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On the Divergence of Two Subseries
∑

1
p
, and Theorems of De La Vallée Poussin and

Landau-Walfisz

G. Sudhaamsh Mohan Reddy, S. Srinivas Rau, B. Uma

abstract: Let K = Q(
√

d) be a quadratic field with discriminant d. It is shown that
∑

( d
p

)=+1,p prime

1
p

and

∑

( d
q

)=−1,q prime

1
q

are both divergent. Two different approaches are given to show the divergence: one using

the Dedekind Zeta function and the other by Tauberian methods. It is shown that these two divergences are
equivalent. It is shown that the divergence is equivalent to Ld(1) , 0(de la Vallée Poussin’s Theorem).We prove
that the series

∑

( d
p

)=+1,p prime

1
ps and

∑

( d
q

)=−1,q prime

1
qs have singularities on all the imaginary axis(analogue

of Landau-Walfisz theorem)
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1. Introduction

Let K = Q(
√
d) be a quadratic field with discriminant d. There are an infinite number of primes p

with Legendre symbol (d
p
) = +1 (respectively -1) ([10], p91, p98). We ask : is

∑

( d
p

)=+1

1
p

= ∞ (respectively

∑

( d
q

)=−1

1
q

= ∞)?. The series are both divergent as we show in this article. We present two approaches

(i) using the divergence of the Dedekind Zeta function ζK at s = 1
(ii) using the value 1

2 of the density of primes of symbol +1 (respectively -1).

2. Summary of our results

The accompanying diagram shows the logical implications. Of course, our motivation is to consider
the two subseries of the divergent series

∑

p

1
p
(Euler)

(i) Using ζK(1) = ∞
Recall the Dedekind Zeta function in Euler product form

ζK(s) =
∏

P

(1 − 1

N(P)s
)−1 (Re s > 1)

(here P ranges over all prime ideals of the integer ring of K and N(P) denotes the norm of the ideal
P) ([10], p89)

Lemma 2.1. ([9], p40),
∑

P

1
N(P)s =

∑

( d
p

)=0

1
ps +

∑

( d
p

)=+1

1
ps +

∑

( d
q

)=−1

1
q2s . Hence the series on the left

diverges for s = 1 iff
∑

( d
p

)=+1

1
p

= ∞.
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Figure 1:

Proof. This is by the standard criterion for norms: depending on the value of the symbol it is either a
prime number p or the square of a prime number, q2 ([10], p63, [9], p40). This decomposition into three
sums is valid for Re s > 1 by absolute convergence of the series on the left.
Now the first series is finite and the last convergent for Re s > 1

2 . Hence taking limits as s → 1+, the
LHS series is convergent iff

∑

+1

1
p
< ∞. This proves the Lemma �

Recall that if
∞
∏

n=1
(1 − an) is an infinite product with 0 ≤ an < 1 for all n then the product converges

to a non zero number iff
∑

an converges; the product is 0 iff
∞
∑

n=1
an = ∞. Likewise

∞
∏

n=1
(1 + an) < ∞ iff

∞
∑

n=1
an < ∞
Dedekind’s Theorem :([10], p89) Lims→1+(s− 1)ζK(s) = Ld(1) , 0.

Here the L-series is defined by

Ld(s) =
∏

p

(1 −
(d

p
)

ps
)−1 =

∞
∑

n=1

( d
n

)

ns

for Re s > 1. The last series converges for Re s > 0 and defines Ld as an analytic function for Re s > 0
and Lims→1+Ld(s) = Ld(1) , 0

ζK(s) = ζ(s)Ld(s) (Re s > 1)

for the Riemann Zeta function ζ(s) ([10], p90).

Remark 2.2. We have the logical equivalences, by the above:

∑

+1

1

p
= ∞ ⇐⇒

∑

P

1

N(P)
= ∞

⇐⇒
∏

P

(1 − 1

N(P)
) = 0

⇐⇒ ζK(1) = ∞
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Proposition 2.3.
∑

+1

1
p

= ∞

Proof. By Dedekind, Lims→1+ζK(s)(s− 1) , 0 so that ζK(1) cannot be finite, or else the limit would be
zero. Now the above train of equivalence yields the divergence of our series. �

Proposition 2.4.
∑

−1

1
q

= ∞

Proof. The value of (d
p
) = 0, +1 or − 1 ([10], p63) according as p|d, p splits in K or p is prime in K.

The corresponding products give, by rearrangement using absolute convergence for Re s > 1,

Ld(s) =
1

∏

p,+1
(1 − 1

ps )
∏

q,−1
(1 + 1

qs )
=

1
∏

p

(1 − ( d
p

)

ps )

So (
∏

p,+1
(1 − 1

ps ))Ld(s) = 1
∏

q,−1

(1+ 1
qs )

Let s → 1+ and use the divergence of
∑

+1

1
p

above: the LHS has

limit=(0)(Ld(1)) = 0. Hence the product on RHS cannot converge to a non zero number. So
∑

−1

1
q

= ∞
�

Corollary 2.5. If
∑

−1

1
q

= ∞, then
∑

+1

1
p

= ∞

Proof. By the argument in the above proof of Prop2, we may cross multiply

Ld(s)
∏

q,−1

(1 +
1

qs
) =

1
∏

p,+1
(1 − 1

ps )
(Re s > 1)

Now as s → 1+ the limit on the left is ∞ so that the product on the right cannot converge to a non zero
value as s → 1+. Hence

∑

p,+1

1
p

cannot converge.

(ii) Using Density of Splitting Primes

The Dirichlet density d(A) for a subset A of the set of primes is defined as

d(A) = Lims→1+

∑

p∈A

1
ps

log( 1
s−1 )

We are interested in the case A = {p|(d
p
) = +1}.

We have then, d(A) = Limx→∞
|{p|p∈A,p≤x}|

|{p|p≤x}| = natural density of A ([8], p76) �

Theorem 2.6. If A is the set of primes p of symbol (d
p
) = +1, then the density d(A) = 1

2 ([3], p163, [8],

p75).

We show the divergence of
∑

+1

1
p

using the equality

∏

p,+1

(1 − 1

ps
) =

∑

n′

µ(n′)

(n′)s

where n′ ranges over the positive integers whose prime factors are all of symbol +1, µ is Moebius function.
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Proposition 2.7.
∑

n′

µ(n′)
n′ = 0 (= Lims→1+

∑

n′

1
(n′)s = Lims→1+

∏

p,+1
(1 − 1

ps )) so that
∏

p,+1
(1 − 1

p
) = 0

and
∑

+1

1
p

= ∞

Proof. We show in Lemma 2 below that
∑

n′≤x

µ(n′) = ◦(x). In Lemma 3 we use a result in Hlawka et al

[4], p200 to conclude that
∑

n′

µ(n′)
n′ = 0. �

Lemma 2.8. Limx→∞
1
x

(
∑

n′≤x

µ(n′)) = 0

Proof.

|Limx→∞
1

x

∑

n′≤x

µ(n′)| ≤ Limx→∞
1

x
(

∑

n′≤x

|µ(n′)|)

≤ Limx→∞{
(

∑

n′≤x

|µ(n′)|)
∑

n≤x

|µ(n)|

∑

n≤x

|µ(n)|

x
}

= Limx→∞{

∑

n′≤x

|µ(n′)|
∑

n≤x

|µ(n)| }. 1

ζ(2)

Now we claim the ratio

(
∑

n′≤x

|µ(n′)|)

(
∑

n≤x

|µ(n)|)
tends to 0 as x → ∞ because it can be rewritten as the ratio of

the number of squarefree integers formed from the first t primes of symbol +1:
|{pi1

pi2
...pim |ij ≤t,( d

pij
)=+1}|

|{pi1
pi2

...pim |ij≤t}| t depending on x.

But counting the ”favourable cases” and using the above Theorem on density, this ratio is asymptot-
ically (3

4 )t which tends to 0 as t → ∞ or x → ∞. This proves Lemma2.
We cite the result in Hlawka et al [5], p200 as.

�

Theorem 2.9. Let f(n) be an arithmetic function whose mean is 0 i.e
∑

n≤x

f(n) = ◦(x). Then

∑

n≤x

f(n)

n
=

1

x
{

∑

n≤x

(
∑

k|n

f(k))} + ◦(1)

.

We apply this result with the choice of f(n):

f(n) =

{

µ(n′) if n = n′

0 otherwise

Indeed, by Lemma2 the hypothesis of Theorem2 is satisfied and
∑

n≤x

f(n)
n

=
∑

n′≤x

µ(n′)
n′ = 1

x
{ ∑

n≤x

(
∑

k|n

f(k))}+

◦(1)
Now

∑

k|n

f(k) is evaluated as follows. Write n = n′n′′ where n′ gives the sub product of the prime

factors of symbol +1 and n′′ the product of the prime factors of symbol -1 or 0. So

∑

k|n

f(k) =
∑

k|n′n′′

f(k) =
∑

k|n′

µ(k) =

{

1 if n′ = 1
0 if n′ > 1
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Hence 1
x

(
∑

n≤x

(
∑

k|n

f(k))) = 1
x

(
∑

n=n′′≤x

1) as x → ∞ this last ratio tends to 0 because asymptotically this

fraction is (1
2 )ω(m) ∼ (1

2 )log logm by Hardy-Ramanujan’s estimate ([4], p 50). This shows
∑ µ(n′)

n′ = 0
and proves Proposition3.

Remark 2.10. We may show
∑

−1

1
q

= ∞ by a simple adaptation of the proof of Proposition3, exchanging

the roles of n′ and n′′. As we have deduced this divergence from that of
∑

+1

1
p

in Prop2 above, we do not

rewrite the proof of Prop3.

Remark 2.11. We obtain an independent proof of the divergence of ζK at s = 1 in view of Remark 1
above. Indeed

∑

+1

1
ps is a subseries of

∑

I ideal

1
N(I)s = ζK(s).

(iii)Equivalence with de la Vallée Poussin’s Theorem

We showed that
∑

( d
p

)=+1

1
p

= ∞ if d is a squarefree integer (d , 1). Here we deduce that this divergence

is equivalent to Ld(1) , 0. Recall the definition

Ld(s) =
∏

p

(1 −
(d

p
)

ps
)−1 =

∞
∑

n=1

( d
n

)

ns

This is done by showing that the divergence is equivalent to ”ψ(1) = ∞” (simple pole) for

ψ(s) =
Ld(s)L(s, χ0)

L(2s, χ0)
(⋆)

where L(s, χ0) = (
∏

p|d

(1 − 1
ps ))ζ(s). This behaviour of ψ is the basis of de la Valle’e Poussin’s proof that

Ld(1) , 0 ([6], p260).

Proposition 2.12. Let ψ(s) be defined by (⋆). Then Lims→1+ψ(s) is not finite.Hence Ld(1) , 0

Proof. As in [6], p260 we expand for Re s > 1

ψ(s) =
∏

( d
p

)=+1

(1 + p−s)

(1 − p−s)

=
∏

( d
p

)=+1

(1 + p−s)(1 − p−s)

(1 − p−s)(1 − p−s)

=
∏

( d
p

)=+1

(1 − p−2s)

(1 − p−s)2

=

∏

( d
p

)=+1

(1 − p−2s)

∏

( d
p

)=+1

(1 − p−s)2

when s = 1 the numerator is 1
ζ(2) = 6

π2 . We examine the denominator for s = 1.

Now
∏

( d
p

)=+1

(1 − p−1)2 <
∏

( d
p

)=+1

(1 − p−1) = 0
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since
∑

( d
p

)=+1

1
p

= ∞, using the standard criterion for infinite product:

∏

n

(1 − an) converges ⇐⇒
∑

an converges and
∑

|an|2 converges (⋆⋆)

Indeed the L-functions are analytic for {Re s > 0} ([5]) and so if Ld(1) = 0 then ψ(1) is finite, since
this zero cancels the pole of ζ(1). But the above gives ψ(1) infinite so that Ld(1) , 0.

Conversely, if Ld(1) , 0 then ψ(s) has a pole at s = 1 and so the product
∏

( d
p

)=+1

(1 − 1
p
) cannot

converge( to a nonzero number)
i.e.,

∏

( d
p

)=+1

(1 − 1
p
) = 0 and

∑

( d
p

)=+1

1
p

= ∞.

�

Remark 2.13. An important consequence of Ld(1) , 0 is that the full infinite product

∏

p

(1 −
(d

p
)

p
)−1

converges. Further, the value is Ld(1) since Ld is continuous. Thus the divergence of the subproduct
implies the convergence of the full Euler product. Though this convergence is known the standard textbooks
like [2] do not give a proof. Here we sketch a proof based on the results in Chs 6 and 7 of [2].

Lemma 2.14.
∑

p≤x

( d
p

)logp

p
= ©(1)

Proof. See [2], pp 149-152. �

Corollary 2.15.
∑

p

( d
p

)

p
= 0

Proof. Let

an =

{

( d
p

)

p
if n = p, prime

0 if n not prime

Thus
∑

p≤x

an =
∑

p≤x

( d
p

)

p
= ©(1) by Lemma 3.

Now consider
∑

p<n≤x

an

logn
. Applying Abel summation

∑

1<n≤x

an

logn
=

∑

p≤x

( d
p

)

p
= ©( 1

logx
) ([2], Th 4.2)

Letting x → ∞ we have the series
∑

p

( d
p

)

p
= 0. �

Corollary 2.16.
∏

p

(1 − ( d
p

)

p
) is convergent (to Ld(1) , 0)

Proof. By the standard criterion (⋆⋆) the product converges if and only if the series
∑

p

( d
p

)

p
converges and

∑

| ( d
p

)

p
|2 < ∞. This is ensured by Cor 2 and the convergence of

∑

p

1
p2 . Since Ld(s) is continuous (indeed

analytic) for Re s > 0, the value of the product agrees with the limit as s → 1+ of Ld(s) which is Ld(1).
�
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(iv)An analogue of Landau-Walfisz Theorem

We prove the following analogues of the Landau-Walfisz theorem on analytic continuation of
∑

p prime

1
ps .

Recall that this states that this imaginary axis is a natural boundary of the meromorphic continuation
of this series([9], p40, [8])

Proposition 2.17.

(a) Let d be a squarefree integer. Then the series
∑

( d
p

)=+1

1
ps and

∑

( d
q

)=−1

1
qs have the imaginary axis as

natural boundary.

(b) Consider the quadratic field Q(
√
d). The analogous series over prime ideals

∑

P

1
N(P )s has the imag-

inary axis as natural boundary(Andrade’s result, special case)

Before giving the proof of the proposition1 we mention the following relevant results.

Kurokawa’s Theorem:The Euler products ζ+(s) =
∏

( d
p

)=+1

(1− 1
ps )−1 and ζ−(s) =

∏

( d
q

)=−1

(1− 1
qs )−1

have analytic continuation in {Re s > 1} and natural boundary {Re s = 0}
Proposition 2.18.

(a)
∑

p

1
ps =

∑

n

µ(n)
n
logζ(ns) (ζ(s)=Riemann Zeta function)

(b)
∑

P

1
N(P )s =

∑

n

µ(n)
n
logζk(ns) (ζk(s)=Dedekind Zeta function)

6(a) is due to Landau-Walfisz ([11], p12 ) and 6(b) was derived in ([9])

Proof of Proposition1:

(a) One has

∑

( d
p

)=+1

1

ps
=

∑

n

µ(n)

n
logζ+(ns)

imitating the derivation in Titchmarsh ([11],p12). For each n, the function fn(s) = µ(n)
n
logζ+(ns)

is analytic on {Re s > 0} except for singularities which accumulate in each interval of the imaginary
axis ([1]). Now if m , n the singularities of fm(s) are distinct from those of fn(s). Hence the function

FN (s) =
N
∑

n=1
fn(s) has the same behaviour as the individual fn(s) with singularity set= union of singu-

larity sets of f1, f2, ..., fN . Letting N → ∞ we have that each point of the imaginary axis is a singularity
for f(s) = LimN→∞fN(s).

An identical argument applies for
∑

( d
q

)=−1

1
qs .

(b) Note that due to the splitting behaviour of primes ([10],p63)
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∑

P

1

N(P )s
=

∑

+1

1

ps
+

∑

−1

1

q2s

=

∞
∑

n=1

µ(n)

n
logζ+(ns) +

∞
∑

n=1

µ(n)

n
logζ−(2ns)

=
∞

∑

n=1

µ(n)

n
log(ζ+(ns)ζ−(2ns))

But

ζ+(ns)ζ−(2ns) =
∏

+1

(1 − 1

ps
)−1

∏

−1

(1 − 1

q2s
)−1

=
∏

+1

(1 − 1

ps
)−1

∏

−1

(1 − 1

qns
)−1

∏

−1

(1 +
1

qsn
)−1

=
ζ(ns)

∏

p|n

(1 − 1
pns )−1

∏

−1

(1 +
1

qsn
)−1

= {E(s)}

∏

−1
(1 − 1

qns )−1

∏

−1
(1 − 1

q2ns )−1

= E(s)
ζ−(ns)

ζ−(2sn)

Now E(s) is entire except for a pole at s = 1
n

and the ratio gives a unique meromorphic function.
Now the argument in (a) applies to give singularity at every point of the imaginary axis.
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