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On the logarithmic summability (L, 1) of integrals on [1, ∞)

Gökşen Fındık and İbrahim Çanak

abstract: Móricz [Analysis (Munich) 18(1) (1998), 1-8] characterized summability (C, 1) of integrals by
convergence of another integral. In this work, we extend this result to logarithmic summability (L, 1) of
integrals.
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1. Introduction

Let f : [0, ∞) → C be a Lebesgue integrable function on every bounded interval [0, t] for 0 < t. In
this case we write f ∈ L1

loc
[0, ∞). We define

k(t) :=

∫

t

0

f(x)dx and σ(t) :=
1

t

∫

t

0

k(u)du.

The integral

∫

∞

0

f(x)dx (1.1)

is called to be summable (C, 1) (or Cesàro summable of first order) to a finite complex number l if

lim
t→∞

σ(t) = l. (1.2)

Let f : [1, ∞) → C be such that f ∈ L1
loc

[1, ∞) and s ∈ L1
loc

[1, ∞). We define

s(t) :=

∫ t

1

f(x)dx and τ (t) :=
1

log t

∫ t

1

s(u)

u
du,

where the logarithm is to the naturel base e. The integral

∫

∞

1

f(x)dx (1.3)

is called to be summable (L, 1) (or logarithmic summable of first order) to a finite complex number l if

lim
t→∞

τ(t) = l. (1.4)

We note that if the integral (1.3) is summable (C, 1), then it is summable (L, 1) to the same limit,
but the converse is not satisfied in general (see [3]).
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Given f ∈ L1
loc

[1, ∞), we define a(t) as follows:

a(t) :=

∫

∞

t

f(x)

t log x
dx := lim

u→∞

∫ u

t

f(x)

t log x
dx, (1.5)

provided that the limit exists for some t > 1. One can easily see that (1.5) exists and a(t) is continuous
at any t > 1, a ∈ L1

loc
[1, ∞) and

a(t) → 0 as t → ∞. (1.6)

Hardy [1] characterized summability (C, 1) of series by convergence of another series. As an integral
analogue to a corresponding theorem on series proved by Hardy [1], Móricz [2] extended this result to
locally integrable functions over [0, ∞) and characterized summability (C, 1) of integrals by convergence
of another integral. In this work, we extend this result to locally integrable functions over [1, ∞) and
characterize logarithmic summability (L, 1) of integrals by convergence of another integral.

Our main theorem is as follows:

Theorem 1.1. Suppose that f ∈ L1
loc

[1, ∞). Then the integral (1.3) is summable (L, 1) to a finite
complex number l and

s(t)

log t
→ 0 as t → ∞ (1.7)

if and only if a(t) exists for t > 1 and
∫

∞

1

a(t)dt := lim
u→∞

∫ u

1

a(t)dt = l. (1.8)

2. Auxiliary results

For the proof of our main theorem, we need the following lemmas.

Lemma 2.1. Suppose that f ∈ L1
loc

[1, ∞). If the integral (1.3) is summable (L, 1) to a finite complex
number l and condition (1.7) holds, then a(t) defined in (1.5) exists for t > 1.

Proof. Let 1 < t < u < ∞. If we apply integrating by parts twice, we obtain
∫

u

t

f(x)

log x
dx =

s(u)

log u
−

s(t)

log t
+

∫

u

t

s(x)

x log2 x
dx

=
s(u)

log u
−

s(t)

log t
+

τ (u)

log u
−

τ (t)

log t
+ 2

∫ u

t

τ(x)

x log2 x
dx. (2.1)

Condition (1.7) implies

τ(t)

log t
→ 0 as t → ∞ (2.2)

by regularity of the logarithmic summability method. Taking (1.7) and (2.2) into account, we get

a(t) = −
s(t)

t log t
−

τ (t)

t log t
+

2

t

∫ u

t

τ (x)

x log2 x
dx, (2.3)

where u → ∞ in (2.1) for t > 1. Since the integral on the right exists in Lebesgue’s sense by (1.4), we
see that a(t) defined in (1.5) exists for t > 1. �

Remark 2.2. Under conditions of Lemma 2.1, we obtain that

log t

∫

∞

t

s(x) − l

x log2 x
dx → 0 as t → ∞.

It follows from (2.1) that
∫

u

t

s(x)

x log2 x
dx =

τ(u)

log u
−

τ(t)

log t
+ 2

∫

u

t

τ(x)

x log2 x
dx.
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Lemma 2.3. Suppose that f ∈ L1
loc

[1, ∞). If a(t) defined in (1.5) exists for t > 1, then condition (1.7)
holds.

Proof. Let 1 < t < u < ∞. We obtain

∫ u

t

f(x)dx =

∫ u

t

f(x) log x

log x
dx

= log u

∫ t

1

f(y)

log y
dy + log u

∫ u

t

f(y)

log y
dy − log t

∫ t

1

f(y)

log y
dy −

∫ u

t

dx

x

∫ x

1

f(y)

log y
dy

= log u

∫

u

t

f(y)

log y
dy −

∫

u

t

dx

x

(
∫

x

1

f(y)

log y
dy −

∫

t

1

f(y)

log y
dy

)

by applying integrating by parts. Since

∫ u

1

f(x)dx −

∫ t

1

f(x)dx = log u

∫ u

t

f(y)

log y
dy −

∫ u

t

dx

x

∫ x

t

f(y)

log y
dy,

we get

s(u)

log u
=

s(t)

log u
−

∫

u

t

dx

x

∫

x

t

f(y)

log y
dy +

∫

u

t

f(y)

log y
dy. (2.4)

The first term on the right of the last equality tends to 0 as u → ∞. The second term on the right is
logarithmic mean of the third term, except the coefficient (−(log u − log t)/ log u), which tends to (−1)
as u → ∞. By regularity, we have

lim
u→∞

1

log u − log t

∫

u

t

dx

x

∫

x

t

f(y)

log y
dy = lim

u→∞

∫

u

t

f(y)

log y
dy.

Thus, we conclude that condition (1.7) is satisfied by (2.4). �

3. Proof of Theorem 1.1

Necessity. Assume that the integral (1.1) is (L, 1) summable to a finite complex number l and condition
(1.7) is satisfied. The function a(t) defined in (1.5) exists for t > 1 by Lemma 2.1. We apply Fubini’s

theorem because of the integral

∫ v

u

f(x)

log x
dx in the lower limit u belongs to L1

loc
(1, v) for any v > 1. For

1 < t < v, we obtain

∫ t

1

du

u

∫ v

u

f(x)

log x
dx =

∫ t

1

∫ x

1

f(x)

u log x
dudx +

∫ v

t

∫ t

1

f(x)

u log x
dudx = s(t) + log t

∫ v

t

f(x)

log x
dx. (3.1)

Keeping t fixed as v → ∞, we get

1

log t

∫

t

1

a(u)du =
s(t)

log t
+ ta(t) (3.2)

for t > 1. Taking (2.3) and (3.2) into account, we have

∫

t

1

a(u)du = −τ (t) + 2 log t

∫

∞

t

τ(x)

x log2 x
dx (3.3)

and thus, we obtain

∫

t

1

a(u)du − l = − (τ (t) − l) + 2 log t

∫

∞

t

τ (x) − l

x log2 x
dx. (3.4)
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We conclude that relation (1.8) is satisfied by (1.4).

Sufficiency. Assume that a(t) defined in (1.5) exists for t > 1 and (1.8) is satisfied. Condition (1.7)
is satisfied by Lemma 2.3. We just have to prove (1.4).

Taking into account (1.7) and (2.2) gives

τ ′(t) → 0 as t → ∞. (3.5)

If we set

η(t) := log2 t

∫

∞

t

τ (x) − l

x log2 x
dx, t > 0, (3.6)

we have

2
η(t)

log t
− (τ (t) − l)) → 0 as t → ∞ (3.7)

by (1.8) and (3.4).

It follows from (3.6) that

t (η(t) − η(t − 1)) =
t
(

log2 t − log2(t − 1)
)

2 log t

(

2
η(t)

log t
− (τ (t) − l)

)

+
t
(

log2 t − log2(t − 1)
)

2 log t
(τ (t) − l) − t log2(t − 1)

∫

t

t−1

τ (x) − l

x log2 x
dx

=
t
(

log2 t − log2(t − 1)
)

2 log t

(

2
η(t)

log t
− (τ (t) − l)

)

+
t(log(t − 1)(log t − log(t − 1))

2

∫

t

t−1

τ(x) − l

x log2 x
dx

+ t log2(t − 1)

∫

t

t−1

τ(t) − τ (x)

x log2 x
dx.

The first term on the right hand side of the equality above tends to 0 as t → ∞ by (3.7). By (2.2), (3.5)
and the mean value theorem, we obtain that the second and third term on the right hand side of the
equality above also tend to 0 as t → ∞. This implies that

η(t)

log t
→ 0 as t → ∞. (3.8)

We have (1.4) by (3.7) and (3.8).
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References

1. Hardy, G. H., A theorem concerning summable series, Proc. Cambridge Philosoph. Soc. 20, 304-307, (1920-21).
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