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Notes on the Bienergy and Biangle of a Moving Particle Lying in a Surface of Euclidean

Space

Talat Korpinar and Yasin Unluturk

abstract: In this study, we research bienergy and biangles of moving particles lying in the surface of
Euclidean space by using their energy and angle values. We present a geometrical understanding of a bienergy
of a particle in Darboux vector fields depending on surface. We also give a relation between bienergy of the
curve corresponding to a moving particle in space and bienergy of the elastica assuming the curve that has
the elastic feature. We conclude our results by providing a bienergy-curve graphics for different cases.
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1. Introduction

The idea of elasticity is a phenomenon that can be evaluated from many different perspectives, es-
pecially in the physical and mathematical sciences. For instance, all substances such as cloths, flexible
metals, rubber, paper, etc. in the real world are included in the theory of elasticity. Areas where elasticity
studies are primarily concentrated are mechanical equilibrium, variational problems, and elliptic integral
solutions [1]- [6].

The results obtained in the first studies on elasticity are about equilibrium of moments which estab-
lishes the basic principles of statics. Further, the variational problem to minimize bending energy of the
elastic curve is solved by elastica. Thereafter, it has been found that there is an equivalency between the
pendulum motion and basic differential equation of elastica [4].

Computation energy of a given vector field subject to the structure of space gains such attention in the
last couple years. Computations in these forms have various applications in different fields. For example,
Wood [1], studied on the unit vector field’s energy firstly. Gil-Medrano [2], worked on relation between
energy and volume of vector fields. In [3], Kirchhoff, and in [4], Catmull investigated on the energy
of distrubutions and corrected energy of distrubutions on Riemannian manifolds. Altin [7], computed
energy of a Frenet vector fields for a given nonlightlike curves.

Darboux frame, which is a natural moving frame and corresponds to Frenet frame that implemented to
geometry of surface, is used as a bridge since functionals of surface energy are constructed by functionals
of energy constructed for curves [8]. Korpinar and Demirkol approached the topic with a different
perspective by calculating curvature-based energy for surface curves to investigate the relation between
energy of particle on surface and curvature-based bending energy functional. The method they use for
computing the energy of Darboux vector fields is that considering a vector field as a map from manifold
M to the Riemannian manifold (T M, ρs) , where T M is tangent bundle of a Riemannian manifold and
ρs is a Sasaki metric induced from T M naturally [9], [12]- [15].

In this study, we first present fundamental definitions and Darboux frame equations for surfaces and
curves in Euclidean space. Then we recall the definitions and state interpretation of geometrical meaning
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of the energy for unit vector fields. Based on these relations, we compute the bienergies and the biangles
of moving particle’s vector fields corresponding to a curve in the space lying in a surface of Euclidean
space. Finally, we give examples about particle’s energy for different cases by computing their value and
drawing thier graph.

2. Preliminaries

Let Ω be a particle moving in a space such that the precise location of the particle is specified by
Ω = Ω (t) , where t is a time parameter. Changing time parameter describes the motion and hereby the
trajectory corresponds to a curve ω in the space for a moving particle. It is convenient to remind the
arc-length parameter s, which is used to compute the distance traveled by a particle along its trajectory.
It is defined by

ds

dt
= ‖v‖ ,

where v = v (t) =
dω

dt
is the velocity vector and

dω

dt
6= 0. In particle dynamics, the arc-length parameter

s is considered as a function of t [8]. Thanks to the arc-length, it is also determined Serret-Frenet frame,
which allows us to determine characterization of the intrinsic geometrical features of the regular curve.
This coordinate system is constructed by three orthonormal vectors e

µ

(α) and the curve ω itself, assuming

the curve is sufficiently smooth at each point. The index within the paranthesis is the tetrad index that
describes particular member of the tetrad. In particular, e

µ

(0) is the unit tangent vector, e
µ

(1), e
µ

(2) is the

unit normal and binormal vector fields of the curve ω, respectively.
For the trajectory of the moving particle which corresponds to a curve ω on the surface, the Darboux

vectors e
µ

(0), n, P = e
µ

(0) ×n, which are respectively known as curve’s unit tangent, surface’s unit normal,

and tangent’s normal, satisfies following equations and properties, [8]

∇eµ

(0)
e

µ

(0) = κgP + κnn, (1)

∇eµ

(0)
P = −κge

µ

(0) + τ gn, (2)

∇eµ

(0)
n = −κne

µ

(0) − τ gP. (3)

(2.1)

where κg, κn, τg are geodesic curvature, normal curvature and geodesic torsion of the curve, respectively
[20]. Since we identify e

µ

(0) as a unit vector which is a tangent to the the curve at each point on the curve,

we have e
µ

(0) = dΩu/ds, where Ωu is the point on the trajectory of curve ω. Thus e
µ

(0), P and n generate

the Darboux frame and equations (1 − 3) are known as Darboux equations for each case [8].

Definition 2.1. For two Riemannian manifolds (M, ρ) and
(

N, h̃
)

, the energy of a differentiable map

f : (M, ρ) →
(

N, h̃
)

can be defined as

energy (f) = 1
2

∫

M

∑n
a=1 h̃ (df (ea) , df (ea)) v, (2.2)

where {ea} is a local basis of the tangent space and v is the canonical volume form in M [10]- [11].

Proposition 2.2. Let Q : T
(

T 1M
)

→ T 1M be the connection map. Then following two conditions hold:

i) ω ◦ Q = ω ◦ dω and ω ◦ Q = ω ◦ ω̃, where ω̃ : T
(

T 1M
)

→ T 1M is the tangent bundle projection; ii) for
̺ ∈ TxM and a section ξ : M → T 1M ; we have

Q (dξ (̺)) = D̺ξ, (2.3)

where D is the Levi-Civita covariant derivative [10]- [11].

Definition 2.3. For ς1, ς2 ∈ Tξ

(

T 1M
)

, we define

ρS (ς1, ς2) = ρ (dω (ς1) , dω (ς2)) + ρ (Q (ς1) , Q (ς2)) . (2.4)

This yields a Riemannian metric on T M . As known ρS is called the Sasaki metric that also makes
the projection ω : T 1M → M a Riemannian submersion [10]- [11].
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Definition 2.4. [7] Angle between arbitrary Frenet vectors is given by

angle(Vi) =
∫ s

0
‖∇V1 Vi‖ du.

Definition 2.5. [16] Bienergy of the vector field X is given by following equation

energy2 (X) =
∫ s

0
ρS (∇V1∇V1 X, ∇V1∇V1X) ds. (2.5)

Definition 2.6. [16] Biangle between arbitrary Frenet vectors is given by

angle2(Vi) =
∫ s

ϑ

∥

∥∇2
V1

Vi

∥

∥ du. (2.6)

3. Bienergy and biangle of a particle lying in a surface of Euclidean space

Theorem 3.1. Bienergy on the moving particle in tangent vector field by using Sasaki metric is stated
by

energy2e
µ

(0) =
∫ s

0

(

κ2
g + κ2

n + (κ2
g + κ2

n)2 + (κ′

g − κnτ g)2 + (κ′

n + κgτ g)2
)

ds.

Proof. From (2.4) and (2.5) we know

energy2e
µ

(0) =
∫ s

0 ρS

(

∇eµ

(0)
∇eµ

(0)
e

µ

(0), ∇eµ

(0)
∇eµ

(0)
e

µ

(0)

)

ds.

Using Eq. (2.4) we have

ρS

(

de
µ

(0)(e
µ

(0)), de
µ

(0)(e
µ

(0))
)

= ρ(dω(eµ

(0)(e
µ

(0))), dω(eµ

(0)(e
µ

(0))))

+ρ(Q(eµ

(0)(e
µ

(0))), Q(eµ

(0)(e
µ

(0)))).

Since e
µ

(0) is a section, we get

d(ω) ◦ d(eµ

(0)) = d(ω ◦ e
µ

(0)) =d(idC) = idT C .

We also know
Q(eµ

(0)(∇eµ

(0)
e

µ

(0))) = ∇eµ

(0)
∇eµ

(0)
e

µ

(0)

=κ′

gP + κg(−κge
µ

(0)+τ gn) + κ′

nn + κn(−κne
µ

(0)−τgP)

= −(κ2
g + κ2

n)eµ

(0) + (κ′

g − κnτ g)P + (κ′

n + κgτ g)n

Thus, we find from (2.4)

ρS

(

∇eµ

(0)
∇eµ

(0)
e

µ

(0), ∇eµ

(0)
∇eµ

(0)
e

µ

(0)

)

= ρ
(

∇eµ

(0)
e

µ

(0), ∇eµ

(0)
e

µ

(0)

)

+ρ
(

∇eµ

(0)
∇eµ

(0)
e

µ

(0), ∇eµ

(0)
∇eµ

(0)
e

µ

(0)

)

= κ2
g + κ2

n + (κ2
g + κ2

n)2 + (κ′

g − κnτ g)2 + (κ′

n + κgτ g)2.

So we can easily obtain

energy2e
µ

(0) =
∫ s

0

(

κ2
g + κ2

n + (κ2
g + κ2

n)2 + (κ′

g − κnτ g)2 + (κ′

n + κgτ g)2
)

ds.

This completes the proof. �

Corollary 3.2. Bienergy on the moving particle in tangent vector field is fixed iff

(τ gκg − κ′

n)2 + (κnκg + τ ′

g)2 + (κ2
n + τ2

g)2 = 0.

Theorem 3.3. Biangle of the moving particle in tangent vector field is

angle2(eµ

(0)) =
∫ s

0 ((τ gκg − κ′

n)2 + (κnκg + τ ′

g)2 + (κ2
n + τ2

g)2)
1
2 du.
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Proof. By definition 2.6, we write that

angle2(eµ

(0)) =
∫ s

0

∥

∥

∥
∇2

eµ

(0)
e

µ

(0)

∥

∥

∥
du

=
∫ s

0 ((τ gκg − κ′

n)2 + (κnκg + τ ′

g)2 + (κ2
n + τ2

g)2)
1
2 du.

�

Theorem 3.4. Bienergy on the moving particle in normal vector field by using Sasaki metric is stated
by

energy2(n) =
∫ s

0

(

τ2
g + κ2

n + (τ gκg − κ′

n)2 + (κnκg + τ ′

g)2 + (κ2
n + τ2

g)2
)

ds.

Proof. From (2.4) and (2.5) we arrive

energy2 (n) =
∫ s

0
ρS

(

∇eµ

(0)
∇eµ

(0)
n, ∇eµ

(0)
∇eµ

(0)
n

)

ds.

Using Eq. (2.3) in (2.4), we have

ρS

(

de
µ

(0)(n), de
µ

(0)(n)
)

= ρ(dω(eµ

(0)(n)), dω(eµ

(0)(n)))+ρ(Q(eµ

(0)(n)), Q(eµ

(0)(n))).

Since eµ

(0) is a section, we get

d(ω) ◦ d(n) = d(ω ◦ n) =d(idC) = idT C .

We also know
Q(eµ

(0)(∇eµ

(0)
n)) = ∇eµ

(0)
∇eµ

(0)
n

= (τ gκg − κ′

n)eµ

(0) − (κnκg + τ ′

g)P − (κ2
n + τ2

g)n.

Thus, we use the Darboux derivative formulas (2.1) in (2.4):

ρS

(

∇eµ

(0)
∇eµ

(0)
n, ∇eµ

(0)
∇eµ

(0)
n

)

= ρ
(

∇eµ

(0)
n, ∇eµ

(0)
n

)

+ρ
(

∇eµ

(0)
∇eµ

(0)
n, ∇eµ

(0)
∇eµ

(0)
n

)

= τ2
g + κ2

n + (τ gκg − κ′

n)2 + (κnκg + τ ′

g)2 + (κ2
n + τ2

g)2.

So we can easily obtain

energy2(n) =
∫ s

0

(

τ2
g + κ2

n + (τ gκg − κ′

n)2 + (κnκg + τ ′

g)2 + (κ2
n + τ2

g)2
)

ds.

This completes the proof. �

Corollary 3.5. Bienergy on the moving particle in normal vector field is fixed iff

(τ gκg − κ′

n)2 + (κnκg + τ ′

g)2 + (κ2
n + τ2

g)2 = 0.

Theorem 3.6. Biangle of the moving particle in normal vector field is

angle2(n) =
∫ s

0 ((τ gκg − κ′

n)2 + (κnκg + τ ′

g)2 + (κ2
n + τ2

g)2)
1
2 du.

Proof. By definition 2.6, we write that

angle2(n) =
∫ s

0

∥

∥

∥
∇2

eµ

(0)
e

µ

(0)

∥

∥

∥
du

=
∫ s

0 ((τ gκg − κ′

n)2 + (κnκg + τ ′

g)2 + (κ2
n + τ2

g)2)
1
2 du.

�
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Theorem 3.7. Bienergy on the moving particle in tangent’s normal vector field by using Sasaki metric
is stated by

energy2P =
∫ s

0

(

κ2
g + τ2

g + (κ′

g + κnτ g)2 + (κ2
g + τ2

g)2 + (τ ′

g − κnκg)2
)

ds.

Proof. From (2.4) and (2.5) we have

energy2 (P) =
∫ s

0 ρS

(

∇eµ

(0)
∇eµ

(0)
P, ∇eµ

(0)
∇eµ

(0)
P

)

ds.

Using Eq. (2.4) we have

ρS

(

de
µ

(0)(P), de
µ

(0)(P)
)

= ρ(dω(eµ

(0)(P)), dω(eµ

(0)(P)))+ρ(Q(eµ

(0)(P)), Q(eµ

(0)(P))).

Since e
µ

(0) is a section, we get

d(ω) ◦ d(P) = d(ω ◦ P) =d(idC) = idT C .

We also know

Q(eµ

(0)(∇eµ

(0)
P)) = ∇eµ

(0)
∇eµ

(0)
P = − (κ′

g + κnτ g)eµ

(0) − (κ2
g + τ2

g)P + (τ ′

g − κnκg)n.

Thus, we substitute (2.1) into (2.4):

ρS

(

∇eµ

(0)
∇eµ

(0)
P, ∇eµ

(0)
∇eµ

(0)
P

)

= ρ
(

∇eµ

(0)
e

µ

(0), ∇eµ

(0)
e

µ

(0)

)

+ρ
(

∇eµ

(0)
∇eµ

(0)
e

µ

(0), ∇eµ

(0)
∇eµ

(0)
e

µ

(0)

)

= κ2
g + τ2

g + (κ′

g + κnτ g)2 + (κ2
g + τ2

g)2 + (τ ′

g − κnκg)2.

So we can easily obtain

energy2P =
∫ s

0

(

κ2
g + τ2

g + (κ′

g + κnτ g)2 + (κ2
g + τ2

g)2 + (τ ′

g − κnκg)2
)

ds.

This completes the proof. �

Corollary 3.8. Bienergy on the moving particle in tangent’s normal vector field is fixed iff

(κ′

g + κnτ g)2 + (κ2
g + τ2

g)2 + (τ ′

g − κnκg)2 = 0.

Theorem 3.9. Biangle of the moving particle in tangent’s normal vector field is

angle2(P) =
∫ s

0 ((κ′

g + κnτ g)2 + (κ2
g + τ2

g)2 + (τ ′

g − κnκg)2)
1
2 du.

Proof. By definition 2.6, we write that

angle2(P) =
∫ s

0

∥

∥

∥
∇2

eµ

(0)
e

µ

(0)

∥

∥

∥
du

=
∫ s

0 ((κ′

g + κnτ g)2 + (κ2
g + τ2

g)2 + (τ ′

g − κnκg)2)
1
2 du.

�

Theorem 3.10. Bienergy on the moving particle in the vector field

X =α1e
µ

(0) + α2P + α3n,

where αi = αi(s), i = 1, 2, 3 are smooth functions, by using Sasaki metric is stated by

energy2X =
∫ s

0
[{α′

1 − α2κg − α3κn}2 + {α′

2 + α1κg − α3τg}2 + {α′

3 + α1κn + α2τg}2

+{α′′

1 − (α2κg)′ − (α3κn)′ − α1(κ2
g + κ2

n) − α′

2κg − α2κnτg − α′

3κn + α3κgτ g}
2

+{α′′

2 − (α3τ g)′ + (α1κg)′ − α2(κ2
g + τ2

g) − α′

3τg − α1κnτ g + α1κg − α3κnκg}
2

+{α′′

3 + (α2τ g)′ + (α1κn)′ − α3(κ2
n + τ2

g) + α′

2τ g − α2κnκg + α1κn + α1κgτg}2]ds.



6 Talat Korpinar and Yasin Unluturk

Proof. From (2.4) and (2.5) we know

energy2X =
∫ s

0 ρS

(

∇eµ

(0)
∇eµ

(0)
X, ∇eµ

(0)
∇eµ

(0)
X

)

ds.

Using Eq. (2.4) we have

ρS

(

de
µ

(0)(X), de
µ

(0)(X)
)

= ρ(dω(eµ

(0)(X)), dω(eµ

(0)(X)))+ρ(Q(eµ

(0)(X)), Q(eµ

(0)(X))).

Since e
µ

(0) is a section, we get

d(ω) ◦ d(eµ

(0)) = d(ω ◦ e
µ

(0)) =d(idC) = idT C .

We also know

Q(eµ

(0)(∇eµ

(0)
X)) = ∇eµ

(0)
∇eµ

(0)
X

= {α′′

1 − (α2κg)′ − (α3κn)′ − α1(κ2
g + κ2

n) − α′

2κg − α2κnτg − α′

3κn + α3κgτg}e
µ

(0)

+{α′′

2 − (α3τ g)′ + (α1κg)′ − α2(κ2
g + τ2

g) − α′

3τg − α1κnτ g + α1κg − α3κnκg}P

+{α′′

3 + (α2τ g)′ + (α1κn)′ − α3(κ2
n + τ2

g) + α′

2τg − α2κnκg + α1κn + α1κgτ g}n.

Thus, using (2.1) in (2.4), we obtain

ρS

(

∇eµ

(0)
∇eµ

(0)
X, ∇eµ

(0)
∇eµ

(0)
X

)

= ρ
(

∇eµ

(0)
X, ∇eµ

(0)
X

)

+ ρ
(

∇eµ

(0)
∇eµ

(0)
X, ∇eµ

(0)
∇eµ

(0)
X

)

= {α′

1 − α2κg − α3κn}2 + {α′

2 + α1κg − α3τ g}2 + {α′

3 + α1κn + α2τ g}2

+{α′′

1 − (α2κg)′ − (α3κn)′ − α1(κ2
g + κ2

n) − α′

2κg − α2κnτg − α′

3κn + α3κgτg}
2

+{α′′

2 − (α3τ g)′ + (α1κg)′ − α2(κ2
g + τ2

g) − α′

3τg − α1κnτ g + α1κg − α3κnκg}
2

+{α′′

3 + (α2τ g)′ + (α1κn)′ − α3(κ2
n + τ2

g) + α′

2τg − α2κnκg + α1κn + α1κgτ g}
2
.

So we can easily obtain

energy2X =
∫ s

0
[{α′

1 − α2κg − α3κn}2 + {α′

2 + α1κg − α3τg}2 + {α′

3 + α1κn + α2τg}2

+{α′′

1 − (α2κg)′ − (α3κn)′ − α1(κ2
g + κ2

n) − α′

2κg − α2κnτg − α′

3κn + α3κgτ g}
2

+{α′′

2 − (α3τ g)′ + (α1κg)′ − α2(κ2
g + τ2

g) − α′

3τg − α1κnτ g + α1κg − α3κnκg}
2

+{α′′

3 + (α2τ g)′ + (α1κn)′ − α3(κ2
n + τ2

g) + α′

2τ g − α2κnκg + α1κn + α1κgτg}
2
]ds.

This completes the proof. �

Corollary 3.11. Bienergy on the moving particle in the vector field

X =α1e
µ

(0) + α2P + α3n,

where αi = αi(s), i = 1, 2, 3 are smooth functions, is fixed iff

{α′′

1 − (α2κg)′ − (α3κn)′ − α1(κ2
g + κ2

n) − α′

2κg − α2κnτ g − α′

3κn + α3κgτ g}
2

+{α′′

2 − (α3τ g)′ + (α1κg)′ − α2(κ2
g + τ2

g) − α′

3τg − α1κnτ g + α1κg − α3κnκg}
2

+{α′′

3 + (α2τ g)′ + (α1κn)′ − α3(κ2
n + τ2

g) + α′

2τg − α2κnκg + α1κn + α1κgτ g}2 = 0.
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Figure 1:

Theorem 3.12. Biangle of the moving particle in the vector field

X =α1e
µ

(0) + α2P + α3n,

where αi = αi(s), i = 1, 2, 3 are smooth functions, is

angle2(X) =
∫ s

0
[{α′′

1 − (α2κg)′ − (α3κn)′ − α1(κ2
g + κ2

n) − α′

2κg − α2κnτ g − α′

3κn + α3κgτ g}
2

+{α′′

2 − (α3τg)′ + (α1κg)′ − α2(κ2
g + τ2

g) − α′

3τ g − α1κnτg + α1κg − α3κnκg}2

+{α′′

3 + (α2τg)′ + (α1κn)′ − α3(κ2
n + τ2

g) + α′

2τ g − α2κnκg + α1κn + α1κgτ g}
2
]

1
2 du.

Proof. From definition 3.6, using the expression

angle2(X) =
∫ s

0

∥

∥

∥
∇2

eµ

(0)
e

µ

(0)

∥

∥

∥
du,

we have the result desired. �

4. Application

Energy and angle concepts reviewed in optics and geometrical applied physics, [17]- [21]. In this
section we conduct our geometric understanding of the bienergy and biangle of particle into graphs for
different cases. By doing this practice we have a chance to observe differentiation of the bienergy and
biangle of the particle with respect to time and different curves.

Binergy and biangle of Darboux vectors {e
µ

(0), n, P} are drawn for helix in Figures 1,2, respectively.
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Figure 2:
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