Coupled fixed point theorems of JS-G-contraction on G-Metric Spaces

G. Sudhaamsh Mohan Reddy, V. Srinivas Chary, D. Srinivasa Chary, Stojan Radenović, Slobodanka Mitrovic

ABSTRACT: Jaradat has proven some fixed point results using $J S$ - G-contraction on G-metric spaces. Choudhury et al. were derived coupled fixed point theorems for the G-metric spaces. The purpose of this paper is to prove some coupled fixed point theorems of $J S$ - G-contraction on G-metric spaces. Moreover, some example is presented to illustrate the validity of our results.
Key Words: G-metric space, coupled fixed point, $J S$ - G-contraction.

Contents

1 Introduction

2 Preliminaries 1
3 Main Results 3

1. Introduction

In theory of fixed point, Banach contraction principle is a simple and powerful result. These are several generalizations and extensions of the Banach contraction priciple in the existing literature. Jleli and Samet [7] established new contraction that is $\psi(d(f x, f y)) \leq[\psi(d(x, y))]^{k}$, where $k \in(0,1)$ and $d(f x, f y) \neq 0, x, y \in X$ and $\psi \in \Psi$ (For more details see [7], [8]). Jaradat and Mustafa [8] introduced new contraction called $J S$ - G-contraction and they proved some fixed point results of such contraction in the setting of G-metric spaces. T.Gnana Bhaskar et al. [5] have derived the coupled fixed point theorems for metric spaces having mixed monotone property and Binayak S. Choudhury et al. [3] have generalized and obtained the results of Gnana Bhaskar et al. of coupled fixed point theorems for G-metric spaces. In this paper we derive the coupled fixed point theorems of $J S$ - G-contraction on G - metric spaces.

2. Preliminaries

Definition 2.1. [10] Let X be a non-empty set and $G: X \times X \times X \rightarrow R^{+}$be a function satisfying the following

1. $G(x, y, z)=0$ if $x=y=z$,
2. $G(x, x, y)>0$ for all $x, y \in X$, with $x \neq y$,
3. $G(x, x, y) \leq G(x, y, z)$, for all $x, y, z \in X$ with $y \neq z$,
4. $G(x, y, z)=G(y, z, x)=G(z, x, y)=\cdots$ (symmetry in all three variables),
5. $G(x, y, z) \leq G(x, a, a)+G(a, y, z)$, for all $x, y, z, a \in X$ (rectangular inequality).

Then the function G is called a generalized metric or more specifically $a G$-metric on X and the pair (X, G) is a G-metric space.

Example 2.2. [10] If X is a non empty subset of R, then the function $G: X \times X \times X \rightarrow[0, \infty)$, given by $G(x, y, z)=|x-y|+|y-z|+|z-x|$ for all $x, y, z \in X$, is a G-metric on X.

Example 2.3. [19] Let $X=\{0,1,2\}$ and let $G: X \times X \times X \rightarrow[0, \infty)$ be the function given by the following table.

[^0]| (x, y, z) | $G(x, y, z)$ |
| :---: | :---: |
| $(0,0,0),(1,1,1),(2,2,2)$ | 0 |
| $(0,0,1),(0,1,0),(1,0,0),(0,1,1),(1,0,1),(1,1,0)$ | 1 |
| $(1,2,2),(2,1,2),(2,2,1)$ | 2 |
| $(0,0,2),(0,2,0),(2,0,0),(0,2,2),(2,0,2),(2,2,0)$ | 3 |
| $(1,1,2),(1,2,1),(2,1,1),(0,1,2),(0,2,1),(1,0,2)$ | 4 |
| $(1,2,0),(2,0,1),(2,1,0)$ | 4 |

Then G is a G-metric on X, but it is not symmetric because $G(1,1,2)=4 \neq 2=G(2,2,1)$.
Definition 2.4. [12] Let (X, G) be a G-metric space, let $\left\{x_{n}\right\}$ be sequence of points of X, a point $x \in X$ is said to be the limit of the sequence $\left\{x_{n}\right\}$ if $\lim _{n, m \rightarrow \infty} G\left(x, x_{n}, x_{m}\right)=0$ and we say that the sequence $\left\{x_{n}\right\}$ is G-convergent to x. Thus, if $x_{n} \rightarrow x$ in a G-metric space (X, G), then for any $\epsilon>0$, there exists a positive integer N such that $G\left(x, x_{n}, x_{m}\right)<\epsilon$, for all $n, m \geq N$.

Definition 2.5. [15] Let (X, G) be a G-metric space. The sequence $\left\{x_{n}\right\}$ is said to be G-Cauchy if for every $\epsilon>0$, there exists a positive integer N such that $G\left(x_{n}, x_{m}, x_{l}\right)<\in$ for all $n, m, l \geq N$.

Lemma 2.6. [10] Let (X, G) be a G-metric space, then the following are equivalent:
(1) $\left\{x_{n}\right\}$ is G-convergent to x.
(2) $G\left(x_{n}, x_{n}, x\right) \rightarrow 0$, as $n \rightarrow \infty$.
(3) $G\left(x_{n}, x, x\right) \rightarrow 0$, as $n \rightarrow \infty$.
(4) $G\left(x_{m}, x_{n}, x\right) \rightarrow 0$, as $m, n \rightarrow \infty$.

Lemma 2.7. [10] If (X, G) be a G-metric space, then the following are equivalent:
(1) $\left\{x_{n}\right\}$ is G-Cauchy.
(2) for every $\epsilon>0$, there exists a positive integer N such that $G\left(x_{n}, x_{m}, x_{m}\right)<\in$ for all $n, m \geq N$.

Lemma 2.8. [6] If (X, G) be a G-metric space, then $G(x, y, z) \leq 2 G(x, y, z)$ for all $x, y \in X$.
Lemma 2.9. [5] If (X, G) be a G-metric space, then The sequence $\left\{x_{n}\right\}$ is a G-Cauchy sequence if and only if for every $\epsilon>0$, there exists a positive integer N such that $G\left(x_{n}, x_{m}, x_{m}\right)<\epsilon$ for all $m>n \geq N$.

Definition 2.10. [13] Let (X, G) and $\left(X^{\prime}, G^{\prime}\right)$ be two G-metric spaces and $f:(X, G) \rightarrow\left(X^{\prime}, G^{\prime}\right)$ be a function, then f is said to be G-continous at a point $a \in X$ if and only if it is G sequentially continuous at x, that is, whenever $\left\{x_{n}\right\}$ is G-convergent to $x,\left\{f\left(x_{n}\right)\right\}$ is G-convergent to $f(x)$.

Definition 2.11. [6] A G metric space (X, G) is called symmetric G-metric space if $G(x, y, y)=$ $G(y, x, x)$ for all $x, y \in X$.

Definition 2.12. [10] A G-metric space (X, G) is said to be G-complete (or complete G-metric space) if every G-Cauchy sequence in (X, G) is G-convergent in (X, G).

Definition 2.13. [5] An element $(x, y) \in X \times X$; when X is any non empty set, is called a coupled fixed point of the mapping $F: X \times X \rightarrow X$ if $F(x, y)=x$ and $F(y, x)=y$.

Definition 2.14. [3] Let (X, G) be a G-metric space. A mapping $F: X \times X \rightarrow X$ is said to be continuous if for any two G-convergent sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ converging to x and y respectively, $F\left(x_{n}, y_{n}\right)$ is G-convergent to $F(x, y)$.

Jleli and Samet [7] introduced a new type of contraction which involves the following set of all functions $\psi:(0, \infty) \rightarrow(1, \infty)$ satisfying the conditions:
$\left(\psi_{1}\right) \psi$ is non decreasing;
$\left(\psi_{2}\right)$ for each sequence $t_{n} \subseteq(0, \infty), \lim _{n \rightarrow \infty} \psi\left(t_{n}\right)=1$ if and only if $\lim _{n \rightarrow \infty} t_{n}=0$;
$\left(\psi_{3}\right)$ there exist $r \in(0,1)$ and $L \in(0, \infty]$ such that $\lim _{t \rightarrow 0^{+}} \frac{\psi(t)-1}{t^{r}}=L$.
To be consistent with Jleli and Samet, we denote by Ψ the set of all functions $\psi:(0, \infty) \rightarrow(1, \infty)$ satisfying the conditions $\left(\psi_{1}-\psi_{3}\right)$.
Also, they established the following result as a generalization of Banach contraction principle.
Theorem 2.15. Let (X, d) be a complete metric space and $f: X \rightarrow X$ be a mapping. Suppose that there exist $\psi \in \Psi$ and $k \in(0,1)$ such that $x, y \in X, d(f x, f y) \neq 0$ implies $\psi(d(f x, f y)) \leq[\psi(d(x, y))]^{k}$. Then f has a unique fixed point.

In 2015, Hussain et al. [6] customized the above family of functions and proved a fixed point theorem as a generalization of [6]. They customized the family of functions $\psi:(0, \infty) \rightarrow(1, \infty)$ to be as follows: $\left(\psi_{1}\right) \psi$ is non decreasing and $\psi(t)=1$ if and only if $t=0$;
$\left(\psi_{2}\right)$ for each sequence $\left\{t_{n}\right\} \subseteq(0, \infty), \lim _{n \rightarrow \infty} \psi\left(t_{n}\right)=1$ if and only if $\lim _{n \rightarrow \infty} t_{n}=0$;
$\left(\psi_{3}\right)$ there exist $r \in(0,1)$ and $L \in(0, \infty]$ such that $\lim _{t \rightarrow 0^{+}} \frac{\psi(t)-1}{t^{r}}=L$;
$\left(\psi_{4}\right) \psi(u+v) \leq \psi(u) \cdot \psi(v)$ for all $u, v>0$.
To be consistent with Hussain et al [6], we denote by Ψ the set of all functions $\psi:(0, \infty) \rightarrow(1, \infty)$ satisfying the conditions $\left(\psi_{1}-\psi_{4}\right)$.

Definition 2.16. [2] Let (X, G) be a G-metric space, and $g: X \rightarrow X$ be a self mapping. Then g is said to be a JS-G-contraction whenever there exist a function $\psi \in \Psi$ and positive real numbers $r_{1}, r_{2}, r_{3}, r_{4}$ with $0 \leq r_{1}+3 r_{2}+r_{3}+2 r_{4}<1$ such that

$$
\begin{array}{r}
\psi(G(g x, g y, g z)) \leq[\psi(G(x, y, z))]^{r_{1}}[\psi(G(x, g x, g z))]^{r_{2}}[\psi(G(y, g y, g z))]^{r_{3}}(\psi(G(x, g y, g y)+G(y, g x, g x))]^{r_{4}} \\
{\left[\psi\left(\begin{array}{l}
\end{array}\right]\right.} \tag{2.1}
\end{array}
$$

for all $x, y, z \in X$
Jaradat et al. [8] proved the following theorem.
Theorem 2.17. Let (X, G) be a complete G-metric space and $g: X \rightarrow X$ be a JS-G-contraction. Then g has a unique fixed point.

Our first result is the following;

3. Main Results

Theorem 3.1. Let (X, G) be a G-metric space, and let $f: X \times X \rightarrow X$ be a mapping. Suppose there exist a function $\psi \in \Psi$ and positive real numbers $r_{1}, r_{2}, r_{3}, r_{4}$ with $0 \leq r_{1}+3 r_{2}+r_{3}+2 r_{4}<1$ such that

$$
\begin{align*}
\psi(G(f(x, u), f(y, v), f(z, w)) & \leq[\psi(G(x, y, z))]^{r_{1}}[\psi(G(x, f(x, u), f(z, w)))]^{r_{2}} \\
& {[\psi(G(y, f(y, v), f(z, w)))]^{r_{3}} } \\
& {[\psi(G(x, f(y, v), f(y, v))+G(y, f(x, u), f(x, u)))]^{r_{4}} } \tag{3.1}
\end{align*}
$$

for all $x, y, z, u, v, w \in X$. Then f has a unique coupled fixed point.

Proof. Let $x_{0} \in X$ be arbitrary. For $x_{0} \in X$, we define the sequence $\left\{x_{n}\right\}$ by $x_{n}=f^{n}\left(x_{0}, u_{0}\right)=$ $f\left(x_{n-1}, u_{n-1}\right)$. If there exist $n_{0} \in N$ such that $\left(x_{n_{0}}, u_{n_{0}}\right)=\left(x_{n_{0}+1}, u_{n_{0}+1}\right)$, then $\left(x_{n_{0}}, u_{n_{0}}\right)$ is a fixed point of f, and we have nothing to prove. Thus we suppose that $x_{n} \neq x_{n+1}$ that is $G\left(f\left(x_{n}, u_{n}\right), f\left(x_{n}, u_{n}\right), f\left(x_{n}, u_{n}\right)\right)>0$ for all $n \in N$. Now, we will prove that $\lim _{n \rightarrow \infty} G\left(x_{n}, x_{n+1}, x_{n+1}\right)=0$. from (3.1), we get that

$$
\begin{aligned}
1<\psi\left(G\left(x_{n}, x_{n+1}, x_{n+1}\right)\right)= & \psi\left(G\left(f\left(x_{n-1}, u_{n-1}\right), f\left(x_{n}, u_{n}\right), f\left(x_{n}, u_{n}\right)\right)\right. \\
& \leq\left[\psi\left(G\left(x_{n-1}, x_{n}, x_{n}\right)\right)\right]^{r_{1}} \\
& {\left[\psi\left(G\left(x_{n-1}, f\left(x_{n-1}, u_{n-1}\right), f\left(x_{n}, u_{n}\right)\right)\right)\right]^{r_{2}} } \\
& {\left[\psi\left(G\left(x_{n}, f\left(x_{n}, u_{n}\right), f\left(x_{n}, u_{n}\right)\right)\right)\right]^{r_{3}} } \\
& {\left[\psi \left(G\left(x_{n-1}, f\left(x_{n}, u_{n}\right), f\left(x_{n}, u_{n}\right)\right)\right.\right.} \\
& \left.\left.+G\left(x_{n}, f\left(x_{n-1}, u_{n-1}\right), f\left(x_{n-1}, u_{n-1}\right)\right)\right)\right]^{r_{4}} \\
& =\left[\psi\left(G\left(x_{n-1}, x_{n}, x_{n}\right)\right)\right]^{r_{1}}\left[\psi\left(G\left(x_{n-1}, x_{n}, x_{n+1}\right)\right)\right]^{r_{2}} \\
& {\left[\psi\left(G\left(x_{n}, x_{n+1}, x_{n+1}\right)\right)\right]^{r_{3}}\left[\psi \left(G\left(x_{n-1}, x_{n+1}, x_{n+1}\right)\right.\right.} \\
& \left.\left.+G\left(x_{n}, x_{n}, x_{n}\right)\right)\right]^{r_{4}} \\
& =\left[\psi\left(G\left(x_{n-1}, x_{n}, x_{n}\right)\right)\right]^{r_{1}}\left[\psi\left(G\left(x_{n-1}, x_{n}, x_{n+1}\right)\right)\right]^{r_{2}} \\
& {\left[\psi\left(G\left(x_{n}, x_{n+1}, x_{n+1}\right)\right)\right]^{r_{3}}\left[\psi\left(G\left(x_{n-1}, x_{n+1}, x_{n+1}\right)\right)\right]^{r_{4}} }
\end{aligned}
$$

using $\left(G_{5}\right)$ and $\left(\psi_{4}\right)$, we get

$$
\begin{aligned}
\psi\left(G\left(x_{n-1}, x_{n}, x_{n+1}\right)\right) & \leq \psi\left(G\left(x_{n-1}, x_{n}, x_{n}\right)+G\left(x_{n}, x_{n}, x_{n+1}\right)\right) \\
& \leq \psi\left(G\left(x_{n-1}, x_{n}, x_{n}\right)+2 G\left(x_{n}, x_{n+1}, x_{n+1}\right)\right) \\
& \leq \psi\left(G\left(x_{n-1}, x_{n}, x_{n}\right)\right)+\psi\left(2 G\left(x_{n}, x_{n+1}, x_{n+1}\right)\right) \\
& =\psi\left(G\left(x_{n-1}, x_{n}, x_{n}\right)\right) \psi\left(G\left(x_{n}, x_{n+1}, x_{n+1}\right)\right. \\
& \left.+G\left(x_{n}, x_{n+1}, x_{n+1}\right)\right) \\
& \leq \psi\left(G\left(x_{n-1}, x_{n}, x_{n}\right)\right)\left[\psi\left(G\left(x_{n}, x_{n+1}, x_{n+1}\right)\right)\right]^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
\psi\left(G\left(x_{n-1}, x_{n+1}, x_{n+1}\right)\right) & \leq \psi\left(G\left(x_{n-1}, x_{n}, x_{n}\right)+G\left(x_{n}, x_{n+1}, x_{n+1}\right)\right) \\
& \leq \psi\left(G\left(x_{n-1}, x_{n}, x_{n}\right)\right) \psi\left(G\left(x_{n}, x_{n+1}, x_{n+1}\right)\right)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& 1<\psi\left(G\left(x_{n}, x_{n+1}, x_{n+1}\right)\right) \leq\left[\psi\left(G\left(x_{n-1}, x_{n}, x_{n}\right)\right)\right]^{r_{1}}\left[\psi\left(G\left(x_{n-1}, x_{n}, x_{n}\right)\right)\right]^{r_{2}} \\
& {\left[\psi\left(G\left(x_{n}, x_{n+1}, x_{n+1}\right)\right)\right]^{2 r_{2}}\left[\psi\left(G\left(x_{n}, x_{n+1}, x_{n+1}\right)\right)\right]^{r_{3}} } \\
& {\left[\psi\left(G\left(x_{n-1}, x_{n}, x_{n}\right)\right)\right]^{r_{4}}\left[\psi\left(G\left(x_{n}, x_{n+1}, x_{n+1}\right)\right)\right]^{r_{4}} }
\end{aligned}
$$

by recording the product terms of the above inequality, then using the induction, we get that

$$
\begin{align*}
1<\psi\left(G\left(x_{n}, x_{n+1}, x_{n+1}\right)\right) & \leq\left[\psi\left(G\left(x_{n-1}, x_{n}, x_{n}\right)\right)\right]^{\frac{r_{1}+r_{2}+r_{4}}{1-2 r_{2}-r_{3}-r_{4}}} \\
& \cdot \tag{3.2}\\
& \cdot \\
& \cdot \\
& \leq\left[\psi\left(G\left(x_{0}, x_{1}, x_{1}\right)\right)\right]^{\left(\frac{r_{1}+r_{2}+r_{4}}{1-2 r_{2}-r_{3}-r_{4}}\right)^{n}}
\end{align*}
$$

Taking limit as $n \rightarrow \infty$, and noting that $\frac{r_{1}+r_{2}+r_{4}}{1-2 r_{2}-r_{3}-r_{4}}<1$, we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \psi\left(G\left(x_{n}, x_{n+1}, x_{n+1}\right)\right)=1 \tag{3.3}
\end{equation*}
$$

which implies by ψ_{2} that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} G\left(x_{n}, x_{n+1}, x_{n+1}\right)=0 . \tag{3.4}
\end{equation*}
$$

From the condition ψ_{3}, there exist $0<r<1$ and $L \in(0, \infty]$ such that

$$
\lim _{n \rightarrow \infty} \frac{\psi\left(G\left(x_{n}, x_{n+1}, x_{n+1}\right)\right)-1}{\left[G\left(x_{n}, x_{n+1}, x_{n+1}\right)\right]^{r}}=L .
$$

Suppose that $L<\infty$. In this case, let $B_{1}=\frac{L}{2}>0$. From the definition of the limit, there exist $n_{0} \in N$ such that

$$
\left|\frac{\psi\left(G\left(x_{n}, x_{n+1}, x_{n+1}\right)\right)-1}{\left[G\left(x_{n}, x_{n+1}, x_{n+1}\right)\right]^{r}}-L\right| \leq B_{1}
$$

for all $n>n_{0}$. This implies that

$$
\frac{\psi\left(G\left(x_{n}, x_{n+1}, x_{n+1}\right)\right)-1}{\left[G\left(x_{n}, x_{n+1}, x_{n+1}\right)\right]^{r}} \geq L-B_{1}=\frac{L}{2}=B_{1}
$$

for all $n>n_{0}$. Then

$$
n \cdot\left[G\left(x_{n}, x_{n+1}, x_{n+1}\right)\right]^{r} \leq A_{1} \cdot n \cdot\left[\psi\left(G\left(x_{n}, x_{n+1}, x_{n+1}\right)\right)-1\right]
$$

where $A_{1}=\frac{1}{B_{1}}$.
Now for $L=\infty$, let $B_{2}>0$ be an arbitrary number, from the definition of the limit, there exist $n_{1} \in N$ such that

$$
\left|\frac{\psi\left(G\left(x_{n}, x_{n+1}, x_{n+1}\right)\right)-1}{\left[G\left(x_{n}, x_{n+1}, x_{n+1}\right)\right]^{r}}\right| \geq B_{2}
$$

for all $n>n_{1}$. Then

$$
n \cdot\left[G\left(x_{n}, x_{n+1}, x_{n+1}\right)\right]^{r} \leq A_{2} \cdot n \cdot\left[\psi\left(G\left(x_{n}, x_{n+1}, x_{n+1}\right)\right)-1\right]
$$

where $A_{2}=\frac{1}{B_{2}}$.
Thus, in both cases, there exist $A=\max \left\{A_{1}, A_{2}\right\}>0$ and $n_{p}=\max \left\{n_{0}, n_{1}\right\} \in N$ such that $n .\left[G\left(x_{n}, x_{n+1}, x_{n+1}\right)\right]^{r} \leq$ A.n. $\left[\left[\psi\left(G\left(x_{n}, x_{n+1}, x_{n+1}\right)\right)\right]^{\alpha^{n}}-1\right]$, where,$\alpha=\frac{r_{1}+r_{2}+r_{4}}{1-2 r_{2}-r_{3}-r_{4}}$. But,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} n \cdot\left[\left[\psi\left(G\left(x_{0}, x_{1}, x_{1}\right)\right)\right]^{\alpha^{n}}-1\right] \\
& =\lim _{n \rightarrow \infty} \frac{\left[\left[\psi\left(G\left(x_{0}, x_{1}, x_{1}\right)\right)\right]^{\alpha^{n}}-1\right]}{\frac{1}{n}} \\
& =\lim _{n \rightarrow \infty} \frac{\alpha^{n} \cdot \ln (\alpha) \cdot \ln \left(\psi\left(G\left(x_{0}, x_{1}, x_{1}\right)\right)\right)\left[\left[\psi\left(G\left(x_{n}, x_{n+1}, x_{n+1}\right)\right)\right]^{\alpha^{n}}\right]}{\frac{-1}{n^{2}}} \\
& =\lim _{n \rightarrow \infty}\left(-n^{2}\right) \cdot \alpha^{n} \cdot \ln (\alpha) \cdot \ln \left(\psi\left(G\left(x_{0}, x_{1}, x_{1}\right)\right)\right)\left[\left[\psi\left(G\left(x_{n}, x_{n+1}, x_{n+1}\right)\right)\right]^{\alpha^{n}}\right] \\
& =\lim _{n \rightarrow \infty} \frac{\left(-n^{2}\right) \cdot \ln (\alpha) \cdot \ln \left(\psi\left(G\left(x_{0}, x_{1}, x_{1}\right)\right)\right)\left[\left[\psi\left(G\left(x_{n}, x_{n+1}, x_{n+1}\right)\right)\right]^{\alpha^{n}}\right]}{\alpha_{1}^{n}} \\
& =\lim _{n \rightarrow \infty} \frac{-n^{2}}{\alpha_{1}^{n}} \cdot \lim _{n \rightarrow \infty} \ln (\alpha) \cdot \ln \left(\psi\left(G\left(x_{0}, x_{1}, x_{1}\right)\right)\right)\left[\left[\psi\left(G\left(x_{n}, x_{n+1}, x_{n+1}\right)\right)\right]^{\alpha^{n}}\right] \\
& =0 \cdot \ln (\alpha) \cdot \ln \left(\psi\left(G\left(x_{0}, x_{1}, x_{1}\right)\right)\right) \\
& =0
\end{aligned}
$$

where $\alpha_{1}=\frac{1}{\alpha}$. Which implies that $\lim _{n \rightarrow \infty} n .\left[G\left(x_{n}, x_{n+1}, x_{n+1}\right)\right]^{r}=0$, thus there exist $n_{2} \in N$ such that $G\left(x_{n}, x_{n+1}, x_{n+1}\right) \leq \frac{1}{n^{\frac{1}{\top}}}$, for all $n>n_{2}$. Now, for $m>n>n_{2}$, we have

$$
G\left(x_{n}, x_{m}, x_{m}\right) \leq \sum_{i=n}^{m-1} G\left(x_{i}, x_{i+1}, x_{i+1}\right) \leq \sum_{i=n}^{m-1} \frac{1}{i^{\frac{1}{r}}} \sum_{i=1}^{\infty} \frac{1}{i^{\frac{1}{r}}} .
$$

Since $0<r<1$, then $\sum_{i=1}^{\infty} \frac{1}{i^{\frac{1}{r}}}$ is G-convergent and hence $G\left(x_{n}, x_{m}, x_{m}\right) \rightarrow 0$ as $m, n \rightarrow \infty$. Thus, we proved that $\left\{x_{n}\right\}$ is a G-Cauchy sequence. Completeness of (X, G) ensures that there exists $x^{*} \in X$ such that $x_{n} \rightarrow x^{*}$ as $n \rightarrow \infty$. Now we shall show that $\left(x^{*}, u^{*}\right)$ is a coupled fixed point of f. Using $\left(G_{5}\right)$ we get that

$$
\begin{align*}
G\left(x^{*}, x^{*}, f\left(x^{*}, u^{*}\right)\right) \leq & G\left(x^{*}, x^{*}, x_{n+1}\right)+G\left(x_{n+1}, x_{n+1}, f\left(x^{*}, u^{*}\right)\right) \\
& G\left(x^{*}, x^{*}, x_{n+1}\right)+G\left(f\left(x_{n}, u_{n}\right), f\left(x_{n}, u_{n}\right), f\left(x^{*}, u^{*}\right)\right) \tag{3.5}
\end{align*}
$$

and

$$
\begin{equation*}
G\left(x_{n}, x_{n+1}, f\left(x^{*}, u^{*}\right)\right) \leq G\left(x_{n}, x_{n+1}, x^{*}\right)+G\left(x^{*}, x^{*}, f\left(x^{*}, u^{*}\right)\right) \tag{3.6}
\end{equation*}
$$

Hence, by the properties of ψ we get that

$$
\begin{gather*}
\psi\left(G\left(x^{*}, x^{*}, f\left(x^{*}, u^{*}\right)\right)\right) \leq \psi\left(G\left(x^{*}, x^{*}, x_{n+1}\right)\right) \psi\left(G\left(x_{n+1}, x_{n+1}, f\left(x^{*}, u^{*}\right)\right)\right) \tag{3.7}\\
\psi\left(G\left(x_{n}, x_{n+1}, f\left(x^{*}, u^{*}\right)\right)\right) \leq \psi\left(G\left(x_{n}, x_{n+1}, x^{*}\right)\right) \psi\left(G\left(x^{*}, x^{*}, f\left(x^{*}, u^{*}\right)\right)\right) \tag{3.8}
\end{gather*}
$$

Thus,

$$
\begin{align*}
{\left[\psi\left(G\left(x_{n}, x_{n+1}, f\left(x^{*}, u^{*}\right)\right)\right)\right]^{r_{2}+r_{3}} \leq } & {\left[\psi\left(G\left(x_{n}, x_{n+1}, x^{*}\right)\right)\right]^{r_{2}+r_{3}} } \\
& {\left[\psi\left(G\left(x^{*}, x^{*}, f\left(x^{*}, u^{*}\right)\right)\right)\right]^{r_{2}+r_{3}} } \tag{3.9}
\end{align*}
$$

However, by using (3.1), $\left(\psi_{4}\right)$ and (3.9) we have

$$
\begin{align*}
\psi\left(G\left(x_{n}, x_{n+1}, f\left(x^{*}, u^{*}\right)\right)\right) & =\psi\left(G\left(f\left(x_{n}, u_{n}\right), f\left(x_{n}, u_{n}\right), f\left(x^{*}, u^{*}\right)\right)\right) \\
& \leq\left[\psi\left(G\left(x_{n}, x_{n}, x^{*}\right)\right)\right]^{r_{1}}\left[\psi\left(G\left(x_{n}, x_{n+1}, f\left(x^{*}, u^{*}\right)\right)\right)\right]^{r_{2}} \\
& {\left[\psi\left(G\left(x_{n}, x_{n+1}, f\left(x^{*}, u^{*}\right)\right)\right)\right]^{r_{2}} } \\
& {\left[\psi\left(G\left(x_{n}, x_{n+1}, x_{n+1}\right)+G\left(x_{n}, x_{n+1}, x_{n+1}\right)\right)\right]^{r_{4}} } \\
& =\left[\psi\left(G\left(x_{n}, x_{n}, x^{*}\right)\right)\right]^{r_{1}} \\
& {\left[\psi\left(G\left(x_{n}, x_{n+1}, f\left(x^{*}, u^{*}\right)\right)\right)\right]^{r_{2}+r_{3}} } \\
& {\left[\psi\left(G\left(x_{n}, x_{n+1}, x_{n+1}\right)\right)\right]^{2 r_{4}} } \\
& \leq\left[\psi\left(G\left(x_{n}, x_{n}, x^{*}\right)\right)\right]^{r_{1}}\left[\psi\left(G\left(x_{n}, x_{n+1}, x^{*}\right)\right)\right]^{r_{2}+r_{3}} \\
& {\left[\psi\left(G\left(x^{*}, x^{*}, f\left(x^{*}, u^{*}\right)\right)\right)\right]^{r_{2}+r_{3}} } \\
& {\left[\psi\left(G\left(x_{n}, x_{n+1}, x_{n+1}\right)\right)\right]^{2 r_{4}} } \tag{3.10}
\end{align*}
$$

Now, substituting (3.10) in (3.7) we get that

$$
\begin{gather*}
\psi\left(G\left(x^{*}, x^{*}, f\left(x^{*}, u^{*}\right)\right)\right) \leq \psi\left(G\left(x^{*}, x^{*}, x_{n+1}\right)\right)\left[\psi\left(G\left(x_{n}, x_{n}, x^{*}\right)\right)\right]^{r_{1}} \\
{\left[\psi\left(G\left(x_{n}, x_{n+1}, x^{*}\right)\right)\right]^{r_{2}+r_{3}}} \\
{\left[\psi\left(G\left(x^{*}, x^{*}, f\left(x^{*}, u^{*}\right)\right)\right)\right]^{r_{2}+r_{3}}} \\
{\left[\psi\left(G\left(x_{n}, x_{n+1}, x_{n+1}\right)\right)\right]^{2 r_{4}}} \tag{3.11}
\end{gather*}
$$

Hence,

$$
\begin{align*}
1 \leq\left[\psi\left(G\left(x^{*}, x^{*}, f\left(x^{*}, u^{*}\right)\right)\right)\right]^{1-r_{2}-r_{3}} & \leq \psi\left(G\left(x^{*}, x^{*}, x_{n+1}\right)\right)\left[\psi\left(G\left(x_{n}, x_{n}, x^{*}\right)\right)\right]^{r_{1}} \\
& {\left[\psi\left(G\left(x_{n}, x_{n+1}, x^{*}\right)\right)\right]^{r_{2}+r_{3}} } \\
{[} & {\left[\left(G\left(x_{n}, x_{n+1}, x_{n+1}\right)\right)\right]^{2 r_{4}} } \tag{3.12}
\end{align*}
$$

By taking the limit as $n \rightarrow \infty$ and using (3.4), $\left(\psi_{2}\right)$, proposition (1.3) and the convergence of $\left\{x_{n}\right\}$ to x^{*} in the above equation we get that

$$
\begin{equation*}
\psi\left(G\left(x^{*}, x^{*}, f\left(x^{*}, u^{*}\right)\right)\right)=1 \tag{3.13}
\end{equation*}
$$

which implies by $\left(\psi_{1}\right)$ that $G\left(x^{*}, x^{*}, f\left(x^{*}, u^{*}\right)\right)=0$ and so $x^{*}=f\left(x^{*}, u^{*}\right)$. Thus $\left(x^{*}, u^{*}\right)$ is a coupled fixed point of f. Finally to show the uniqueness, assume that there exist $\left(x^{*}, u^{*}\right) \neq\left(x^{\prime}, u^{\prime}\right)$ such that $x^{\prime}=f\left(x^{\prime}, u^{\prime}\right)$. By $\left(G_{2}\right), G\left(x^{\prime}, x^{\prime}, x^{*}\right)=G\left(f\left(x^{\prime}, u^{\prime}\right), f\left(x^{\prime}, u^{\prime}\right), f\left(x^{*}, u^{*}\right)\right)>0$. Thus, by (3.1) we get

$$
\begin{aligned}
\psi\left(G\left(x^{\prime}, x^{\prime}, x^{*}\right)\right) & =\psi\left(G\left(f\left(x^{\prime}, u^{\prime}\right), f\left(x^{\prime}, u^{\prime}\right), f\left(x^{*}, u^{*}\right)\right)\right) \\
& \leq\left[\psi\left(G\left(x^{\prime}, x^{\prime}, x^{*}\right)\right)\right]^{r_{1}}\left[\psi\left(G\left(x^{\prime}, f\left(x^{\prime}, u^{\prime}\right), f\left(x^{*}, u^{*}\right)\right)\right)\right]^{r_{2}} \\
& {\left[\psi\left(G\left(x^{\prime}, f\left(x^{\prime}, u^{\prime}\right), f\left(x^{*}, u^{*}\right)\right)\right)\right]^{r_{3}} } \\
& {\left[\psi\left(G\left(x^{\prime}, f\left(x^{\prime}, u^{\prime}\right), f\left(x^{\prime}, u^{\prime}\right)\right)+G\left(x^{\prime}, f\left(x^{\prime}, u^{\prime}\right), f\left(x^{\prime}, u^{\prime}\right)\right)\right)\right]^{r_{4}} } \\
& =\left[\psi\left(G\left(x^{\prime}, x^{\prime}, x^{*}\right)\right)\right]^{r_{1}}\left[\psi\left(G\left(x^{\prime}, x^{\prime}, x^{*}\right)\right)\right]^{r_{2}} \\
& {\left[\psi\left(G\left(x^{\prime}, x^{\prime}, x^{*}\right)\right)\right]^{r_{3}} } \\
& {\left.\left[\psi\left(G\left(x^{\prime}, x^{\prime}, x^{\prime}\right)\right)+G\left(x^{\prime}, x^{\prime}, x^{\prime}\right)\right)\right]^{r_{4}} } \\
& =\left[\psi\left(G\left(x^{\prime}, x^{\prime}, x^{*}\right)\right)\right]^{r_{1}+r_{2}+r_{3}}
\end{aligned}
$$

which leads to a contraction because $r_{1}+r_{2}+r_{3}<1$. Therefore, f has a unique coupled fixed point.

The following result is a direct consequence of theorem 3.1 by taking $\psi(t)=e^{\sqrt{t}}$ in (3.1)

Corollary 3.2. Let (X, G) be a G-metric space, and let $f: X \times X \rightarrow X$ be a mapping. Suppose there exist a nonnegative real numbers $r_{1}, r_{2}, r_{3}, r_{4}$ with $0 \leq r_{1}+3 r_{2}+r_{3}+2 r_{4}<1$ such that

$$
\begin{align*}
& \sqrt{G(f(x, u), f(y, v), f(z, w))} \\
& \leq r_{1} \cdot \sqrt{G(x, y, z)}+r_{2} \cdot \sqrt{G(x, f(x, u), f(z, w))} \\
& +r_{3} \cdot \sqrt{G(y, f(y, v), f(z, w))} \\
& +r_{4} \cdot \sqrt{G(x, f(y, v), f(y, v))+G(y, f(x, u), f(x, u))} \tag{3.14}
\end{align*}
$$

for all $x, y, z, u, v, w \in X$. Then f has a unique coupled fixed point.
Remark 3.3. Note that condition (3.14) is equivalent to

$$
\begin{aligned}
& G(f(x, u), f(y, v), f(z, w)) \\
& \leq r_{1}^{2} \cdot G(x, y, z)+r_{1}^{2} \cdot G(x, f(x, u), f(z, w)) \\
& +r_{3}^{2} \cdot G(y, f(y, v), f(z, w)) \\
& +r_{4}^{2} \cdot[G(x, f(y, v), f(y, v))+G(y, f(x, u), f(x, u))] \\
& +2 r_{1} r_{2} \sqrt{G(x, y, z) G(x, f(x, u), f(z, w))} \\
& +2 r_{1} r_{3} \sqrt{G(x, y, z) G(y, f(y, v), f(z, w))} \\
& +2 r_{1} r_{4} \sqrt{G(x, y, z)[G(x, f(y, v), f(y, v))+G(y, f(x, u), f(x, u))]} \\
& +2 r_{2} r_{3} \sqrt{G(x, y, z)[G(x, f(x, u), f(z, w))+G(y, f(y, v), f(z, w))]} \\
& +2 r_{2} r_{4} \sqrt{G(x, f(x, u), f(z, w))[G(x, f(y, v), f(y, v))+G(y, f(x, u), f(x, u))]} \\
& +2 r_{3} r_{4} \sqrt{G(y, f(y, v), f(z, w))[G(x, f(y, v), f(y, v))+G(y, f(x, u), f(x, u))]}
\end{aligned}
$$

Next, by taking $r_{2}=r_{3}=r_{4}=0$ in corollary (3.1), we obtain the following corollary.
Corollary 3.4. Let (X, G) be a G-metric space, and let $f: X \times X \rightarrow X$ be a mapping. Suppose there exists a positive real number $0<r_{1}<1$ such that $G(f(x, u), f(y, v), f(z, w)) \leq r_{1}^{2} G(x, y, z)$ for all $x, y, z, u, v, w \in X$. Then f has a unique coupled fixed point.

Finally, by taking $\psi(t)=e^{\sqrt[n]{t}}$ in (3.1), we get the following corollary.
Corollary 3.5. Let (X, G) be a G-metric space, and let $f: X \times X \rightarrow X$ be a mapping. Suppose there exist a positive real numbers $r_{1}, r_{2}, r_{3}, r_{4}$ with $0 \leq r_{1}+3 r_{2}+r_{3}+2 r_{4}<1$ such that

$$
\begin{aligned}
\sqrt[n]{G(f(x, u), f(y, v), f(z, w))} & \leq r_{1} \cdot \sqrt[n]{G(x, y, z)}+r_{2} \cdot \sqrt[n]{G(x, f(x, u), f(z, w))} \\
& +r_{3} \cdot \sqrt[n]{G(y, f(y, v), f(z, w))} \\
& +r_{4} \cdot \sqrt[n]{G(x, f(y, v), f(y, v))+G(y, f(x, u), f(x, u))}
\end{aligned}
$$

for all $x, y, z, u, v, w \in X$. Then f has a unique coupled fixed point.
Remark 3.6. By specifying $r_{i}=0$ for some $i \in\{1,2,3,4\}$ in remark (3.1) and corollary (3.1), we can get several results.

Example 3.7. Let $X=[0, \infty)$ and let $G(x, y, z)=\max \{|x-y|,|y-z|,|z-x|\}$ for all $x, y, z \in X$. Then (X, G) is a G-metric space. Let $f(x, y)=\frac{x+y}{8}$ and $\psi(t)=e^{\sqrt{t}}$. Then clearly all conditions of theorem 3.1 are satisfied with $r_{i}=\frac{1}{\sqrt{8}} ; i=1,2,3,4$, and $(x, y)=(0,0)$ is a coupled fixed point of f.

References

1. Al-Rawashdeh A, Ahmad J, Common fixed point theorems for JS-contractions,Bull. Math. Anal.Appl. 8, 12-22, (2016).
2. Al-Rawashdeh A, Ahmad J, Azam A, New fixed point theorems for generalized contractions in complete metric spaces, Fixed Point Theory Appl. 80, (2015).
3. Binayak S. Choudhury, Pranati Maity, Coupled Fixed point results in generalised metric spaces, Mathematical and Computer Modelling 54, 73-79, (2011).
4. Chatterjea, Fixed-point theorems, C. R. Acad. Bulgare Sci. 25, 727-730, (1972).
5. T. Gnana Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Analysis 65, 1379-1393, (2006).
6. Hussain N, Parvaneh V, Samet B, Vetro C, Some fixed point theorems for generalized contractive mappings in complete metic spaces, Fixed Point Theory Appl. 185,(2015).
7. Jleli M., Samet B., A Generalization of the Banach contraction principle, J.Inequal.Appl. 38, (2014).
8. Mohammed M.M. Jaradat, Zead Mustafa, Sami Ullah Khan, Muhammad Arshad, and Jamshaid Ahmad Some fixed point results on G-metric and G_{b}-metric spaces , Demonstr. Math., 50, 190-207, (2017).
9. Z. Mustafa and B. Sims, A new approach to generalized metric spaces, Journal of Nonlinear and Convex Analysis, 7, 289-297, (2006).
10. Z. Mustafa, Wasfi Sathanawi and Malik Bataineh, Existence of fixed point results in G - metric spaces, International Journal of Mathematics and Mathematical Sciences, 10, (2009).
11. Z. Mustafa, Jaradat M, Karapinar E, A new fixed point result via property P with an Applications, Journal of Nonlinear Sci. Appl., 10, 2066-2078,(2017).
12. G S M Reddy, A Common Fixed Point theorem on complete G-metric spaces, International Journal of Pure and Applied Mathematics, 118, 195-202, (2018).
13. G S M Reddy, Generalization of Contraction Principle on G-Metric Spaces, Global Journal of Pure and Applied Mathematics, 14, 1177-1283, (2018).
14. G S M Reddy, Fixed point theorems of contractions of G-metric Spaces and property'P'in G-Metric spaces, Global Journal of Pure and Applied Mathematics, 14, 885-896, (2018).
15. G S M Reddy, Fixed Point Theorems for ($\varepsilon, \lambda)$-Uniformly Locally Generalized Contractions, Global Journal of Pure and Applied Mathematics, 14, 1177-1183, (2018).
16. T. Dosenović, S. Radenović, S. Sedghi, Generalized Metric Spaces: Survey, WMS J. Pure Appl. Math. 9, 3-17, 2018.
17. Y. Rohen, T. Dosenović, S. Radenović, A note on paper "A fixed point theorem in Sb-metric spaces", Filomat, 31, 3335-3346, (2017).
18. H. Aydi, D. Rakić, A. Aghajani, T. Dosenović, M.S. Noorani and H. Qawaqneh, On fixed point results in Gb-metric spaces, Mathematics, 7, 617,(2019).
19. R. P. Agarwal, E. Karapinar, D. O'Regan, A.F.R.L. de Hierro, Fixed Point Theory in Metric Type Spaces, Springer International Publishing Switzerland, (2015).
20. Ravi P. Agarwal, Zoran Kadelburg, Stojan Radenović, On coupled fixed point results in asymmetric G-metric spaces, Journal of Inequalities and Applications, 528, (2013).
21. W.A. Kirk, and N. Shahzad, Fixed Point Theory in Distance Spaces, Springer International Publishing Switzerland,(2014).
22. Vesna Todorcević, Harmonic Quasiconformal Mappings and Hyperbolic Type Metrics, Springer Nature Switzerland AG, (2019).
23. Ljubomir Ćirić, Some recent results in metrical fixed point theory, University of Belgrade, Beograd (2003).
24. Dusan Dukić, Zoran Kadelburg, Stojan Radenović, Fixed Points of Geraghty-Type Mappings in Various Generalized Metric Spaces, Abstract and Applied Analysis, (2011).
25. Stojan Radenović, Remarks on some recent coupled coincidence point results in symmetric G-metric spaces, Journal of Operators, (2013).
26. Ljiljana Gajić, Zoran Kadelburg, Stojan Radenović, Gp-metric spaces symmetric and asymmetric, Scientific Publications of the State University of Novi Pazar, Ser. A: Appl. Math. Inform. and Mech., 9, 37-46,(2017).
27. Hamid Faraji, Dragana Savić and S. Radenović, Fixed point theorems for Geraghty contraction type mappings in b-metric spaces and applications, Aximoms, 8, (2019).
G. Sudhaamsh Mohan Reddy,

Department of Mathematics,
Faculty of Science and Technology, Icfai Foundation for Higher Education, Hyderabad-501203, India.
E-mail address: dr.sudhamshreddy@gmail.com
and
V. Srinivas Chary,

Department of Mathematics,
Faculty of Science and Technology, Icfai Foundation for Higher Education,
Hyderabad-501203, India.
E-mail address: srinivaschary.varanasi@gmail.com
and
D. Srinivasa Chary,

Department of Statistics and Mathematics,
College of Agriculture,
Rajendranagar, Hyderabad-500030, INDIA.
E-mail address: srinivasaramanujan1@gmail.com
and
Stojan Radenović,
Faculty of Mechanical Engineering,
University of Belgrade, Serbia.
E-mail address: radens@beotel.rs
and

Slobodanka Mitrovic
University of Belgrade, Faculty of Forestry,
Kneza Viseslava 1, Beograd Serbia.
E-mail address: slobodanka.mitrovic@sfb.bg.ac.rs

[^0]: 2010 Mathematics Subject Classification: $54 \mathrm{H} 25,47 \mathrm{H} 10$.
 Submitted November 01, 2019. Published May 02, 2021

