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Implementation and Numerical Aspects of the Matlab Solver Designed For the Solution of

Low Protein Model

Meraihi Mouna

abstract: In this paper, we discuss the implementation and numerical aspects of the Matlab solver designed
for the solution of Low Protein Model (LPD) defined by:

dL

dt
= λi − µDL, ∀i = 1, 2, 3, 4. (0.1)

dM

dt
= µL − δM, (0.2)

subject to an initial condition
L(0) = 0 and M(0) = 0. (0.3)

The code is based on Euler’s Method and several technics of programmation.

Key Words: Low Protein Model, Euler’s method, analytical solution, mathematical model, code in
Matlab.
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1. Introduction

Global Infectious Diseases Epidemiology Network (GIDEON) is a web-based program for decision
support and informatics in the fields of Infectious Diseases and Geographic Medicine. As of 2005, more
than 300 generic infectious diseases occur haphazardly in time and space and are challenged by over 250
drugs and vaccines. 1,500 species of pathogenic:

• bacteria,

• viruses,

• parasites and fungi have been described. Printed media can no longer follow the dynamics of
diseases, outbreaks and epidemics in ”real time.”

Bacteria (singular: bacterium) are a large domain of single-celled, prokaryote microorganisms. Typ-
ically a few micrometres in length, bacteria have a wide range of shapes, ranging from spheres to rods
and spirals. Bacteria are ubiquitous in every habitat on Earth, growing in soil, acidic hot springs, ra-
dioactive waste, [10] water, and deep in the Earth’s crust, as well as in organic matter and the live bodies
of plants and animals. There are typically 40 million bacterial cells in a gram of soil and a million bac-
terial cells in a millilitre of fresh water; in all, there are approximately five nonillion (5-1030) bacteria
on Earth, [12] forming a biomass on Earth, which exceeds that of all plants and animals. [13] Bacte-
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ria are vital in recycling nutrients, with many steps in nutrient cycles depending on these organisms,
such as the fixation of nitrogen from the atmosphere and putrefaction. However, most bacteria have not
been characterised, and only about half of the phyla of bacteria have species that can be grown in the
laboratory. [14] The study of bacteria is known as bacteriology, a branch of microbiology.

Figure 1: Entamoeba histolytica life cycle

• A virus is a small infectious agent that can replicate only inside the living cells of organisms.
Most viruses are too small to be seen directly with a light microscope. Viruses infect all types
of organisms, from animals and plants to bacteria and archaea. [10] Since Dmitri Ivanovsky’s
1892 article describing a non-bacterial pathogen infecting tobacco plants, and the discovery of the
tobacco mosaic virus by Martinus Beijerinck in 1898, [2] about 5,000 viruses have been described
in detail, [13] although there are millions of different types. [4] Viruses are found in almost every
ecosystem on Earth and are the most abundant type of biological entity. [12]– [14] The study of
viruses is known as virology, a sub-speciality of microbiology.

• Parasitism is a type of symbiotic relationship between organisms of different species where one or-
ganism, the parasite, benefits at the expense of the other, the host. Traditionally parasite referred
to organisms with lifestages that went beyond one host (e.g. Taenia solium), which are now called
macroparasites (typically protozoa and helminths). Parasites can now also refer to microparasites,
which are typically smaller, such as viruses and bacteria and can be directly transmitted between
hosts of one species. Unlike predators, parasites are generally much smaller than their host, al-
though both are special cases of consumer-resource interactions . [11] Parasite show a high degree
of specialization for their mode of life, and reproduce at a faster rate than their hosts. Classic
examples of parasitism include interactions between vertebrate hosts and diverse animals such as
tapeworms, flukes, the Plasmodium species, and fleas. Parasitism is differentiated from the para-
sitoid relationship, though not sharply, by the fact that parasitoids generally kill or sterilize their
hosts. Parasitoid occurs in about as many classes of organism as parasitism does.

The harm and benefit in parasitic interactions concern the biological fitness of the organisms involved.
Parasites reduce host fitness in many ways, ranging from general or specialized pathology (such as parasitic
castration), impairment of secondary sex characteristics, to the modification of host behavior. Parasites
increase their fitness by exploiting hosts for resources necessary for the parasite’s survival: (i.e. food,
water, heat, habitat, and dispersal).



Matlab Solver Designed For the Solution of Low Protein Model 3

Although the concept of parasitism applies unambiguously to many cases in nature, it is best consid-
ered part of a continuum of types of interactions between species, rather than an exclusive category.

Particular interactions between species may satisfy some but not all parts of the definition. In many
cases, it is difficult to demonstrate that the host is harmed. In others, there may be no apparent
specialization on the part of the parasite, or the interaction between the organisms may beshort-lived.

Our paper is structured as follows. In section one, we present a low protein model defined by two
equations and their initial conditions. In section two, we describe the Euler’s method applied to our
model defined in section one. In the rest of this paper, we give Computational Results and Program
implements the Euler’s method.

2. Low Protein Model

Let us start by considering the parasite dynamics of the LPG. The parasites, harbored by a host
population of constant size, are subdivided into two categories: larvae in the wall of the small intestine,
and adult worms in the gut lumen. We model the dynamics of the mean number of larvae, L, per host
by:

dL

dt
= λi − µDL, ∀i = 1, 2, 3, 4. (2.1)

subject to an initial condition

L(0) = 0, (2.2)

where λi, i = 1, 2, 3, 4 refer to the experimentally controlled infection rates, for example, 5, 10, 20 and
40 larvae per mouse per 2 weeks as in the experiments. Here 1

D
= CL denotes the proportion of larvae

developing into adult worms after a developmental time delay tL here denoted by 1
µ

. For the parasite

Heligmosoides polygyrus, tL = 1
µ

= 8 days. Next, we estimate CL = 0.64. We can now evaluate the net

loss rate of the larval population per host as µD = 0.195/day which implies an effective life span of a
larval worm of 1

µD
= 5.12/days, and the natural larval mortality rate µ0 = µ(D − 1) = 0.07day.

We model the dynamics of the mean adult worm burden, M, by

dM

dt
= µL − δM, (2.3)

subject to an initial condition

M(0) = 0. (2.4)

where δ denotes the natural deathrate of the adult worms in the absence of competitive or immunolog-
ical constraints.We estimate δ = 5.6×10−3/day from the experimental results of a single infection , which
implies an adult worm life span of approximately 25 weeks.

2.1. Solution of the linear equation (2.1)

Let a first order linear non-homogeneous differential equation is

a
df(x)

dx
+ bf(x) + c = 0 (2.5)

subject to an initial condition

f(x0) = f0, (2.6)

where a, b and c are constants.
Having a non-zero value for the constant c is what makes this equation non-homogeneous, and that

adds a step to the process of solution. The path to a general solution involves finding a solution to the
homogeneous equation (i.e., drop off the constant c), and then finding a particular solution to the non-
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homogeneous equation (i.e., find any solution with the constant c left in the equation). The solution to
the homogeneous equation is

f(x) = Ae
−bx

a homogeneous solution. (2.7)

By substitution you can verify that setting the function equal to the constant value − c
b

will satisfy
the non-homogeneous equation.

It is the nature of differential equations that the sum of solutions is also asolution, so that a general
solution can be approached by taking the sum of the two solutions above. The final requirement for the
application of the solution to a physical problem is that the solution fits the physical boundary conditions
of the problem.

The most common situation in physical problems is that the boundary conditions are the values of the
function f(x) and its derivatives when x = 0. Boundary conditions are often called ”initial conditions”.
For the first order equation, we need to specify one boundary condition. For example:

Find solution f(x) = Ae−
bx

a −
c

b
(2.8)

subject to
f(x) = B at x = 0.

Substituting at x = 0 gives:

f(0) = B = A −
c

b
(2.9)

and the solution f(x) is given by :

f(x) = B.e−
bx

a +
c

b
.[e−

bx

a − 1] (2.10)

In our case, a = 1, b = µD and c = −λi, i = 1, 2, 3, 4. Then the solutions of the linear equations (2.1)
with the initial conditions L(0) = 0, is simply

L(t) =
λi

µD
.(1 − e−µDt) ∀i = 1, 2, 3, 4. (2.11)

Now, we use (2.11) in differential equation (2.3) we obtain

dM

dt
=

λi

D
(.(1 − e−µDt) − δM ∀i = 1, 2, 3, 4. (2.12)

with the initial conditions M(0) = 0.

dM

dt
=

λi

D
(.(1 − e−µDt) − δM ∀i = 1, 2, 3, 4. (2.13)

In the next section we present Euler Method to solve equation (2.13).

3. Euler Methods

In this section, we will consider a numerical method for a basic initial value problem, that is, for

dM

dt
= f(t, M), (3.1)

subject to an initial condition
M(0) = 0. (3.2)

We will use a simplistic numerical method called Euler’s method. Because of the simplicity of both
the problem and the method, the related theory is relatively transparent and will be provided in detail.
Though we will not do so, the theory developed in this chater does extend to the more advanced methods
to be introduced later, but only with increased complexity. With respect to (3.1), we assume that a unique
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solution exists, but that analytical attempts to construct it havefailed. The basic idea is as follows. By
the definition of a derivative,

M ′(t) = lim
h→0

M(t + h) − M(t)

h
. (3.3)

For small h > 0, then, (3.3) implies that a reasonable difference quotient approximation for M ′(t) is

M ′(t) =
M(t + h) − M(t)

h
. (3.4)

Substitution of (3.4) into (3.1) Yields the difference equation

M(t + h) − M(t)

h
= f(t, M). (3.5)

which approximates the differential equation (3.1). However, (3.5) can be rewritten as

M(t + h) = M(t) + hf(t, M). (3.6)

which enables one to approximate M(t + h) in terms of M(t) and f(t, M(t)). Equation (3.6) is the
cornerstone of Euler’s method, which is described precisely as follows.

Since a computer cannot calculate indefinitely, let t ≥ 0 be replaced by 0 ≤ t ≤ Tmax, in which Tmax
is a positive constant. The value of Tmax is usually determined by the physics of the phenomenon under
consideration. If the phenomenon occurs over a short period of time, then L can be chosen to be relatively
small. If the phenomenon is long lasting, then Tmax must be relatively large. In either case, Tmax is a
fixed, positive constant. The interval 0 ≤ t ≤ Tmax is then divided into n equal parts, each of length h,

by the points ti = ih, i = 0, 1, 2, . . . The value h = (Tmax−t0)
n

is called the grid size. The points ti are
called grid points. Let Mi = M(ti), i = 0, 1, 2, · · · , so that initial condition (3.2) implies M(0) = M0 = 0.
Next, at each of the grid points t0, t1, t2 and tn−1, approximate the differential equation by (3.5) in the
notation

M(i + 1) − Mi

h
= f(ti, Mi).quadi = 0, 1, 2, · · · (3.7)

Or, in explicit recursive form

M(i + 1) = Mi + hf(ti, Mi) i = 0, 1, 2, · · · (3.8)

Then, beginning with
M(0) = M0 = 0 (3.9)

We set i = 0 in(3.8) and determine M1. Knowing M1, set i = 1 in (3.8) and determine M2. Knowing
M2, set i = 2 in (3.8) and determine M3, and so forth, until, finally, Mn is generated. The resulting
discrete function M0, M1, M2, ·, Mn is called the numerical solution.

A generic algorithm for Euler’s method is given as follows.

4. Computational Results

In this section Low’s Protein equation was treated, and it is solved by using Euler’s method. Input:
end points t0, mu, D, h, M0, delta and lambdai integer i, and n , tolerance TOL, maximum number
of variation of i. In ourcase, wetake i = 1, 2, 3, 4. Output: Approximation Mi and plots M(t) foreach
i = 1, 2, 3, 4 for the first 12 weeks.

Euler’s algorithm

Step 1. Set a counter k = 1.

Step 2. Set a time step h.
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Step 3. Set an initial time t.

Step 4. Set initial value M.

Step 5. Calculate K0 = M and K1 = hf(t, M).

Step 6. Calculate M at t + h by M (t + h) = (K0 + K1).

Step 7. Increasethecounterfromkto k + 1.

Step 8. Set M = M (t + h), t = t + h.

Step 9. Repeat Steps 5{8.

Step 10. Continue until k = 160.

Figure 2: Entamoeba histolytica life cycle

5. Program implements the euler’s method

In this part, We present a simple program implements the Euler’s method. The files below can form
the basis for the implementation of Euler’s method using Matlab. They include EULER.m, which runs
Euler’s method; f.m, which defines the function f(t, M(t)); ME.m, which contains the exact analytical
solution (computed independently). In order to solve a particular differential equation, you will need
to define the function f(t, M(t)) in the file f.m, and also the exact solution in ME.m, if needed. The
program computes the step size h from the initial and final t values a and b, and the number of steps N .

The file EULER.m

The solution is returned in an array M . You may wish to compute the exact solution using ME.m
and plot this solution on the same graph as M , for instance by modifying the second-to-last line to read
plot(t,M,’-’,t,ME(t),’-.’)

The file f .m

The file f.m contains the function f(t, M(t)) for the general differential equation (2.5) above; the
particular form of f(t, M(t)) corresponds to the equation

M ′ = µL − δM (5.1)

To solve a different differential equation with EULER.m or another solver, you need only change
this file.

function f=f(t,M(t))

f = µL − δM ;
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The file ME.m

The file ME.m contains the exact solution M(t) of equation (2.5), corresponding to the above function
f(t, M) defined in the file f.m. If you solve a different differential equation with EULER.m or one of
the other numerical methods described below, and you wish to compare with an analytical expression for
the exact solution, you should modify the file ME.m as well as f.m.

function ME = ME(t)

ME = 2 ∗ ones(size(t)) + t − exp(−t);

You may choose whether or not to type these comments into your program, but if you include the
comments in your file you must include the following program:

clear all ;

close all ;

format long

t0 = input(’Enter the initia ltime-’);

t1 = input(’Enter the final time-’);

M 0 =input(’Enter the initial condition-’) ;

h =input(’Enter the time step-’);

np1 = t1/h;

tp1 = linspace(t0, t1, np1 + 1);

tolerance =1.e - 04;

M = zeros(1, np1 + 1);

M(1) = M0;

t = t0;

mu = input(’Enter the P arameter value of mu-’);

D = input(’Enter the P arameter value of D-’);

delta = input(’Enter the P arameter value of delta-’);

lambda = input(’Enter the Parameter value of lambda-’);

a = lambda/D;

for i = 1 : np1

M(i + 1) = h *(a *(1 -exp(-mu *D * h))) + (1 -h * delta) *M(i);

t = t +h;

end

plot(tp1, M,’r - .’, tp1, sole,’ b-’,’LineWidth’ 2);

grid

legend(’M ean worm burden M (t) f or mice on the low protein diet(LP D)’,’ T he analytical

solution’)

xlabel(’Week’);

ylabel(’M (t)’);

title(’Mean worm burden M (t) f or mice on the low protein diet (LP D)’)
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Figure 3: Entamoeba histolytica life cycle

Figure 4: Entamoeba histolytica life cycle

This part contains program used to approximation Mi and plots M(t) for each i = 1, 2, 3, 4 for the
first 12 weeks. Mean worm burden M(t) for mice on the low protein diet obtained from the analyt-
ical solution (2.11) of the model (2.1). The curves correspond to the different larvae infection rates
λi for each i = 1, 2, 3, 4 larvae per mouse per 2 weeks. Parameter values µ = 0.125/day, D = 1.56,
δ = 5.6 × 10 − 3/day. These curves correspond to those superimposed on Figure 1, 2, 3 and 4.

Remark

The procedure is the same way as for the previous equation (2.1)-(2.2), and therefore we can write
the program in matlab for the functionL(t) as follows:

clear all clear all;

close all;

clf;

clc;

format long;

t0 = input(’Enter the initia ltime-’) ;

t1= input(‘Enter the final time-‘);

L0 = input(’Enter the initial condition-’);
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h = input(’Enter the time step-’);

np1 = t1/h;

tp1 = linspace(t0, t1, np1 + 1);

tolerance = 1.e - 04;

L = zeros(1, np1 + 1);

L(1) = L0;

t = t0;

mu = input(’Enter the P arameter value of mu-’);

D = input(’Enter the P arameter value of D-’);

lambda = input(’Enter the P arameter value of lambda-’);

a= (1 - mu * D * h);

for i = 1 : np1;

L(i + 1) = a * L(i) + lambda * h;

t= t + h;

end

plot(tp1, L,’r -.,’LineWidth’, 2);

Figure 5: Entamoeba histolytica life cycle

Figure 6: Entamoeba histolytica life cycle

This part too contains program used to approximationLiand plots M(t) for each i = 1, 2, 3, 4 for the
first 12 weeks. The curves correspond to the different larvae infection rates λi for each i = 1, 2, 3, 4 larvae
per mouse per 2weeks. Parameter values: µ = 0.125/day, D = 1.56 and λ = 5, 10, 20and40. These curves
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correspond to those superimposed on Figure5, 6, 7 and 8.

We show that figures 5, 6, 7 and 8 plots L(t) for i = 1, 2, 3, 4 for the first 12 weeks using the above
estimates for the parameter values. There is very good quantitative agreement. We estimate δ =
5.6 × 10 − 03/day from the experimental results of a single infection.
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