

(3s.) v. 2023 (41) : 1-8. ISSN-0037-8712 IN PRESS doi:10.5269/bspm.51599

On $semi^*$ -J-open Sets, pre^* -J-open Sets and e-J-open Sets in Ideal Topological Spaces

Wadei AL-Omeri and Takashi Noiri

ABSTRACT: In this paper we introduce and investigate some properties of $semi^*$ -J-open sets, pre^* -J-open sets and e-J-open sets in ideal topological spaces. Moreover, some relationships among semi*-J-open sets, e-J-open sets and pre*-J-open sets in ideal topological spaces are established. Finally, we obtain the decompositions of continuity.

Key Words: Ideal topological space, e-J-open, semi*-J-open, pre*-J-open.

Contents

1	Introduction	1
2	Preliminaries	2
3	$semi^*$ -J-open sets, pre^* -J-open sets and e -J-open sets in ideal topological spaces	2
4	Further Properties and Decompositions of Continuity	7

1. Introduction

 $semi^*$ -J-open sets, pre^* -J-open sets and e-J-open sets in ideal topological spaces were studied by [5], [4] and [2,12], respectively. In this paper, some properties of $semi^*$ -J-open sets, pre^* -J-open sets and e-J-open sets in ideal topological spaces are investigated. Some relationships among pre^* -J-open sets, $semi^*$ -Jopen sets and e-J-open sets in ideal topological spaces are discussed. Furthermore, decompositions of continuous functions have been introduced.

An ideal \mathcal{I} on a nonempty set X is a nonempty collection of subsets of X which satisfies the following conditions: $A \in \mathfrak{I}$ and $B \subset A$ implies $B \in \mathfrak{I}$; $A \in \mathfrak{I}$ and $B \in \mathfrak{I}$ implies $A \cup B \in \mathfrak{I}$ [8]. Applications to various fields were further investigated by Jankovic and Hamlett [6]; Mukherjee et al. [9]; Arenas et al. [1]; Nasef and Mahmoud [10], etc. Given a topological space (X,τ) with an ideal \mathcal{I} on X and if $\wp(X)$ is the set of all subsets of X, a set operator $(.)^* : \wp(X) \to \wp(X)$, called a local function [8] of A with respect to τ and \mathfrak{I} is defined as follows: for $A \subseteq X$,

 $A^*(\mathfrak{I},\tau) = \{ x \in X \mid U \cap A \notin \mathfrak{I} \text{ for every } U \in \tau(x) \},\$

where $\tau(x) = \{U \in \tau \mid x \in U\}$. Furthermore $Cl^*(A) = A \cup A^*(\mathfrak{I}, \tau)$ defines a Kuratowski closure operator for the topology τ^* , called the *-topology, finer than τ . When there is no chance for confusion, we will simply write A^* for $A^*(\mathfrak{I},\tau)$. X^* is often a proper subset of X. By a space, we always mean a topological space (X, τ) with no separation properties assumed. If $A \subset X$, Cl(A) and Int(A) will denote the closure and interior of A in (X, τ) , respectively.

A topological space (X, τ) with an ideal \mathfrak{I} is called an ideal topological space and is denoted by (X, τ, \mathfrak{I}) . A subset A of an ideal space (X,τ) is said to be R-J-open (resp. R-J-closed) [13] if $A = Int(Cl^*(A))$ $(resp.A = Cl^*(Int(A)))$. A point $x \in X$ is called a δ -J-cluster point of A if $Int(Cl^*(U)) \cap A \neq \emptyset$ for each open set V containing x. The family of all δ -J-cluster points of A is called the δ -J-closure of A and is denoted by $\delta Cl_{\mathcal{I}}(A)$. The set δ -J-interior of A is the union of all R-J-open sets of X contained in A and its denoted by $\delta Int_1(A)$. A is said to be δ -J-closed if $\delta Cl_1(A) = A$ [13]. δ -J-open sets form a topology τ_{δ} -J and that it is coarser than τ .

²⁰¹⁰ Mathematics Subject Classification: 54A05, 54C20. Submitted December 22, 2019. Published April 29, 2021

In this paper, we define and study some properties of $semi^*$ -J-open sets, pre^* -J-open sets and e-J-open sets in ideal topological spaces and investigate some of their properties. Moreover, some relationships among $semi^*$ -J-open sets, e-J-open sets and pre^* -J-open sets in ideal topological spaces are established. Several interesting properties and characterizations are introduced and discussed. Finally, we obtain the decompositions of continuity.

2. Preliminaries

Definition 2.1. A subset U of an ideal topological space (X, τ, J) is said to be

- 1. semi^{*}-J-open [5] if $U \subset Cl(\delta Int_{\mathcal{I}}(U))$.
- 2. pre*-J-open [4] if $U \subseteq Int(\delta Cl_{\mathfrak{I}}(U))$.
- 3. e-J-open [2] if $U \subset Cl(\delta Int_{\mathfrak{I}}(U)) \cup Int(\delta Cl_{\mathfrak{I}}(U))$.
- 4. a $\mathcal{B}G_{\mathfrak{I}^*}$ -set [3] if $U = V \cap C$, where V is $\delta_{\mathfrak{I}}$ -open and C is e- \mathfrak{I} -closed.
- 5. weakly $\delta_{\mathfrak{I}}$ -local closed [7] if $U = V \cap C$, where V is an open set and C is a $\delta_{\mathfrak{I}}$ -closed set in X.

The class of all $semi^*$ -J-open (resp. pre^* -J-open, $\delta\alpha$ -J-open) sets of (X, τ, J) is denoted by $S^* JO(X)$ (resp. $P^* JO(X)$, $\delta\alpha JO(X)$) [5,4]. The complement of a $semi^*$ -J-open (resp. pre^* -J-open, e-J-open) set is said to be $semi^*$ -J-closed (resp. pre^* -J-closed, e-J-closed).

The e-J-interior [2,11] (resp. $semi^*$ -J-interior [5], pre^* -J-interior [4]) of U is denoted by $Int_e^*(U)$ (resp. $s\delta Int_{\mathcal{I}}(U)$, $P^*\mathcal{I}Int(U)$) is defined by the union of all e-J-open [2](resp. $semi^*$ -J-open [5], pre^* -J-open [4]) sets contained in U. The intersection of all e-J-closed (resp. $semi^*$ -J-closed [5], pre^* -J-closed [4]) sets containing U is called the e-J-closure (resp. $semi^*$ -J-closure [5], pre^* -J-closure [4]) of U and is denoted by $Cl_e^*(U)$ (resp. $s\delta Cl_{\mathcal{I}}(U)$, $P^*\mathcal{I}Cl(U)$).

Theorem 2.2. [5] Let Q be a subset of an ideal space (X, τ, \mathfrak{I}) . Then

1.
$$s\delta Cl_{\mathfrak{I}}(Q) = Q \cup Int(\delta Cl_{\mathfrak{I}}(Q))$$
 and $P^*\mathfrak{I}Cl(Q) = Q \cup Cl(\delta Int_{\mathfrak{I}}(Q))$,

2. $s\delta Int_{\mathfrak{I}}(Q) = Q \cap Cl(\delta Int_{\mathfrak{I}}(Q))$ and $P^*\mathfrak{I}Int(Q) = Q \cap Int(\delta Cl_{\mathfrak{I}}(Q))$.

Theorem 2.3. [3] Let Q be a subset of an ideal topological space (X, τ, \mathcal{I}) . Then Q is a $\mathbb{B}G_{\mathcal{I}^*}$ -set if and only if $Q = F \cap Cl_e^*(Q)$ for a $\delta_{\mathcal{I}}$ -open set F in X.

Definition 2.4. [3] An ideal topological space (X, τ, \mathfrak{I}) is said to be $\delta \mathfrak{I}$ -extremally disconnected if $\delta Cl_{\mathfrak{I}}(Q) \in \tau$ for each $Q \in \tau$.

Lemma 2.5. [3] An ideal topological space (X, τ, J) is δJ -extremally disconnected if and only if it is extremally disconnected.

Theorem 2.6. [3] For an ideal topological space (X, τ, \mathcal{I}) , the following properties are equivalent:

- 1. X is $\delta_{\mathfrak{I}}$ -extremally disconnected,
- 2. $\delta Int_{\mathfrak{I}}(Q)$ is closed for every closed subset Q of X,
- 3. $\delta Cl_{\mathfrak{I}}(Int(Q)) \subset Int(\delta Cl_{\mathfrak{I}}(Q))$ for every subset Q of X.
- 4. Every semi*-J-open set is pre*-J-open.

3. $semi^*$ -J-open sets, pre^* -J-open sets and e-J-open sets in ideal topological spaces

Lemma 3.1. Let (X, τ, \mathfrak{I}) be an ideal topological space. A subset Q is weakly $\delta_{\mathfrak{I}}$ -locally closed if and only if $Q = K \cap \delta Cl_{\mathfrak{I}}(Q)$, where K is an open set.

Proof. Let Q be weakly $\delta_{\mathcal{I}}$ -locally closed. Then $Q = K \cap C$, where K is open and C is $\delta_{\mathcal{I}}$ -closed. We have $Q \subseteq C$ and $\delta Cl_{\mathcal{I}}(Q) \subseteq \delta_{\mathcal{I}}(C) = C$. Hence $Q \subseteq V \cap \delta Cl_{\mathcal{I}}(Q) \subseteq V \cap C = Q$. Therefore, $Q = K \cap \delta Cl_{\mathcal{I}}(Q)$, where K is an open set.

Theorem 3.2. Let (X, τ, \mathfrak{I}) be a $\delta \mathfrak{I}$ -extremally disconnected ideal space and $Q \subset X$, then the following properties are equivalent:

- 1. Q is an open set,
- 2. Q is pre^{*}-J-open and weakly δ_{J} -local closed,
- 3. Q is e-J-open and weakly $\delta_{\mathcal{J}}$ -local closed.

Proof. $(1) \Rightarrow (2) \Rightarrow (3)$: the proof is obvious. $(3) \Rightarrow (1)$: Suppose that Q is an e-J-open set and a weakly δ_J -local closed set in X. It follows that $Q \subset Cl(\delta Int_{\mathcal{J}}(Q)) \cup Int(\delta Cl_{\mathcal{J}}(Q))$. Since Q is a weakly δ_J -local closed set, by Lemma 3.1 there exists an open set K such that $Q = K \cap \delta Cl_{\mathcal{J}}(Q)$. It follows from Theorem 2.6 that

$$\begin{aligned} .Q &\subseteq K \cap \left[Cl(\delta Int_{\mathfrak{I}}(Q)) \cup Int(\delta Cl_{\mathfrak{I}}(Q)) \right] \\ &= (K \cap Cl(\delta Int_{\mathfrak{I}}(Q))) \cup (K \cap Int(\delta Cl_{\mathfrak{I}}(Q))) \\ &\subseteq (K \cap Int(\delta Cl_{\mathfrak{I}}(Q))) \cup (K \cap Int(\delta Cl_{\mathfrak{I}}(Q))) \\ &= Int(K \cap \delta Cl_{\mathfrak{I}}(Q)) \\ &= Int(Q). \end{aligned}$$

Thus, $Q \subseteq Int(Q)$ and hence Q is an open set in X.

Theorem 3.3. The following properties hold for a subset Q of an ideal topological space (X, τ, \mathfrak{I}) :

- 1. If Q is a pre^{*}- \mathbb{J} -open set, then $s\delta Cl_{\mathbb{J}}(Q) = Int(\delta Cl_{\mathbb{J}}(Q))$.
- 2. If Q is a semi^{*}-J-open set, then $P^* \Im Cl(Q) = Cl(\delta Int_{\mathfrak{I}}(Q))$.

Proof. (1) : Suppose that Q is a pre^* -J-open set in X. Then we have $Q \subseteq Int(\delta Cl_{\mathfrak{I}}(Q))$. By Theorem 2.2 $s\delta Cl_{\mathfrak{I}}(Q) = Q \cup Int(\delta_I(Q)) = Int(\delta Cl_{\mathfrak{I}}(Q))$.

(2): Let Q be a semi^{*}-J-open set in X. It follows that $Q \subseteq Cl(\delta Int_J(Q))$. By Theorem 2.2, we have

$$P^* \Im Cl(Q) = Q \cup Cl(\delta Int_{\mathfrak{I}}(Q)) = Cl(\delta Int_{\mathfrak{I}}(Q)).$$

Remark 3.4. The converse of these implications of Theorem 3.3 are not true in general as shown as shown by the following examples:

Example 3.5. Let $X = \{x, y, z, e\}, \tau = \{\emptyset, X, \{x\}, \{y, z\}, \{x, y, z\}\}$ and $\Im = \{\emptyset, \{x\}, \{e\}, \{x, e\}\}$. Then $s\delta Cl_{\Im}(Q) = \delta Int_{\Im}(Cl(Q))$ for the subset $Q = \{y, e\}$ but Q is not pre*- \Im -open. Moreover, $P^*\Im Cl(Q) = Cl(\delta Int_{\Im}(Q))$ for the subset $R = \{a, d\}$ but R is not semi*- \Im -open.

Theorem 3.6. Let (X, τ, \mathfrak{I}) be an ideal topological space and $Q \subseteq X$, then the following properties hold:

- 1. If Q is a semi^{*}-J-closed set, then $P^* \Im Int(Q) = Int(\delta Cl_{\mathfrak{I}}(Q))$.
- 2. If Q is a pre^{*}-J-closed set, then $s\delta Int_{\mathfrak{I}}(Q) = Cl(\delta Int_{\mathfrak{I}}(Q))$.

Proof. (1) : Suppose that Q is a semi^{*}-J-closed set. We have $Int(\delta Cl_{\mathcal{I}}(Q)) \subseteq Q$. Hence, $P^* \mathfrak{I}Int(Q) = Q \cap Int(\delta Cl_{\mathcal{I}}(Q)) = Int(\delta Cl_{\mathcal{I}}(Q))$.

(2): Let Q be a pre*-J-closed set. Then $Cl(\delta Int_{\mathfrak{I}}(Q)) \subseteq Q$. This implies that $s\delta Int_{\mathfrak{I}}(Q) = Q \cap Cl(\delta Int_{\mathfrak{I}}(Q)) = Cl(\delta Int_{\mathfrak{I}}(Q)).$

Theorem 3.7. For a subset Q of an ideal topological space (X, τ, \mathfrak{I}) , Q is an e- \mathfrak{I} -closed set if and only if $Q = P^* \mathfrak{ICl}(Q) \cap s\delta Cl_{\mathfrak{I}}(Q)$.

Proof. (\Rightarrow) Suppose that Q is an e-J-closed set in X. This implies $Int(\delta Cl_{\mathfrak{I}}(Q)) \cap Cl(\delta Int_{\mathfrak{I}}(Q)) \subseteq Q$. We have

$$P^* \Im Cl(Q) \cap s\delta Cl_{\mathfrak{I}}(Q) = (Q \cup Cl(\delta Int_{\mathfrak{I}}(Q))) \cap (Q \cup Int(\delta Cl_{\mathfrak{I}}(Q)))$$
$$= Q \cup (Cl(\delta Int_{\mathfrak{I}}(Q)) \cap Int(\delta Cl_{\mathfrak{I}}(Q)))$$
$$= Q.$$

Thus, $Q = P^* \mathfrak{I}Cl(Q) \cap s\delta Cl_{\mathfrak{I}}(Q).$

 (\Leftarrow) Let $Q = P^* \mathfrak{I}Cl(Q) \cap s\delta Cl_{\mathfrak{I}}(Q)$. Then we have

$$\begin{aligned} .Q &= P^* \Im Cl(Q) \cap s \delta Cl_{\mathfrak{I}}(Q) \\ &= (Q \cup Cl(\delta Int_{\mathfrak{I}}(Q))) \cap (Q \cup Int(\delta Cl_{\mathfrak{I}}(Q))) \\ &\supseteq Cl(\delta Int_{\mathfrak{I}}(Q)) \cap Int(\delta Cl_{\mathfrak{I}}(Q)). \end{aligned}$$

This implies that $Cl(\delta Int_{\mathfrak{I}}(Q)) \cap Int(\delta Cl_{\mathfrak{I}}(Q)) \subseteq Q$. Then, Q is an e- \mathfrak{I} -closed set in X.

Corollary 3.8. For a subset Q of an ideal topological space (X, τ, J) , $Cl_e^*(Q) = P^*ICl(Q) \cap s\delta Cl_J(Q)$.

Proof. In general, $Cl_e^*(Q) \subset P^*ICl(Q) \cap s\delta Cl_{\mathfrak{I}}(Q) \subset P^*ICl(Cl_e^*(Q)) \cap s\delta Cl_{\mathfrak{I}}(Cl_e^*(Q))$. Since $Cl_e^*(Q)$ is e-J-closed, by Theorem 3.7, $Cl_e^*(Q) = P^*ICl(Cl_e^*(Q)) \cap s\delta Cl_{\mathfrak{I}}(Cl_e^*(Q))$. Therefore, we obtain $Cl_e^*(Q) = P^*\mathfrak{I}Cl(Q) \cap s\delta Cl_{\mathfrak{I}}(Q)$.

Corollary 3.9. Let (X, τ, \mathfrak{I}) be an ideal topological space and $Q \subseteq X$. If Q is pre^* - \mathfrak{I} -open and $semi^*$ - \mathfrak{I} -open, then $Cl^*_e(Q) = Cl(\delta Int_{\mathfrak{I}}(Q)) \cap Int(\delta Cl_{\mathfrak{I}}(Q))$.

Proof. By Theorem 3.3 and Corollary 3.8,

$$Cl_e^*(Q) = P^*ICl(Q) \cap s\delta Cl_{\mathfrak{I}}(Q) = Cl((\delta Int_{\mathfrak{I}}(Q)) \cap Int(\delta Cl_{\mathfrak{I}}(Q)))$$

Remark 3.10. The converse of Corollary 3.9 is not true in general as shown in the following example:

Example 3.11. Let $X = \{x, y, z, e\}, \tau = \{\emptyset, X, \{x\}, \{y, z\}, \{x, y, z\}\}$ and $\Im = \{\emptyset, \{x\}, \{e\}, \{x, e\}\}$. Take $Q = \{y, z, e\}$. Then $Cl_e^*(Q) = Cl(\delta Int_{\Im}(Q)) \cap Int(\delta Cl_{\Im}(Q))$ but Q is not pre*- \Im -open.

Theorem 3.12. Let (X, τ, \mathfrak{I}) be an ideal topological space and $Q \subseteq X$. If Q is pre*- \mathfrak{I} -closed and semi*- \mathfrak{I} -closed, then $Int_e^*(Q) = Cl(\delta Int_{\mathfrak{I}}(Q)) \cup Int(\delta Cl_{\mathfrak{I}}(Q))$.

Proof. Suppose that Q is a pre^* -J-closed set and a $semi^*$ -J-closed set. By Theorem 3.6, we have $s\delta Int_{\mathfrak{I}}(Q) = Cl(\delta Int_{\mathfrak{I}}(Q))$ and $P^*\mathfrak{I}Int(Q) = Int(\delta Cl_{\mathfrak{I}}(Q))$. Thus, $Int_e^*(Q) = P^*\mathfrak{I}Int(Q) \cup s\delta Int_{\mathfrak{I}}(Q) = Int(\delta Cl_{\mathfrak{I}}(Q)) \cup Cl(\delta Int_{\mathfrak{I}}(Q))$.

Lemma 3.13. For a subset Q of an ideal topological space (X, τ, J) , the following properties hold:

1. $Cl_e^*(Int(Q)) \subseteq Int(\delta Cl_{\mathfrak{I}}(Int(Q))).$ 2. $Cl(P^*\mathfrak{I}Int(Q)) \subseteq Cl(Int(\delta Cl_{\mathfrak{I}}(Q))).$ 3. $Int(s\delta Cl_{\mathfrak{I}}(Q)) = Int(\delta Cl_{\mathfrak{I}}(Q)).$

Proof. 1): We have

 $Cl_e^*(Int(Q))$ = $P^* \Im Cl(Int(Q)) \cap s \delta Cl_{\Im}(Int(Q))$ = $(Int(Q) \cup Cl(\delta Int_{\Im}(Int(Q)))) \cap (Int(Q) \cup Int(\delta Cl_{\Im}(Int(Q))))$ = $\subseteq Int(Q) \cup Int(\delta Cl_{\Im}(Int(Q)))$ = $Int(\delta Cl_{\Im}(Int(Q))).$

This implies that $Cl_e^*(Int(Q)) \subset Int(\delta Cl_{\mathfrak{I}}(Int(Q))).$ 2): We have

 $Cl(P^* \Im Int(Q)) = Cl(Q \cap Int(\delta Cl_{\Im}(Q))) \\ \subseteq Cl(Int(\delta Cl_{\Im}(Q))).$

Hence, we have $Cl(P^*\mathfrak{I}Int(Q)) \subseteq Cl(Int(\delta Cl_{\mathfrak{I}}(Q))).$

3): We have

$$Int(s\delta Cl_{\mathfrak{I}}(Q))$$

=Int(Q \cap Int(\delta Cl_{\mathcal{I}}(Q)))
\ge Int(Q) \cap Int(\delta Cl_{\mathcal{I}}(Q))
=Int(\delta Cl_{\mathcal{I}}(Q)).

As the previous version, conversely we have four lines

Corollary 3.14. For a subset Q of an ideal topological space (X, τ, J) , the following properties hold:

- 1. $Int_e^*(Cl(Q)) \supseteq Cl(\delta Int_{\mathfrak{I}}(Cl(Q))).$
- 2. $Int(P^* \mathfrak{I}Cl(Q)) \supseteq Int(Cl(\delta Int_{\mathfrak{I}}(Q))).$
- 3. $Cl(s\delta Int_{\mathfrak{I}}(Q)) = Cl(\delta Int_{\mathfrak{I}}(Q)).$

Proof. It follows from Lemma 3.13.

Theorem 3.15. For a subset Q of an ideal topological space (X, τ, \mathcal{I}) , the following properties hold:

1.
$$Int(Cl_e^*(Q)) = Int(Cl(\delta Int_{\mathfrak{I}}(Q))).$$

2.
$$Cl(Int_e^*(Q)) = Cl(Int(\delta Cl_{\mathfrak{I}}(Q))).$$

Proof. (1) : We have

 $Int(Cl_e^*(Q))$ $=Int(P^* \Im Cl(Q) \cap s\delta Cl_{\Im}(Q))$ $=Int(P^* \Im Cl(Q)) \cap Int(s\delta Cl_{\Im}(Q))$ $=Int(P^* \Im Cl(Q)) \cap Int(\delta Cl_{\Im}(Q))$ $=Int(P^* \Im Cl(Q))$ $=Int(Cl(\delta Int_{\Im}(Q))).$

by Lemma 3.13. Thus, $Int(Cl_e^*(Q)) = Int(Cl(\delta Int_{\mathcal{I}}(Q)))$. (2) : It follows from (1).

Theorem 3.16. For a subset Q of an ideal topological space (X, τ, J) , the following properties hold:

- 1. $P^* \Im Cl(s \delta Int_{\mathfrak{I}}(Q)) \subseteq Cl(\delta Int_{\mathfrak{I}}(Q)).$
- 2. $P^* \mathfrak{I}Int(s\delta Cl_{\mathfrak{I}}(Q)) \supseteq Int(\delta Cl_{\mathfrak{I}}(Q)).$

Proof. (1) : By Theorem 3.3, we have $P^* \Im Cl(s \delta Int_{\Im}(Q)) = Cl(\delta Int_{\Im}(s \delta Int_{\Im}(Q))) \subseteq Cl(\delta Int_{\Im}(Q)).$ This implies $P^* \Im Cl(s \delta Int_{\Im}(Q)) \subseteq Cl(\delta Int_{\Im}(Q)).$ (2) : This follows from (1).

Theorem 3.17. For a subset Q of an ideal topological space (X, τ, \mathcal{I}) , the following properties hold:

- 1. $Cl_e^*(s\delta Int_{\mathfrak{I}}(Q)) \subseteq s\delta Int_{\mathfrak{I}}(Q) \cup \delta Int_{\mathfrak{I}}(Cl(Int(Q))).$
- 2. $P^* \mathfrak{I}Int(Cl^*_e(Q)) \supseteq P^* \mathfrak{I}Cl(Q) \cap Int(\delta Cl_{\mathfrak{I}}(Q)).$
- 3. $s\delta Int_{\mathfrak{I}}(Cl_e^*(Q)) \supseteq s\delta Cl_{\mathfrak{I}}(Q) \cap Cl(\delta Int_{\mathfrak{I}}(Q)).$

Proof. (1): By Theorem 3.16 and Corollary 3.14, we have

 $Cl_{e}^{*}(s\delta Int_{\mathfrak{I}}(Q)) = P^{*}\mathfrak{I}Cl(s\delta Int_{\mathfrak{I}}(Q)) \cap s\delta Cl_{\mathfrak{I}}(s\delta Int_{\mathfrak{I}}(Q))$ $\subseteq Cl(\delta Int_{\mathfrak{I}}(Q)) \cap [s\delta Int_{\mathfrak{I}}(Q) \cup Int(\delta Cl_{\mathfrak{I}}(Int(Q)))]$ $\subseteq s\delta Int_{\mathfrak{I}}(Q) \cup Int(\delta Cl_{\mathfrak{I}}(Int(Q)))$ $= s\delta Int_{\mathfrak{I}}(Q) \cup Int(Cl(Int(Q)))$ $= s\delta Int_{\mathfrak{I}}(Q) \cup \delta Int_{\mathfrak{I}}(Cl(Int(Q))).$

Then, $Cl_e^*(s\delta Int_{\mathfrak{I}}(Q)) \subseteq s\delta Int_{\mathfrak{I}}(Q) \cup \delta Int_{\mathfrak{I}}(Cl(Int(Q))).$ (2) : We have

 $\begin{aligned} P^*Int(Cl_e^*(Q)) \\ &= Cl_e^*(Q) \cap Int(\delta Cl_{\mathfrak{I}}(Cl_e^*(Q))) \\ &= [P^*\mathfrak{I}Cl(Q) \cap s\delta Cl_{\mathfrak{I}}(Q)] \cap Int(\delta Cl_{\mathfrak{I}}(Cl_e^*(Q))) \\ &= P^*\mathfrak{I}Cl(Q) \cap [Q \cup Int(\delta Cl_{\mathfrak{I}}(Q))] \cap Int(\delta Cl_{\mathfrak{I}}(Cl_e^*(Q))) \\ &\supset P^*\mathfrak{I}Cl(Q) \cap Int(\delta Cl_{\mathfrak{I}}(Q)) \cap Int(\delta Cl_{\mathfrak{I}}(Cl_e^*(Q))) \\ &\supset P^*\mathfrak{I}Cl(Q) \cap Int(\delta Cl_{\mathfrak{I}}(Q)). \end{aligned}$

This implies $P^* \Im Int(Cl^*_e(Q)) \supseteq P^* \Im Cl(Q) \cap Int(\delta Cl_{\Im}(Q)).$ (3): We have

 $s\delta Int_{\mathfrak{I}}(Cl_{e}^{*}(Q))$ $= Cl_{e}^{*}(Q) \cap Cl(\delta Int_{\mathfrak{I}}(Cl_{e}^{*}(Q)))$ $= [P^{*}\mathfrak{I}Cl(Q) \cap s\delta Cl_{\mathfrak{I}}(Q)] \cap Cl(\delta Int_{\mathfrak{I}}(Cl_{e}^{*}(Q)))$ $\supset Cl(\delta Int_{\mathfrak{I}}(Q)) \cap s\delta Cl_{\mathfrak{I}}(Q) \cap Cl(\delta Int_{\mathfrak{I}}(Q))$ $= s\delta Cl_{\mathfrak{I}}(Q) \cap Cl(\delta Int_{\mathfrak{I}}(Q)).$

Hence, $s\delta Int_{\mathfrak{I}}(Cl_e^*(Q)) \supseteq s\delta Cl_{\mathfrak{I}}(Q) \cap Cl(\delta Int_{\mathfrak{I}}(Q)).$

Corollary 3.18. For a subset Q of an ideal topological space (X, τ, J) , the following properties hold:

1.
$$Int_e^*(s\delta Cl_{\mathfrak{I}}(Q)) \supseteq s\delta Cl_{\mathfrak{I}}(Q) \cap \delta Cl_{\mathfrak{I}}(Int(Cl(Q)))$$

2.
$$P^* \Im Cl(Int_e^*(Q)) \subseteq P^* \Im Int(Q) \cup Cl(\delta Int_{\mathfrak{I}}(Q)).$$

3. $s\delta Cl_{\mathfrak{I}}(Int_{e}^{*}(Q)) \subseteq s\delta Int_{\mathfrak{I}}(Q) \cup Int(\delta Cl_{\mathfrak{I}}(Q)).$

Proof. The proof follows from Theorem 3.17.

4. Further Properties and Decompositions of Continuity

Definition 4.1. A function $f : (X, \tau, J) \longrightarrow (Y, \sigma)$ is said to be weakly δ_J -locally-continuous if $f^{-1}(Q)$ is weakly δ_J -locally closed for each open set Q in Y.

Definition 4.2. A function $f: (X, \tau, J) \longrightarrow (Y, \sigma)$ is said $\delta \alpha$ -J-continuous [5] (resp. semi*-J-continuous [4] (resp. pre*-J-continuous [4], e-J-continuous [2]) if $f^{-1}(Q)$ is semi*-J-open (rep. pre*-J-open, e-J-open) for each open set Q in Y.

Theorem 4.3. For a function $f : (X, \tau, J) \longrightarrow (Y, \sigma)$ where (X, τ, J) is a δJ -extremally disconnected ideal space, the following properties are equivalent:

- 1. f is continuous,
- 2. f is pre^{*}-J-continuous and weakly δ_{J} -locally-continuous,
- 3. f is e-J-continuous and weakly $\delta_{\mathcal{I}}$ -locally-continuous.

Proof. It follows from Theorem 3.3.

Definition 4.4. A subset Q of an ideal topological space (X, τ, J) is said to be

- 1. generalized e-J-open (gEJ-open) if $H \subseteq Int_e^*(Q)$ whenever $K \subseteq Q$ and H is a closed set in X.
- 2. generalized e-J-closed (qEJ -closed) if and only if $X \setminus Q$ is a qEJ-open in X.

Theorem 4.5. Let (X, τ, J) be an ideal topological space and $Q \subseteq X$. Then Q is a e-J-closed set iff Q is a BG_{J^*} -set and a gEJ-closed set in X.

Proof. Let Q be a $\mathcal{B}G_{\mathfrak{I}^*}$ -set and a $gE\mathfrak{I}$ -closed set in X. By Theorem 2.3, $Q = F \cap Cl_e^*(Q)$ for a $\delta_{\mathfrak{I}}$ -open set F in X. Since $Q \subseteq F$ and Q is $gE\mathfrak{I}$ -closed, then we have $Cl_e^*(Q) \subseteq F$. Thus, $Cl_e^*(Q) \subseteq F \cap Cl_e^*(Q) = Q$ and hence Q is e- \mathfrak{I} -closed.

Conversely, it follows from the fact that any e-J-closed set is a $\mathcal{B}G_{J^*}$ -set and a gEJ-closed.

Theorem 4.6. Let (X, τ, \mathfrak{I}) be an ideal topological space and $Q \subseteq X$. Then Q is a gEI-closed set iff $Cl_{e}^{*}(Q) \subseteq F$ whenever $Q \subseteq F$ and F is an open set in X.

Proof. Let Q be a gEJ-closed set in X. Suppose that $Q \subseteq F$ and F is an open set in X. This implies that $X \setminus Q$ is a gEJ-open set and $X \setminus F$ is a closed set. Since $X \setminus Q$ is a gEJ-open set, then $X \setminus F \subseteq Int_e^*(X \setminus Q)$. Since $Int_e^*(X \setminus Q) = X \setminus Cl_e^*(Q)$, then we have $Cl_e^*(Q) = X \setminus Int_e^*(X \setminus Q) \subseteq F$. Thus, $Cl_e^*(Q) \subseteq F$. The proof of converse same.

Theorem 4.7. For a subset Q of an ideal topological space (X, τ, J) , if Q is a $\mathcal{B}G_{J^*}$ -set in X, then $Cl_e^*(Q) \setminus Q$ is a e-J-closed set and $Q \cup (X \setminus Cl_e^*(Q))$ is a e-J-open set in X.

 \Box

Proof. Suppose that Q is a $\mathcal{B}G_{\mathfrak{I}^*}$ -set in X. By Theorem 2.3, we have $Q = F \cap Cl_e^*(Q)$ for a $\delta_{\mathfrak{I}}$ -open set F. This implies

$$\begin{aligned} Cl_e^*(Q) \setminus Q &= Cl_e^*(Q) \setminus (F \cap Cl_e^*(Q)) \\ &= Cl_e^*(Q) \cap (X \setminus (F \cap Cl_e^*(Q))) \\ &= Cl_e^*(Q) \cap ((X \setminus F) \cup (X \setminus Cl_e^*(Q))) \\ &= (Cl_e^*(Q) \cap (X \setminus F)) \cup (Cl_e^*(Q) \cap (X \setminus Cl_e^*(Q))) \\ &= Cl_e^*(Q) \cap (X \setminus F). \end{aligned}$$

Consequently, $Cl_e^*(Q) \setminus Q$ is *e*-J-closed. On the other hand, since $Cl_e^*(Q) \setminus Q$ is a *e*-J-closed set, then $X \setminus (Cl_e^*(Q) \setminus Q)$ is a *e*-J-open set. Since $X \setminus (Cl_e^*(Q) \setminus Q) = X \setminus (Cl_e^*(Q) \cap (X \setminus Q)) = (X \setminus Cl_e^*(Q)) \cup Q$, then $Q \cup (X \setminus Cl_e^*(Q))$ is a *e*-J-open set

References

- Arenas, F. Dontchev, G. J. and Puertas, M. L. Idealization of some weak separation axioms, Acta Math. Hungar. 89, no.(1-2), 47-53, (2000).
- Al-Omeri, W. Noorani, M. and Al-Omari, A. On e-I-open sets, e-I-continuous functions and decomposition of continuity, J. Math. Appl. 38, 15-31, (2015).
- 3. Al-Omeri, W. Noiri, T.AG_J*-sets, $BG_{J}*$ -sets and $\delta\beta_I$ -open sets in ideal topological spaces, Int. J. Adv. Math. 2018, no. 4, 25-33, (2018).
- Ekici, E. and Noiri, T. On subsets and decompositions of continuity in ideal topological spaces, Arab. J. Sci. Eng. Sect. A Sci. 34, 165-177, (2009).
- 5. Hatir, E. On decompositions of continuity and complete continuity in ideal topological spaces, Eur. J. Pure Appl. Math. 6, no. 3, 352-362, (2013).
- 6. Jankovic, D. and Hamlett, T. R. New topologies from old via ideals, Amer. Math. Monthly. 97, 295-310, (1990).
- Keskin, A., Noiri, T. and Yuksel, S. Decompositions of I-continuity and continuity, Commun. Fac. Sci. Univ. Ankara Series A1, 53, 67-75, (2004).
- 8. Kuratowski, K. Topology, Vol. I. NewYork: Academic Press (1966).
- Mukherjee, M. Bishwambhar, N. R. and Sen, R. On extension of topological spaces in terms of ideals, Topology and its Appl. 154, 3167-3172, (2007).
- 10. Nasef, A. A. and Mahmoud, R. A. Some applications via fuzzy ideals, Chaos Solitons Fractals. 13, 825-831, (2002).
- Wadei Faris, Al-Omeri, Noorani, MS. Md. Al-omeri, Ahmad. and Noiri, T. Weak separation axioms via e-I-sets in ideal topological spaces, Eur. J. Pure Appl. Math. 8, no. 4, 502-513, (2015).
- 12. Wadei, A.L., Noorani, M.S.M. and Ahmad, A.O., Weak open sets on simple extension ideal topological space, Ital. J. Pure Appl. Math. 33, 333-344, (2014).
- 13. Yuksel, Acikgoz, S. A. and Noiri, T. On δ -*i*-continuous functions, Turk. J. Math. 29, 39-51, (2005).

Wadei AL-Omeri, Department of Mathematics, Al-Balqa Applied University, Salt 19117, Jordan. E-mail address: wadeialomeri@bau.edu.jo

and

Takashi Noiri, 2949-1 Shiokita-cho, Hinagu, Yatsushiro-shi, Kumamoto-ken 869-5142, JAPAN. E-mail address: t.noiri@nifty.com