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abstract: We work with the notion of trace pseudospectra for an element in the matrix algebra. Many new
interesting properties of the trace pseudospectrum have been discovered. In addition, we show an analogue
of the spectral mapping theorem for trace pseudospectrum in the matrix algebra. Among other things, we
illustrate the applicability of this concepts by a considerable number of examples.
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1. Introduction

Let Mn(C) (Mn(R)) denote the algebra of all n × n complex (real) matrices, I denote the n × n
identity matrix and the transpose of T is denoted by T ∗. We denote by Tr, (resp. Det) the trace (resp.
determinant) map on Mn(C). The set of all eigenvalues of T ∈ Mn(C) is denoted by σ(T ) and is defined
as

σ(T ) =
{

λ ∈ C : λ − T is not invertible
}

,

and its spectral radius by

r(T ) = sup
{

|λ| : λ ∈ σ(T )
}

.

Let sn(T ) ≤ . . . ≤ s2(T ) ≤ s1(T ) be the singular values of T ∈ Mn(C), where s1(T ) the smallest
and sn(T ) largest singular values of the matrix T . For a n × n complex matrix T and ε > 0, the
pseudospectrum of T is defined as the following closed set in the complex plane

σε(T ) := {λ ∈ C : sn(λ − T ) ≤ ε} .

Let T ∈ Mn(C) and 0 < ε < 1. The condition pseudospectrum of T is denoted by Σε(T ) and is
defined as

Σε(T ) :=

{

λ ∈ C :
sn(λ − T )

s1(λ − T )
≤ ε

}

.

Recall that the usual condition pseudospectral radius rε(T ) of T ∈ Mn(C) is defined by

rε(T ) := sup
{

|λ| : λ ∈ Σε(T )
}

.

Let T ∈ Mn(C) and ε > 0. The determinant spectrum of T is denoted by dε(T ) and is defined as

dε(T ) =
{

λ ∈ C : |Det(λI − T )| ≤ ε
}

.

For more information on various details on the above concepts, properties and applications of pseudospec-
trum see [1,4,7,9,15] and condition spectrum see [2,3,5,6,13]. In [12], Krishna Kumar. G, introduced the
concept of the determinant spectrum for an element in the matrix algebra.
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In this paper, we are interested by a another generalization of eigenvalues called trace pseudospec-
trum for an element in the matrix algebra to give more information about T . For ε > 0, the trace
pseudospectrum of T ∈ Mn(C) is denoted by Trε(T ) and is defined as

Trε(T ) = σ(T )
⋃

{

λ ∈ C : |Tr(λI − T )| ≤ ε
}

.

The trace pseudoresolvent of T is denoted by Trρε(T ) and is defined as

Trρε(T ) = ρ(T )
⋂

{

λ ∈ C : |Tr(λI − T )| > ε
}

while the trace pseudospectral radius of T is defined as

Trrε(T ) := sup
{

|λ| : λ ∈ Trε(T )
}

.

The singular values of a matrix play an important role in diagonalization also for their utility in a
variety of applications. Since Trε(|T |) use all the singular values of λI − T to get defined, it is expected
to give more information about T than eigenvalues, pseudospectrum and condition spectrum. In fact, we
have

Tr(|T |) =

n
∑

i=1

si(T )

where, |T | =
√

T ∗T is the unique positive semidefinite square root of T ∗T. The following is theoretically
equivalent to the definition of trace pseudospectrum of |T |,

Trε(|T |) =

{

λ ∈ C :

n
∑

i=1

si(λI − T ) ≤ ε

}

.

Moreover, to study eigenvalues of perturbations of T, we can look at the sets like

{

λ ∈ C : Tr(|(λI − T )−1|) ≥ 1

ε

}

=

{

λ ∈ C :

n
∑

i=1

1

si(λI − T )
≥ 1

ε

}

.

Since sn(λI − T ) = 0 when, λ ∈ σ(T ). The theory of eigenvalues and the generalized eigenvalues (trace
pseudospectrum, see [8]) of a matrices are established in different fields of mathematics and their appli-
cations. These approaches are useful in studying for an element in the matrix algebra, and have attracted
a lot of interest of many authors in the last few years (see [11,10]). Applications of this concept can be
found in perturbation theory, generalized eigenvalue problems, numerical analysis, system theory, and
dilation theory.

The main contributions of this paper are as follows. In Section 2, we introduce and study the trace
pseudospectrum for an element in the matrix algebra. We begin by the definition, also we focus on
the characterization of trace pseudospectrum (Theorems 2.3 and 2.4). We will prove some results and
properties of the trace pseudospectrum (Theorems 2.7 and 2.6 ) and then we investigate the connection
between trace pseudospectrum and algebraic multiplicity of the eigenvalues (Theorem 2.15). In Section 3,
we give an analogue of the spectral mapping theorem for the trace pseudospectrum in the matrix algebra
(Theorems 3.2 and 3.3).

2. Trace pseudospectrum

In this section, we describe some basic properties of the trace pseudospectrum. For ε > 0, T ∈ Mn(C)
is said to be invertible with respect to the trace pseudospectrum, if 0 /∈ Trε(T ), that is, T is invertible
and |Tr(T )| > ε. Obviously,

Ω :=
{

T ∈ Mn(C) : |Tr(T )| > ε
}

.
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is not a Ransford set [14]. Hence the trace pseudospectrum is not a Ransford spectrum. The map

T → Tr(T )

is continuous linear functional and hence Ω is an open set. Important properties of the trace of T, B ∈
Mn(C) are

Tr(T B) = Tr(BT ),

Tr(αT ) = αTr(T ) with α ∈ C,

Tr(T + B) = Tr(T ) + Tr(B).

Now, we introduce the new concept of the trace pseudospectrum in the following definition.

Definition 2.1. For ε > 0, the trace pseudospectrum of T ∈ Mn(C) is denoted by Trε(T ) and is defined

as

Trε(T ) = σ(T )
⋃

{

λ ∈ C : |Tr(λI − T )| ≤ ε
}

.

The trace pseudoresolvent of T is denoted by Trρε(T ) and is defined as

Trρε(T ) = ρ(T )
⋂

{

λ ∈ C : |Tr(λI − T )| > ε
}

.

The following theorem gives some properties of the trace pseudospectrum that follow in a straightfor-
ward manner from the definition of the trace pseudospectrum.

Theorem 2.2. Let T ∈ Mn(C) and ε > 0. Then,

(i) Tr0(T ) =
⋂

ε>0

Trε(T ).

(ii) If 0 < ε1 < ε2, then Trε1
(T ) ⊂ Trε2

(T ).

(iii) Trε(T ) is a non-empty compact subset of C.

(iv) If α ∈ C and β ∈ C\{0}. Then, Trε(βT + αI) = βTr ε
|β|

(T ) + α.

(v) Trε(αI) =
{

λ ∈ C : n|λ − α| ≤ ε
}

for all λ, α ∈ C.

Proof. The first two items can be easily checked using the definition of trace pseudospectrum, so we only
include the proof of item (iii), (iv) and (v).

(iii) Using the continuity from C to [0, ∞[ of the map

λ → |Tr(λI − T )|,

we get that Trε(T ) is a compact set in the complex plane containing the eigenvalues of T.

(iv) Since

Trε(βT + αI) =

{

λ ∈ C : |Tr(λI − βT − αI)| ≤ ε

}

=

{

λ ∈ C : |β|
∣

∣

∣

∣

Tr

(

λ − α

β
I − T

)∣

∣

∣

∣

≤ ε

}

=

{

λ ∈ C :

∣

∣

∣

∣

Tr

(

λ − α

β
I − T

)∣

∣

∣

∣

≤ ε

|β|

}

.

Then, λ ∈ Trε(βT + αI). Hence,
λ − α

β
∈ Tr ε

|β|
(T ). Thus, λ ∈ βTr ε

|β|
(T ) + α.
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(v) Let λ ∈ Trε(αI), then

|Tr(λI − αI)| = |λ − α||Tr(I)|
= n|λ − α|
≤ ε.

which yields Trε(αI) =
{

λ ∈ C : n|λ − α| ≤ ε
}

for all λ, α ∈ C. �

We are now ready to present the following.

Theorem 2.3. Let T ∈ Mn(C), λ ∈ C, and ε > 0. If there is D ∈ Mn(C) such that |Tr(D)| ≤ ε and

Tr(λ − T − D) = 0. Then, λ ∈ Trε(T ).

Proof. We assume that there exists D ∈ Mn(C) such that |Tr(D)| ≤ ε and

Tr(λ − T − D) = 0.

Then,
|Tr(λ − T )| = |Tr(D)| ≤ ε.

Thus, λ ∈ Trε(T ). �

Theorem 2.4. Let T ∈ Mn(C), λ ∈ C, and ε > 0. If λ ∈ Trε(T ). Then, there is D ∈ Mn(C) such that

|Tr(D)| ≤ ε and Tr(λ − T − D) = 0.

Proof. Let λ ∈ Trε(T ). Then,
|Tr(λ − T )| ≤ ε.

Now, we consider the matrix D by

D =
Tr(λ − T )

n
I.

It is clear that, D ∈ Mn(C) and

|Tr(D)| =

∣

∣

∣

∣

Tr

(

Tr(λ − T )

n
I

)∣

∣

∣

∣

=
|Tr(λ − T )|

n
Tr(I) ≤ ε.

Also, we have

Tr(λ − T − D) = Tr

(

λ − T − Tr(λ − T )

n
I

)

= 0.

�

Remark 2.5. In summary, at the present moment we have shown that from Theorems 2.3 and 2.4, that

for T ∈ Mn(C) and ε > 0
J(T, ε) = Trε(T ),

where

J(T, ε) :=
{

λ ∈ C : Tr(λ − T − D) = 0 for some D ∈ Mn(C), |Tr(D)| ≤ ε
}

.

Theorem 2.6. T ∈ Mn(C) and ε > 0. Then,

Trδ(T ) + Θε ⊆ Trnε+δ(T ), (2.1)

holds for δ, ε > 0 with Θε, denoting the closed disk in the complex plane centered at the origin with radius

ε. If we take δ = 0, we obtain an inner bound for Trε(T ), namely

Tr0(T ) + Θε ⊆ Trnε(T ). (2.2)
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Proof. Let λ ∈ Trδ(T )+Θε. Then, there exists λ1 ∈ Trδ(T ) and λ2 ∈ Θε such that λ = λ1 +λ2. Therefore,
|Tr(λ1I − T )| ≤ δ and |λ2| ≤ ε. Now, we have

|Tr(λI − T )| = |Tr((λ1 + λ2)I − T )|
= |Tr(λ2I) + Tr(λ1I − T )|
≤ |λ2||Tr(I)| + |Tr(λ1I − T )|
≤ n|λ2| + |Tr(λ1I − T )| ≤ nε + δ,

so that (2.1) holds. Finally, let δ = 0, then the desired inclusion (2.2) is obtained. �

Theorem 2.7. Let T, B ∈ Mn(C) such that T B = BT and ε > 0. If T is normal (i.e. T ∗T = T T ∗),
then

Trε(T + B) ⊆ σ(T ) + Trε(B).

Proof. We assume that T is normal, so there exists a unitary matrix U ∈ Mn(C) such that

U∗T U = λ1In1
⊕ λ2In2

⊕ . . . ⊕ λkInk
.

Using the condition T B = BT implies that

U∗BU = T1 ⊕ T2 . . . ⊕ Tk

where, Ti ∈ Mnk
(C), i = 1, . . . , k . Using Theorems 2.2, we have

Trε(T + B) = Trε(U∗T U + U∗BU)

= Trε((λ1In1
+ T1) ⊕ . . . ⊕ (λkInk

+ Tk))

=

k
⋃

i=1

Trε(λiIni
+ Ti)

=

k
⋃

i=1

λi + Trε(Ti)

⊆ σ(T ) + Trε(B).

The proof is thus complete. �

The next corollary is a consequence of Theorem 2.7.

Remark 2.8. If B = 0n×n, then

Trε(T ) ⊆ σ(T ) +
{

λ ∈ C : |λ| ≤ ε

n

}

.

The following example proves that the condition (T is normal) in Theorem 2.7 is necessary.

Example: Let α ∈ C with α 6= β 6= 0 and let T = B =

(

0 α
β 0

)

. It is clear that T and B are not

normal. Using Theorem 2.2 we have

Trε(T + B) = Trε(2T ) =
{

λ ∈ C : |2λ| ≤ ε
}

,

σ(T ) + Trε(B) =
{

±
√

αβ
}

+
{

λ ∈ C : |2λ| ≤ ε
}

.

Hence,

Trε(T + B) * σ(T ) + Trε(B).
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Remark 2.9. Let T, B ∈ Mn(C) and ε > 0. Then, from Theorem 2.7, we obtain the following inequality,

Trrε(T + B) ≤ r(T ) + Trrε(B).

Also, if B = 0n×n we have

Trrε(T ) ≤ r(T ) + ε
n

.

Each T ∈ Mn(C) can be written in exactly one way as

T = Re(T ) + iIm(T ) (Cartesian decomposition)

in which Re(T ) = T +T ∗

2 denote its real part and Im(T ) = T −T ∗

2i
denote its imaginary part. Then, we can

see the foregoing discussion in the following ramark.

Remark 2.10. Let T ∈ Mn(C) be a normal matrix such that its spectrum is symmetric with respect to

the origin and ε > 0. Then

2Tr ε
2

(

Re(T ) ⊕ iIm(T )
)

⊆ σ(T ) + Trε(T ∗).

Theorem 2.11. Let T, B ∈ Mn(C) and ε > 0. Then,

Tr ε
2
(T ) + Tr ε

2
(B) ⊆ Trε(T + B).

Proof. For the first inclusion, let λ ∈ Tr ε
2
(T ) + Tr ε

2
(B). Then, there exists λ1 ∈ Tr ε

2
(T ) and λ2 ∈ Tr ε

2
(B)

such that λ = λ1 + λ2. Therefore,

|Tr(λ1 − T )| ≤ ε

2
and |Tr(λ2 − T )| ≤ ε

2
.

On the other hand,

|Tr(λ − T − B)| = |Tr(λ1 − T + λ2 − B)|
≤ |Tr(λ1 − T )| + |Tr(λ2 − B)|
≤ ε

Then, λ ∈ Trε(T + B). �

Definition 2.12. Given T, B ∈ Mn(C). T is said to be diagonally similar to B if there exists a nonsin-

gular diagonal matrix V such that T = V BV −1 if, in addition, V can be chosen to be unitary, then we

say T is unitarily diagonally similar to B.

Theorem 2.13. Let T ∈ Mn(C) and ε > 0. Then,

(i) If T ∈ Mn(C) is diagonally similar to B or T is unitarily diagonally similar to

B ∈ Mn(C), then Trε(T ) = Trε(B).

(ii) The map T → Trε(T ) is an upper semi continuous function from Mn(C) to compact

subsets of C.

Proof. (i) Let λ ∈ Trε(T ), if and only if

|Tr(λI − B)| = |Tr(V −1(λI − T )V )|,
(

using Tr(T B) = Tr(BT )
)

= |Tr(λI − T )| ≤ ε.

if and only if, λ ∈ Trε(B).

(ii) Obvious, from Definition 2.1. �
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The following example shows that the converse of the assertion (i) is not true.

Example: Let T =





1 2 1
0 1 0
0 0 1



 and B =





1 0 0
0 1 0
0 0 1



. Then, T and B are not similar and for

ε > 0, we have
Trε(T ) = Trε(B) =

{

λ ∈ C : 3|λ − 1| ≤ ε
}

.

The following example shows that for matrices, the eigenvalues coincide does not imply that the trace
pseudospectrum also coincides.

Example: Let α, δ ∈ C with α 6= δ 6= 0 and let

T =





α 0 0
0 α 0
0 0 δ



 and B =





α 0 0
0 δ 0
0 0 δ



 .

Then,
σ(T ) = σ(B) = {α, δ}.

But, a simple computation shows that

Trε(T ) =
{

λ ∈ C : |λ − 3−1(2α − δ)| ≤ 3−1ε
}

6=
{

λ ∈ C : |λ − 3−1(α + 2δ)| ≤ 3−1ε
}

= Trε(B).

Theorem 2.14. Let T, B ∈ Mn(C) and ε > 0. Then,

Trε(T B) = Trε(BT ).

Proof. Let λ ∈ Trε(T B), then

ε ≥ |Tr(λI − T B)| = |Tr(λI) + Tr(−T B)|
= |Tr(λI) + Tr(−BT )|
= |Tr(λI − BT )|.

Hence, λ ∈ Trε(BT ). Thus,
Trε(T B) ⊆ Trε(BT ).

Using a similar reasoning to the first inclusion, we deduce that

Trε(BT ) ⊆ Trε(T B).

�

Theorem 2.15. Let T ∈ Mn(C), ε > 0 and λ1, . . . λk be the distinct eigenvalues of T with algebraic

multiplicity m1, . . . , mk respectively. Then,

Trε(T ) =
{

λ ∈ C :
∑k

i=1 mi|λ − λi| ≤ ε
}

.

Proof. From the Schur decomposition there exist an upper triangular matrix U ∈ Mn(C) with diagonal
entries as eigenvalues of T and a unitary matrix Q such that T = QUQ−1. Then,

Trε(T ) = Trε(U) =
{

λ ∈ C : |Tr(λI − U)| ≤ ε
}

=

{

λ ∈ C :
k

∑

i=1

mi|λ − λi| ≤ ε

}

.

�
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Theorem 2.16. Let T ∈ Mn(C) and N ∈ Mn(C) is a nilpotent matrix and ε > 0. Then,

Trε(T + N) = Trε(T ).

Proof. ” ⊆ ” Let λ ∈ Trε(T + N), then |Tr(λ − T − N)| ≤ ε. Since

|Tr(λ − T ) − Tr(N)| ≤ ε.

Using the fact that the matrix trace vanishes on nilpotent matrices, therefore

λ ∈ Trε(T ).

Hence,
Trε(T + N) ⊆ Trε(T ).

” ⊇ ” Let λ ∈ Trε(T ), then |Tr(λ − T )| ≤ ε. Now, we can write for any λ ∈ C

|Tr(λ − T )| = |Tr(λ − T − N + N)| = |Tr(λ − T − N) + Tr(N)|.

Because, Tr(N) = 0, it follows that |Tr(λ − T − N)| ≤ ε. Consequently,

Trε(T ) ⊆ Trε(T + N).

�

3. Trace pseudospectral mapping Theorem.

The following is a Trace pseudospectral mapping theorem for complex analytic functions. Let T ∈
Mn(C) and let f be an analytic function defined on O, an open set containing Tr0(T ). To state our
results, we introduce the functions for each ε > 0,

ϕ(ε) = sup
λ∈Trε(T )

|Tr
(

f(λ)I − f(T )
)

|.

and suppose there exists ε0 > 0 such that Trε0
(f(T )) ⊆ f(O). Then, for 0 < ε < ε0 we define

φ(ε) = sup
µ ∈ f−1(Trε(T )) ∩ O

|Tr(µ − T )|.

It is sharp in the sense that the functions ϕ and φ measure the sizes of the trace pseudospectra are
optimal. Actually, the theorem is an easy consequence of the definitions of these functions.

Lemma 3.1. Let T ∈ Mn(C) and ε > 0, then ϕ(ε) and φ(ε) are well defined,

lim
ε→0

ϕ(ε) = 0 and lim
ε→0

φ(ε) = 0.

Proof. In the order to prove that ϕ(ε) is well defined, we define h : C → R+

h(λ) = |Tr
(

f(λ)I − f(T )
)

|

Since h(λ) is continuous and Trε(T ) is a compact subset of C, then it is clear that

ϕ(ε) = sup
{

h(λ) : λ ∈ Trε(T )
}

.

Thus, ϕ(ε) is well defined. Now, let assume that there exists ε0 > 0 such that

Trε0
(f(T )) ⊆ f(O).

We show that for 0 < ε < ε0, φ(ε) is well defined. Define g : C → R+,

g(µ) = |Tr(µ − T )|.

Since g is continuous for all µ ∈ C, then φ(ε) is well defined. It is also clear that ϕ(ε) and φ(ε) are a
monotonically non-decreasing function and ϕ(ε) and φ(ε) goes to zero as ε goes to zero. �
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Theorem 3.2. Let T ∈ Mn(C) and let f be an analytic function defined on O, an open set containing

Tr0(T ). Then, for each ε > 0, we have

f(Trε(T )) ⊆ Trϕ(ε)(f(T )),

where, ϕ(ε) defined above.

Proof. Let λ ∈ Trε(T ). Then, using Lemma 3.1 we obtain that ϕ(ε) is well defined and lim
ε→0

ϕ(ε) = 0.

Therefore, h(λ) ≤ ϕ(ε). Hence

|Tr
(

f(λ)I − f(T )
)

| := h(λ) ≤ ϕ(ε).

Thus, f(λ) ∈ Trϕ(ε)(f(T )). This means that

f(Trε(T )) ⊆ Trϕ(ε)(f(T )).

�

Theorem 3.3. Let T ∈ Mn(C) and let f be an analytic function defined on O, an open set containing

Tr0(T ). Then, for each ε > 0, we have

Trε(f(T )) ⊆ f(Trφ(ε)(T )).

where, φ(ε) defined above.

Proof. Let λ ∈ Trε(f(T )). Then, using Lemma 3.1 we obtain the existence of ε0 > 0 such that

Trε(f(T )) ⊆ Trε0
(f(T )) ⊆ f(O).

Consider µ ∈ O such that λ = f(µ). Then µ ∈ f−1(Trε(T )), hence

g(µ) ≤ φ(ε).

Therefore,
|Tr

(

µI − T
)

| := g(µ) ≤ φ(ε)

Thus, µ ∈ Trφ(ε)(T ). Then, λ = f(µ) ∈ f(Trφ(ε)(T )). This means that

Trε(f(T )) ⊆ f(Trφ(ε)(T )).

�

Corollary 3.4. Combining the two inclusions in Theorems 3.2 and 3.3, we get

f(Trε(T )) ⊆ Trϕ(ε)(f(T )) ⊆ f(Trφ(ϕ(ε))(T ) and

Trε(f(T )) ⊆ f(Trφ(ε)(T )) ⊆ Trϕ(φ(ε))(f(T )).

Here are some remarks.

Remark 3.5. (i) If ϕ(0) = 0 = φ(0), and then the theorem reduces to

f(Tr0(T )) ⊆ Tr0(f(T )) ⊆ f(Tr0(T )

and

Tr0(f(T )) ⊆ f(Tr0(T )) ⊆ Tr0(f(T )).

(ii) We observe from the definitions of ϕ and φ, that the set inclusions are sharp in the

sense that the functions cannot be replaced by smaller functions.
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(iii) If f(z) = αz + β where α, β are complex numbers, then

ϕ(ε) = sup
λ∈Trε(T )

|Tr
(

(αλ + β)I − αT − β
)

| = sup
λ∈Trε(T )

|Tr
(

α(λ − T )
)

| = |α|ε

and

φ(ε) = sup
µ ∈ f−1(Trε(T )) ∩ O

|Tr(µ − T )| = sup
µ ∈ Tr ε

|α|
(T )

|Tr(µ − T )|.

Then, ϕ(φ(ε)) = ε and φ(ϕ(ε)) = ε. Hence,

f(Trε(T )) = Trε(f(T )).

In general, the spectral mapping Theorem is not true for trace pseudospectrum.

Example: Let α, β ∈ C with α 6= β 6= 0 and let T =

(

α 1
0 β

)

and f(λ) = λ2. Then, f(T ) =
(

α2 α + β

0 β2

)

. A direct computation shows that

Trε(f(T )) =
{

λ ∈ C : |2λ − α2 − β2| ≤ ε
}

,

f(Trε(T )) =
{

λ2 ∈ C : |2λ − α2 − β2| ≤ ε
}

.

We can see for all ε > 0 that Trε(f(T )) 6= f(Trε(T )).
We close this paper with the following example.

Example: Let us consider the following 3 × 3 circulant matrix (special type of Toeplitz matrix)

T =





a 2a 3a
3a a 2a
2a 3a a





Let f(λ) = λ2. Then, f(T ) = T 2 is also a circulant matrix and

T 2 =





13a2 13a2 10a2

10a2 13a2 13a2

13a2 10a2 13a2



 .

Therefore, for ε > 0
Trε(T ) =

{

λ ∈ C : 3|λ − a| ≤ ε
}

,

ϕ(ε) = sup
λ∈Trε(T )

|Tr
(

λ2I − T 2
)

| = sup
λ∈D(a, ε

3
)

3|λ2 − 13a2| = 3
∣

∣

∣(
ε

3
+ a)2 − 13a2

∣

∣

∣

and
φ(ε) = sup

µ2∈D(a, ε
3

)

3|µ − a| = |
√

3ε + 9a − 3a|.

Consequently,
(

Trε(T )
)2 ⊆ Tr3|( ε

3
+a)2−13a2|(T

2) and

Trε(T 2) ⊆
(

Tr|
√

3ε+9a−3a|(T )
)2

.
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