau(t):=\frac{1}{\log t} \int_{1}^{t} \frac{s(u)}{u} d u
$$

where the logarithm is to the naturel base e. The integral

$$
\begin{equation*}
\int_{1}^{\infty} f(x) d x \tag{1.3}
\end{equation*}
$$

is called to be summable $(L, 1)$ (or logarithmic summable of first order) to a finite complex number l if

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \tau(t)=l . \tag{1.4}
\end{equation*}
$$

We note that if the integral (1.3) is summable $(C, 1)$, then it is summable $(L, 1)$ to the same limit, but the converse is not satisfied in general (see [3]).

[^0]Given $f \in L_{l o c}^{1}[1, \infty)$, we define $a(t)$ as follows:

$$
\begin{equation*}
a(t):=\int_{t}^{\infty} \frac{f(x)}{t \log x} d x:=\lim _{u \rightarrow \infty} \int_{t}^{u} \frac{f(x)}{t \log x} d x \tag{1.5}
\end{equation*}
$$

provided that the limit exists for some $t>1$. One can easily see that (1.5) exists and $a(t)$ is continuous at any $t>1, a \in L_{l o c}^{1}[1, \infty)$ and

$$
\begin{equation*}
a(t) \rightarrow 0 \quad \text { as } \quad t \rightarrow \infty \tag{1.6}
\end{equation*}
$$

Hardy [1] characterized summability $(C, 1)$ of series by convergence of another series. As an integral analogue to a corresponding theorem on series proved by Hardy [1], Móricz [2] extended this result to locally integrable functions over $[0, \infty)$ and characterized summability $(C, 1)$ of integrals by convergence of another integral. In this work, we extend this result to locally integrable functions over $[1, \infty)$ and characterize logarithmic summability $(L, 1)$ of integrals by convergence of another integral.

Our main theorem is as follows:
Theorem 1.1. Suppose that $f \in L_{l o c}^{1}[1, \infty)$. Then the integral (1.3) is summable $(L, 1)$ to a finite complex number l and

$$
\begin{equation*}
\frac{s(t)}{\log t} \rightarrow 0 \quad \text { as } \quad t \rightarrow \infty \tag{1.7}
\end{equation*}
$$

if and only if $a(t)$ exists for $t>1$ and

$$
\begin{equation*}
\int_{1}^{\infty} a(t) d t:=\lim _{u \rightarrow \infty} \int_{1}^{u} a(t) d t=l \tag{1.8}
\end{equation*}
$$

2. Auxiliary results

For the proof of our main theorem, we need the following lemmas.
Lemma 2.1. Suppose that $f \in L_{l o c}^{1}[1, \infty)$. If the integral (1.3) is summable $(L, 1)$ to a finite complex number l and condition (1.7) holds, then a(t) defined in (1.5) exists for $t>1$.
Proof. Let $1<t<u<\infty$. If we apply integrating by parts twice, we obtain

$$
\begin{align*}
\int_{t}^{u} \frac{f(x)}{\log x} d x & =\frac{s(u)}{\log u}-\frac{s(t)}{\log t}+\int_{t}^{u} \frac{s(x)}{x \log ^{2} x} d x \\
& =\frac{s(u)}{\log u}-\frac{s(t)}{\log t}+\frac{\tau(u)}{\log u}-\frac{\tau(t)}{\log t}+2 \int_{t}^{u} \frac{\tau(x)}{x \log ^{2} x} d x \tag{2.1}
\end{align*}
$$

Condition (1.7) implies

$$
\begin{equation*}
\frac{\tau(t)}{\log t} \rightarrow 0 \quad \text { as } \quad t \rightarrow \infty \tag{2.2}
\end{equation*}
$$

by regularity of the logarithmic summability method. Taking (1.7) and (2.2) into account, we get

$$
\begin{equation*}
a(t)=-\frac{s(t)}{t \log t}-\frac{\tau(t)}{t \log t}+\frac{2}{t} \int_{t}^{u} \frac{\tau(x)}{x \log ^{2} x} d x \tag{2.3}
\end{equation*}
$$

where $u \rightarrow \infty$ in (2.1) for $t>1$. Since the integral on the right exists in Lebesgue's sense by (1.4), we see that $a(t)$ defined in (1.5) exists for $t>1$.

Remark 2.2. Under conditions of Lemma 2.1, we obtain that

$$
\log t \int_{t}^{\infty} \frac{s(x)-l}{x \log ^{2} x} d x \rightarrow 0 \quad \text { as } \quad t \rightarrow \infty
$$

It follows from (2.1) that

$$
\int_{t}^{u} \frac{s(x)}{x \log ^{2} x} d x=\frac{\tau(u)}{\log u}-\frac{\tau(t)}{\log t}+2 \int_{t}^{u} \frac{\tau(x)}{x \log ^{2} x} d x
$$

Lemma 2.3. Suppose that $f \in L_{l o c}^{1}[1, \infty)$. If $a(t)$ defined in (1.5) exists for $t>1$, then condition (1.7) holds.

Proof. Let $1<t<u<\infty$. We obtain

$$
\begin{aligned}
\int_{t}^{u} f(x) d x & =\int_{t}^{u} \frac{f(x) \log x}{\log x} d x \\
& =\log u \int_{1}^{t} \frac{f(y)}{\log y} d y+\log u \int_{t}^{u} \frac{f(y)}{\log y} d y-\log t \int_{1}^{t} \frac{f(y)}{\log y} d y-\int_{t}^{u} \frac{d x}{x} \int_{1}^{x} \frac{f(y)}{\log y} d y \\
& =\log u \int_{t}^{u} \frac{f(y)}{\log y} d y-\int_{t}^{u} \frac{d x}{x}\left(\int_{1}^{x} \frac{f(y)}{\log y} d y-\int_{1}^{t} \frac{f(y)}{\log y} d y\right)
\end{aligned}
$$

by applying integrating by parts. Since

$$
\int_{1}^{u} f(x) d x-\int_{1}^{t} f(x) d x=\log u \int_{t}^{u} \frac{f(y)}{\log y} d y-\int_{t}^{u} \frac{d x}{x} \int_{t}^{x} \frac{f(y)}{\log y} d y
$$

we get

$$
\begin{equation*}
\frac{s(u)}{\log u}=\frac{s(t)}{\log u}-\int_{t}^{u} \frac{d x}{x} \int_{t}^{x} \frac{f(y)}{\log y} d y+\int_{t}^{u} \frac{f(y)}{\log y} d y \tag{2.4}
\end{equation*}
$$

The first term on the right of the last equality tends to 0 as $u \rightarrow \infty$. The second term on the right is \log arithmic mean of the third term, except the coefficient $(-(\log u-\log t) / \log u)$, which tends to (-1) as $u \rightarrow \infty$. By regularity, we have

$$
\lim _{u \rightarrow \infty} \frac{1}{\log u-\log t} \int_{t}^{u} \frac{d x}{x} \int_{t}^{x} \frac{f(y)}{\log y} d y=\lim _{u \rightarrow \infty} \int_{t}^{u} \frac{f(y)}{\log y} d y
$$

Thus, we conclude that condition (1.7) is satisfied by (2.4).

3. Proof of Theorem 1.1

Necessity. Assume that the integral (1.1) is $(L, 1)$ summable to a finite complex number l and condition (1.7) is satisfied. The function $a(t)$ defined in (1.5) exists for $t>1$ by Lemma 2.1. We apply Fubini's theorem because of the integral $\int_{u}^{v} \frac{f(x)}{\log x} d x$ in the lower limit u belongs to $L_{l o c}^{1}(1, v)$ for any $v>1$. For $1<t<v$, we obtain

$$
\begin{equation*}
\int_{1}^{t} \frac{d u}{u} \int_{u}^{v} \frac{f(x)}{\log x} d x=\int_{1}^{t} \int_{1}^{x} \frac{f(x)}{u \log x} d u d x+\int_{t}^{v} \int_{1}^{t} \frac{f(x)}{u \log x} d u d x=s(t)+\log t \int_{t}^{v} \frac{f(x)}{\log x} d x \tag{3.1}
\end{equation*}
$$

Keeping t fixed as $v \rightarrow \infty$, we get

$$
\begin{equation*}
\frac{1}{\log t} \int_{1}^{t} a(u) d u=\frac{s(t)}{\log t}+t a(t) \tag{3.2}
\end{equation*}
$$

for $t>1$. Taking (2.3) and (3.2) into account, we have

$$
\begin{equation*}
\int_{1}^{t} a(u) d u=-\tau(t)+2 \log t \int_{t}^{\infty} \frac{\tau(x)}{x \log ^{2} x} d x \tag{3.3}
\end{equation*}
$$

and thus, we obtain

$$
\begin{equation*}
\int_{1}^{t} a(u) d u-l=-(\tau(t)-l)+2 \log t \int_{t}^{\infty} \frac{\tau(x)-l}{x \log ^{2} x} d x \tag{3.4}
\end{equation*}
$$

We conclude that relation (1.8) is satisfied by (1.4).
Sufficiency. Assume that $a(t)$ defined in (1.5) exists for $t>1$ and (1.8) is satisfied. Condition (1.7) is satisfied by Lemma 2.3. We just have to prove (1.4).

Taking into account (1.7) and (2.2) gives

$$
\begin{equation*}
\tau^{\prime}(t) \rightarrow 0 \quad \text { as } \quad t \rightarrow \infty \tag{3.5}
\end{equation*}
$$

If we set

$$
\begin{equation*}
\eta(t):=\log ^{2} t \int_{t}^{\infty} \frac{\tau(x)-l}{x \log ^{2} x} d x, \quad t>0 \tag{3.6}
\end{equation*}
$$

we have

$$
\begin{equation*}
\left.2 \frac{\eta(t)}{\log t}-(\tau(t)-l)\right) \rightarrow 0 \quad \text { as } \quad t \rightarrow \infty \tag{3.7}
\end{equation*}
$$

by (1.8) and (3.4).
It follows from (3.6) that

$$
\begin{aligned}
t(\eta(t)-\eta(t-1)) & =\frac{t\left(\log ^{2} t-\log ^{2}(t-1)\right)}{2 \log t}\left(2 \frac{\eta(t)}{\log t}-(\tau(t)-l)\right) \\
& +\frac{t\left(\log ^{2} t-\log ^{2}(t-1)\right)}{2 \log ^{t}}(\tau(t)-l)-t \log ^{2}(t-1) \int_{t-1}^{t} \frac{\tau(x)-l}{x \log ^{2} x} d x \\
& =\frac{t\left(\log ^{2} t-\log ^{2}(t-1)\right)}{2 \log t}\left(2 \frac{\eta(t)}{\log t}-(\tau(t)-l)\right) \\
& +\frac{t(\log (t-1)(\log t-\log (t-1))}{2} \int_{t-1}^{t} \frac{\tau(x)-l}{x \log ^{2} x} d x \\
& +t \log ^{2}(t-1) \int_{t-1}^{t} \frac{\tau(t)-\tau(x)}{x \log ^{2} x} d x .
\end{aligned}
$$

The first term on the right hand side of the equality above tends to 0 as $t \rightarrow \infty$ by (3.7). By (2.2), (3.5) and the mean value theorem, we obtain that the second and third term on the right hand side of the equality above also tend to 0 as $t \rightarrow \infty$. This implies that

$$
\begin{equation*}
\frac{\eta(t)}{\log t} \rightarrow 0 \quad \text { as } \quad t \rightarrow \infty \tag{3.8}
\end{equation*}
$$

We have (1.4) by (3.7) and (3.8).

Acknowledgment

This paper is presented at the 3rd International Conference of Mathematical Sciences (ICMS 2019), Maltepe University, İstanbul, Turkey.

References

1. Hardy, G. H., A theorem concerning summable series, Proc. Cambridge Philosoph. Soc. 20, 304-307, (1920-21).
2. Móricz, F., Summability ($C, 1$) of integrals on \mathbb{R}_{+}, Analysis (Munich). 18(1), 1-8, (1998).
3. Móricz, F., Necessary and sufficient Tauberian conditions for the logarithmic summability of functions and sequences, Studia Math. 219(2), 109-121, (2013).

Gökşen Fındık
Department of Mathematics,
Ege University,
Turkey.
E-mail address: findikgoksen@gmail.com
and
İbrahim Çanak
Department of Mathematics,
Ege University,
Turkey.
E-mail address: ibrahim.canak@ege.edu.tr

[^0]: 2010 Mathematics Subject Classification: 40A10, 40E05.
 Submitted November 01, 2019. Published June 09, 2021

