# Binary Bipolar Soft Sets 

Naime Demirtaş and Orhan Dalkılıç


#### Abstract

In this paper, we give on interesting connection between two mathematical approaches to vagueness: bipolar soft sets and binary soft sets. The nation of binary bipolar soft set over two universal sets and a parameter set is proposed. The complement, union, intersection, restricted union, restricted intersection, null binary bipolar soft set, absolute binary bipolar soft set, difference of two binary bipolar soft sets, "AND", "OR" operations are defined on the binary bipolar soft sets. The basic properties of binary bipolar soft sets are also investigated and discussed. Finally we give a characteristic function of binary bipolar soft set.


Key Words: Bipolar soft set, binary soft set, binary bipolar soft set.

## Contents

1 Introduction ..... 1
2 Preliminaries ..... 1
3 Binary Bipolar Soft Sets ..... 4
4 A Characteristic Function of the Binary Bipolar Soft Set ..... 10
5 Results and Discussion ..... 11

## 1. Introduction

To overcome complex problems containing uncertainty has made many studies. For this; the concept of soft sets was initiated by Molodtsov [1]. This set theory has become an important theory presented against uncertainty in many areas in economics, engineering, social science, medical science, etc. Later Maji et al. [8] presented some new definitions on soft sets such as a subset, the complement of a soft set. Furthermore, many studies on set theoretical aspects of soft sets were made. Some of them can be seen in references $[4,5,6]$ and [7].

Concept of bipolar soft set and its operations such as union, intersection and complement were first defined by Shabir and Naz [2]. Also Shabir and Naz [2] defined bipolar soft sets and presented an application of bipolar soft sets in a decision making problem. Then, Karaaslan and Karataş [3] redefined bipolar soft sets with a new approximation providing opportunity to study on topological structures of bipolar soft sets.

Açıkgöz and Tas [9] introduced the concept of binary soft set theory on two initial universal sets. Then, Benchalli et al. [10] related basic properties which are defined over two initial universal sets with suitable parameters.

In this paper, we propose a novel concept of binary bipolar soft set which is an extension of bipolar soft sets and binary soft sets. We present its basic operations, namely complement, union, intersection, AND, OR and investigate its basic properties. In the last section, we identified a characteristic function for binary bipolar soft sets which utilizing characteristic function given by Açıkgöz and Tas [9].

## 2. Preliminaries

First we recall some basic notions in soft sets ve bipolar soft sets.
Let $U$ be an initial universe and $E$ be a set of parameters. Let $P(U)$ denotes the power set of $U$ and $A, B, C$ be non-empty subsets of $E$.

[^0]Definition 2.1. [1] A pair $(F, A)$ is called a soft set over $U$, where $F$ is a mapping given by $F: A \rightarrow$ $P(U)$. In other words, a soft set over $U$ is a parameterized family of subsets of the universe $X$. For $e \in A, F(e)$ may be considered as the set of e-approximate elements of the soft set $(F, A)$.

Definition 2.2. [8] Let $E=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ be a set of parameters. The NOT set of $E$ denoted by $\neg E$ is defined by $\neg E=\left\{\neg e_{1}, \neg e_{2}, \ldots, \neg e_{n}\right\}$ where, $\neg e_{i}=$ not $e_{i}$ for all $i$.

Definition 2.3. [2] A triplet $(F, G, A)$ is called a bipolar soft set over $U$, where $F$ and $G$ are mappings, given by $F: A \rightarrow P(U)$ and $G: \neg A \rightarrow P(U)$ such that $F(e) \cap G(\neg e)=\emptyset$ for all $e \in A$.

Definition 2.4. [2] For two bipolar soft sets $(F, G, A)$ and $\left(F_{1}, G_{1}, B\right)$ over a universe $U$, we say that $(F, G, A)$ is a bipolar soft subset of $\left(F_{1}, G_{1}, B\right)$ if
(1) $A \subseteq B$ and
(2) $F(e) \subseteq F_{1}(e)$ and $G_{1}(\neg e) \subseteq G(\neg e)$ for all $e \in A$.

This relationship is denoted by $(F, G, A) \simeq(F 1, G 1, B)$. Similarly $(F, G, A)$ is said to be a bipolar soft superset of $\left(F_{1}, G_{1}, B\right)$ if $\left(F_{1}, G_{1}, B\right)$ is a bipolar soft subset of $(F, G, A)$. We denote it by

$$
(F, G, A) \check{\cong}\left(F_{1}, G_{1}, B\right)
$$

Definition 2.5. [2] Two bipolar soft sets $(F, G, A)$ and $\left(F_{1}, G_{1}, B\right)$ over a universe $U$ are said to be equal if $(F, G, A)$ is a bipolar soft subset of $\left(F_{1}, G_{1}, B\right)$ and $\left(F_{1}, G_{1}, B\right)$ is a bipolar soft subset of $(F, G, A)$.

Definition 2.6. [2] The complement of a bipolar soft set $(F, G, A)$ is denoted by $(F, G, A)^{c}$ and is defined by $(F, G, A)^{c}=\left(F^{c}, G^{c}, A\right)$ where $F^{c}$ and $G^{c}$ are mappings given by $F^{c}(e)=G(\neg e)$ and $G^{c}(\neg e)=F(e)$ for all $e \in A$.

Definition 2.7. [2] A bipolar soft set over $U$ is said to be a relative null bipolar soft set, denoted by $(\Phi, \mathfrak{U}, A)$ if for all $e \in A, \Phi(e)=\emptyset$ and $\mathfrak{U}(\neg e)=U$, for all $e \in A$.

Definition 2.8. [2] A bipolar soft set over $U$ is said to be a absolute null bipolar soft set, denoted by $(\mathfrak{U}, \Phi, A)$ if for all $e \in A, \mathfrak{U}(e)=U$ and $\Phi(\neg e)=\emptyset$, for all $e \in A$.

Definition 2.9. [2] If $(F, G, A)$ and $\left(F_{1}, G_{1}, B\right)$ are two bipolar soft sets over $U$ then " $(F, G, A)$ and $\left(F_{1}, G_{1}, B\right)$ " denoted by $(F, G, A) \wedge\left(F_{1}, G_{1}, B\right)$ is defined by

$$
(F, G, A) \wedge\left(F_{1}, G_{1}, B\right)=(H, I, A \times B)
$$

where $H(a, b)=F(a) \cap F_{1}(b)$ and $I(\neg a, \neg b)=G(\neg a) \cup G_{1}(\neg b)$, for all $(a, b) \in A \times B$.
Definition 2.10. [2] If $(F, G, A)$ and $\left(F_{1}, G_{1}, B\right)$ are two bipolar soft sets over $U$ then " $(F, G, A)$ or $\left(F_{1}, G_{1}, B\right)$ " denoted by $(F, G, A) \vee\left(F_{1}, G_{1}, B\right)$ is defined by

$$
(F, G, A) \vee\left(F_{1}, G_{1}, B\right)=(H, I, A \times B)
$$

where $H(a, b)=F(a) \cup F_{1}(b)$ and $I(\neg a, \neg b)=G(\neg a) \cap G_{1}(\neg b)$, for all $(a, b) \in A \times B$.
Definition 2.11. [2] Extended Union of two bipolar soft sets $(F, G, A)$ and $\left(F_{1}, G_{1}, B\right)$ over the common universe $U$ is the bipolar soft set $(H, I, C)$ over $U$, where $C=A \cup B$ and for all $e \in C$,

$$
\begin{gathered}
H(e)= \begin{cases}F(e) & \text { if } e \in A-B \\
F_{1}(e) & \text { if } e \in B-A \\
F(e) \cup F_{1}(e) & \text { if } e \in A \cap B\end{cases} \\
I(\neg e)= \begin{cases}G(\neg e) & \text { if } \neg e \in(\neg A)-(\neg B) \\
G_{1}(\neg e) & \text { if } \neg e \in(\neg B)-(\neg A) \\
G(\neg e) \cap G_{1}(\neg e) & \text { if } \neg e \in(\neg A) \cap(\neg B)\end{cases}
\end{gathered}
$$

We denote it by $(F, G, A) \tilde{\cup}\left(F_{1}, G_{1}, B\right)=(H, I, C)$.

Definition 2.12. [2] Extended Intersection of two bipolar soft sets $(F, G, A)$ and $\left(F_{1}, G_{1}, B\right)$ over the common universe $U$ is the bipolar soft set $(H, I, C)$ over $U$, where $C=A \cup B$ and for all $e \in C$,

$$
\begin{aligned}
& H(e)= \begin{cases}F(e) & \text { if } e \in A-B \\
F_{1}(e) & \text { if } e \in B-A \\
F(e) \cap F_{1}(e) & \text { if } e \in A \cap B\end{cases} \\
& I(\neg e)= \begin{cases}G(e) & \text { if } e \in(\neg A)-(\neg B) \\
G_{1}(e) & \text { if } e \in(\neg B)-(\neg A) \\
G(e) \cup G_{1}(e) & \text { if } e \in(\neg A) \cap(\neg B)\end{cases}
\end{aligned}
$$

We denote it by $(F, G, A) \tilde{\cap}\left(F_{1}, G_{1}, B\right)=(H, I, C)$.
Definition 2.13. [2] Restricted Union of two bipolar soft sets $(F, G, A)$ and $\left(F_{1}, G_{1}, B\right)$ over the common universe $U$ is the bipolar soft set $(H, I, C)$, where $C=A \cap B$ is non-empty and for all $e \in C$

$$
H(e)=F(e) \cup F_{1}(e) \quad \text { and } \quad I(\neg e)=G(\neg e) \cap G_{1}(\neg e)
$$

We denote it by $(F, G, A) \cup_{\Re}\left(F_{1}, G_{1}, B\right)=(H, I, C)$.
Definition 2.14. [2] Restricted Intersection of two bipolar soft sets $(F, G, A)$ and $\left(F_{1}, G_{1}, B\right)$ over the common universe $U$ is the bipolar soft set $(H, I, C)$, where $C=A \cap B$ is non-empty and for all $e \in C$

$$
H(e)=F(e) \cap F_{1}(e) \quad \text { and } \quad I(\neg e)=G(\neg e) \cup G_{1}(\neg e)
$$

We denote it by $(F, G, A) \cap_{\mathfrak{R}}\left(F_{1}, G_{1}, B\right)=(H, I, C)$.

Now let's recall some basic definitions for binary soft sets. Let $U_{1}, U_{2}$ be two initial universe sets and $E$ be a set of parameters. Let $P\left(U_{1}\right), P\left(U_{2}\right)$ denote the power set of $U_{1}, U_{2}$, respectively. Also, let $A, B, C \subseteq E$.

Definition 2.15. [9] A pair $(F, A)$ is said to be a binary soft set over $U_{1}, U_{2}$, where $F$ is defined as below:
$F: A \rightarrow P\left(U_{1}\right) \times P\left(U_{2}\right), F(e)=(X, Y)$ for each $e \in A$ such that $X \subseteq U_{1}, Y \subseteq U_{2}$.
Definition 2.16. [9] A binary soft set $(F, A)$ over $U_{1}, U_{2}$ is called a binary null soft set, denoted by $\tilde{\tilde{\phi}}$ if $F(e)=(\phi, \phi)$ for each $e \in A$.
Definition 2.17. [9] A binary soft set $(G, A)$ over $U_{1}, U_{2}$ is called a binary absolute soft set, denoted by $\tilde{\tilde{A}}$ if $F(e)=\left(U_{1}, U_{2}\right)$ for each $e \in A$.

Definition 2.18. [9] The complement of a binary soft set $(F, A)$ is denoted by $(F, A)^{c}$ and is defined $(F, A)^{c}=\left(F^{c}, \neg A\right)$, where $F^{c}: \neg A \rightarrow P\left(U_{1}\right) \times P\left(U_{2}\right)$ is a mapping given by $F^{c}(e)=\left(U_{1}-X, U_{2}-Y\right)$ such that $F(e)=(X, Y)$. Clearly, $\left((F, A)^{c}\right)^{c}=(F, A)$.

Definition 2.19. [9] The union of two binary soft sets of $(F, A)$ and $(G, B)$ over the common niverse $U_{1}, U_{2}$ is the binary soft set $(H, C)$, where $C=A \cup B$ and for all $e \in C$,

$$
H(e)= \begin{cases}\left(X_{1}, Y_{1}\right) & \text { if } e \in A-B \\ \left(X_{2}, Y_{2}\right) & \text { if } e \in B-A \\ \left(X_{1} \cup X_{2}, Y_{1} \cup Y_{2}\right) & \text { if } e \in A \cap B\end{cases}
$$

such that $F(e)=\left(X_{1}, Y_{1}\right)$ for each $e \in A$ and $G(e)=\left(X_{2}, Y_{2}\right)$ for each $e \in B$. We denote it as $(F, A) \widetilde{\widetilde{U}}(G, A)=(H, C)$.

Definition 2.20. [9] The intersection of two binary soft sets $(F, A)$ and $(G, B)$ over a common $U_{1}$, $U_{2}$ is the binary soft set $(H, C)$, where $C=A \cap B$, and $(H, E)=\left(X_{1} \cap X_{2}, Y_{1} \cap Y_{2}\right)$ for each $e \in C$ such that $F(e)=\left(X_{1}, Y_{1}\right)$ for each $e \in A$ and $G(e)=\left(X_{2}, Y_{2}\right)$ for each $e \in B$. We denote it as $(F, A) \widetilde{\widetilde{\cap}}(G, B)=(H, C)$.

Definition 2.21. [9] Let $(F, A)$ and $(G, B)$ be two binary soft sets over a common $U_{1}, U_{2}$. ( $F, A$ ) is called a binary soft subset of $(G, B)$ if
(i) $A \subseteq B$,
(ii) $X_{1} \subseteq X_{2}$ and $Y_{1} \subseteq Y_{2}$ such that $F(e)=\left(X_{1}, Y_{1}\right), G(e)=\left(X_{2}, Y_{2}\right)$ for each $e \in A$. We denote it as $(F, A) \widetilde{\widetilde{\subseteq}}(G, B)$.
Definition 2.22. [9] The difference of two binary soft sets $(F, A)$ and $(G, A)$ over the common $U_{1}, U_{2}$ is the binary soft set $(H, A)$, where $H(e)=\left(X_{1}-X_{2}, Y_{1}-Y_{2}\right)$ for each $e \in A$ such that $(F, A)=\left(X_{1}, Y_{1}\right)$ and $(G, A)=\left(X_{2}, Y_{2}\right)$.
Definition 2.23. [9] If $(F, A)$ and $(G, B)$ are two binary soft sets then " $(F, A) A N D(G, B)$ " denoted by $(F, A) \widetilde{\widetilde{\wedge}}(G, B)$ is defined by $(F, A) \widetilde{\widetilde{\wedge}}(G, B)=(H, A \times B)$, where $H(e, f)=\left(X_{1} \cap X_{2}, Y_{1} \cap Y_{2}\right)$ for each $(e, f) \in A \times B$ such that $F(e)=\left(X_{1}, Y_{1}\right)$ and $G(e)=\left(X_{2}, Y_{2}\right)$.
Definition 2.24. [9] If $(F, A)$ and $(G, B)$ are two binary soft sets then " $(F, A) O R(G, B)$ " denoted by $(F, A) \widetilde{\widetilde{V}}(G, B)$ is defined by $(F, A) \widetilde{\widetilde{V}}(G, B)=(O, A \times B)$, where $O(e, f)=\left(X_{1} \cup X_{2}, Y_{1} \cup Y_{2}\right)$ for each $(e, f) \in A \times B$ such that $F(e)=\left(X_{1}, Y_{1}\right)$ and $G(e)=\left(X_{2}, Y_{2}\right)$.

## 3. Binary Bipolar Soft Sets

Likewise, let $U_{1}, U_{2}$ be two initial universe sets and $E$ be a set of parameters. Let $P\left(U_{1}\right), P\left(U_{2}\right)$ denote the power set of $U_{1}, U_{2}$, respectively. Also, let $A, B, C \subseteq E$.
Definition 3.1. A triplet $(F, G, A)$ is called a binary bipolar soft set over $U_{1}, U_{2}$, where $F$ and $G$ are mappings, given by $F: A \rightarrow P\left(U_{1}\right) \times P\left(U_{2}\right)$ and $G: \neg A \rightarrow P\left(U_{1}\right) \times P\left(U_{2}\right)$ such that $\hat{X}, \check{X} \subseteq U_{1}$, $\hat{Y}, \check{Y} \subseteq U_{2}$ and $F(e) \widetilde{\cap} G(\neg e)=(\hat{X}, \hat{Y}) \widetilde{\cap}(\check{X}, \check{Y})=\emptyset$ for all $e \in A$.

Example 3.2. Let $U_{1}=\left\{j_{1}, j_{2}, j_{3}, j_{4}\right\}, U_{2}=\left\{t_{1}, t_{2}, t_{3}\right\}$ be the universes containing four jackets and three t-shirts, respectively. Also, let $E=\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}=\{$ cheap, traditional, large, colored $\}$ and $\neg E=\left\{\neg e_{1}, \neg e_{2}, \neg e_{3}, \neg e_{4}\right\}=\{$ expensive, classic, small, colorless $\}$ be the sets of parameters.

The binary bipolar soft set $(F, G, A)$ describes the "requirements of both the jackets and the $t$-shirts" which Mr. X is going to buy, where $A=\left\{e_{1}, e_{3}, e_{4}\right\} \subseteq E .(F, G, A)$ is a binary bipolar soft set over $U_{1}$, $U_{2}$ defined as follows:

$$
\begin{gathered}
F\left(e_{1}\right)=\left(\left\{j_{1}, j_{3}\right\},\left\{t_{2}\right\}\right), F\left(e_{3}\right)=\left(\left\{j_{2}\right\},\left\{t_{1}, t_{3}\right\}\right), F\left(e_{4}\right)=\left(\left\{j_{1}, j_{4}\right\},\left\{t_{2}\right\}\right), \\
G\left(\neg e_{1}\right)=\left(\left\{j_{2}, j_{4}\right\},\left\{t_{1}, t_{3}\right\}\right), G\left(\neg e_{3}\right)=\left(\left\{j_{1}\right\},\left\{t_{2}\right\}\right), G\left(\neg e_{4}\right)=\left(\left\{j_{2}, j_{3}\right\},\left\{t_{3}\right\}\right)
\end{gathered}
$$

So, we can say the binary soft set

$$
\begin{aligned}
(F, G, A)= & \left\{\text { cheap jackets, } t-\text { shirts }: \text { resp. }\left\{j_{1}, j_{3}\right\},\left\{t_{2}\right\}\right. \\
& \text { large jackets, } t-\text { shirts }: \text { resp. }\left\{j_{2}\right\},\left\{t_{1}, t_{3}\right\}, \\
& \text { colored, jackets, } t-\text { shirts }: \text { resp. }\left\{j_{1}, j_{4}\right\},\left\{t_{2}\right\}, \\
& \text { expensive, jackets, } t-\text { shirts }: \text { resp. }\left\{j_{2}, j_{4}\right\},\left\{t_{1}, t_{3}\right\}, \\
& \text { small, jackets, } t-\text { shirts }: \text { resp. }\left\{j_{1}\right\},\left\{t_{2}\right\}, \\
& \text { colorless, jackets, } \left.t-\text { shirts }: \text { resp. }\left\{j_{2}, j_{3}\right\},\left\{t_{3}\right\}\right\}
\end{aligned}
$$

We denote the binary soft set $(F, G, A)$ as below:

$$
\begin{gathered}
(F, G, A)=\left(e_{1},\left(\left\{j_{1}, j_{3}\right\},\left\{t_{2}\right\}\right)\right),\left(e_{3},\left(\left\{j_{2}\right\},\left\{t_{1}, t_{3}\right\}\right)\right),\left(e_{4},\left(\left\{j_{1}, j_{4}\right\},\left\{t_{2}\right\}\right)\right) \\
\left(\neg e_{1},\left(\left\{j_{2}, j_{4}\right\},\left\{t_{1}, t_{3}\right\}\right)\right),\left(\neg e_{3},\left(\left\{j_{1}\right\},\left\{t_{2}\right\}\right)\right),\left(\neg e_{4},\left(\left\{j_{2}, j_{3}\right\},\left\{t_{3}\right\}\right)\right)
\end{gathered}
$$

In this example, we can see the views of Mr. X who wants or does not wants to buy both jackets and t-shirts under contrasting sets of parameters.

Definition 3.3. For two bipolar soft sets $(F, G, A)$ and $\left(F_{1}, G_{1}, B\right)$ over a universe $U_{1}, U_{2}$, we say that $(F, G, A)$ is a binary bipolar soft subset of $\left(F_{1}, G_{1}, B\right)$, if
(1) $A \subseteq B$,
(2) $X_{1} \subseteq X_{2}$ and $Y_{1} \subseteq Y_{2}$ such that $F(e)\left(=\left(\hat{X}_{1}, \hat{Y}_{1}\right)\right) \widetilde{\widetilde{\subseteq}} F_{1}(e)\left(=\left(\hat{X}_{2}, \hat{Y}_{2}\right)\right)$ and

$$
G_{1}(\neg e)\left(=\left(\check{X}_{2}, \check{Y}_{2}\right)\right) \widetilde{\widetilde{\subseteq}} G(\neg e)\left(=\left(\check{X}_{1}, \check{Y}_{1}\right)\right)
$$

for all $e \in A$.
This relationship is denoted by $(F, G, A) \widetilde{\widetilde{\leftrightarrows}}(F 1, G 1, B)$. Similarly $(F, G, A)$ is said to be a binary bipolar soft superset of $\left(F_{1}, G_{1}, B\right)$, if $\left(F_{1}, G_{1}, B\right)$ is a binary bipolar soft subset of $(F, G, A)$. We denote it by $(F, G, A) \widetilde{\widetilde{\beth}}\left(F_{1}, G_{1}, B\right)$.

Example 3.4. Let $U_{1}=\left\{m_{1}, m_{2}, m_{3}, m_{4}\right\}, U_{2}=\left\{n_{1}, n_{2}, n_{3}\right\}, E=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}\right\}$ and $\neg E=$ $\left\{\neg e_{1}, \neg e_{2}, \neg e_{3}, \neg e_{4}, \neg e_{5}, \neg e_{6}\right\}$. Let $A=\left\{e_{3}, e_{5}\right\}$ and $B=\left\{e_{1}, e_{3}, e_{5}, e_{6}\right\} .(F, G, A),\left(F_{1}, G_{1}, B\right)$ are two binary bipolar soft sets over $U_{1}, U_{2}$ defined as follows:

$$
\begin{gathered}
(F, G, A)=\left\{\left(e_{3},\left(\left\{m_{2}, m_{4}\right\},\left\{n_{2}\right\}\right)\right),\left(\neg e_{3},\left(\left\{m_{1}, m_{3}\right\},\left\{n_{1}\right\}\right)\right),\left(e_{5},\left(\left\{m_{3}\right\},\left\{n_{1}\right\}\right)\right),\left(\neg e_{5},\left(\left\{m_{2}\right\},\left\{n_{3}\right\}\right)\right)\right. \\
\left(F_{1}, G_{1}, B\right)=\left\{\left(e_{1},\left(\left\{m_{3}, m_{4}\right\},\left\{n_{1}\right\}\right)\right),\left(\neg e_{1},\left(\left\{m_{1}, m_{2}\right\},\left\{n_{2}, n_{3}\right\}\right)\right),\left(e_{3},\left(\left\{m_{1}, m_{2}, m_{4}\right\},\left\{n_{2}\right\}\right)\right),\right. \\
\left(\neg e_{3},\left(\left\{m_{3}\right\},\left\{n_{1}\right\}\right)\right),\left(e_{5},\left(\left\{m_{1}, m_{3}\right\},\left\{n_{1}, n_{2}\right\}\right)\right),\left(\neg e_{5},\left(\{\emptyset\},\left\{n_{3}\right\}\right)\right),\left(e_{6},\left(\left\{m_{1}\right\},\left\{n_{1}, n_{2}\right\}\right)\right), \\
\left.\left(\neg e_{6},\left(\left\{m_{2}\right\},\left\{n_{3}\right\}\right)\right)\right\}
\end{gathered}
$$

Therefore, $(F, G, A) \widetilde{\widetilde{\sqsubseteq}}(F 1, G 1, B)$.
Definition 3.5. Two binary bipolar soft sets $(F, G, A)$ and $\left(F_{1}, G_{1}, B\right)$ over a universe $U$ are said to be equal if $(F, G, A)$ is a binary bipolar soft subset of $\left(F_{1}, G_{1}, B\right)$ and $\left(F_{1}, G_{1}, B\right)$ is a binary bipolar soft subset of $(F, G, A)$.

Definition 3.6. The complement of a binary bipolar soft set $(F, G, A)$ is denoted by $(F, G, A)^{c}$ and is defined by $(F, G, A)^{c}=\left(F^{c}, G^{c}, A\right)$ where $F^{c}: A \rightarrow P\left(U_{1}\right) \times P\left(U_{2}\right)$ and $G^{c}: \neg A \rightarrow P\left(U_{1}\right) \times P\left(U_{2}\right)$ are mappings given by $F^{c}(e)=\left(U_{1}-\hat{X}, U_{2}-\hat{Y}\right)=(\check{X}, \check{Y})=G(\neg e)$ and $G^{c}(\neg e)=\left(U_{1}-\check{X}, U_{2}-\tilde{Y}\right)=$ $(\hat{X}, \hat{Y})=F(e)$ for all $e \in A$.

Example 3.7. Consider Example 3.2. Then

$$
\begin{aligned}
(F, G, A)^{c}= & \left\{\text { not cheap jackets, } t-\text { shirts }: \text { resp. }\left\{j_{2}, j_{4}\right\},\left\{t_{1}, t_{3}\right\},\right. \\
& \text { not large jackets, } t-\text { shirts }: \text { resp. }\left\{j_{1}, j_{3}, j_{4}\right\},\left\{t_{2}\right\}, \\
& \text { not colored, jackets, } t-\text { shirts }: \text { resp. }\left\{j_{2}, j_{3}\right\},\left\{t_{1}, t_{3}\right\}, \\
& \text { not expensive, jackets, } t-\text { shirts }: \text { resp. }\left\{j_{1}, j_{3}\right\},\left\{t_{2}\right\}, \\
& \text { not small, jackets, } t-\text { shirts }: \text { resp. }\left\{j_{2}, j_{3}, j_{4}\right\},\left\{t_{1}, t_{3}\right\}, \\
& \text { not colorless, jackets, } \left.t-\text { shirts }: \operatorname{resp.}\left\{j_{1}, j_{4}\right\},\left\{t_{1}, t_{2}\right\}\right\}
\end{aligned}
$$

We denote the binary bipolar soft set $(F, G, A)^{c}$ as below:

$$
\begin{aligned}
(F, G, A)^{c}=\left(\neg e_{1},\right. & \left.\left(\left\{j_{2}, j_{4}\right\},\left\{t_{1}, t_{3}\right\}\right)\right),\left(\neg e_{3},\left(\left\{j_{1}, j_{3}, j_{4}\right\},\left\{t_{2}\right\}\right)\right),\left(\neg e_{4},\left(\left\{j_{2}, j_{3}\right\},\left\{t_{1}, t_{3}\right\}\right)\right), \\
& \left(e_{1},\left(\left\{j_{1}, j_{3}\right\},\left\{t_{2}\right\}\right)\right),\left(e_{3},\left(\left\{j_{2}, j_{3}, j_{4}\right\},\left\{t_{1}, t_{3}\right\}\right)\right),\left(e_{4},\left(\left\{j_{1}, j_{4}\right\},\left\{t_{1}, t_{2}\right\}\right)\right)
\end{aligned}
$$

Definition 3.8. A binary bipolar soft set over $U_{1}, U_{2}$ is said to be a null binary bipolar soft set, denoted by $(\widetilde{\Phi, \mathfrak{U}, A})$ if for all $e \in A, \Phi(e)=(\emptyset, \emptyset)$ and $\mathfrak{U}(\neg e)=\left(U_{1}, U_{2}\right)$, for all $e \in A$.

Example 3.9. Let $U_{1}=\left\{m_{1}, m_{2}\right\}, U_{2}=\left\{n_{1}, n_{2}, n_{3}\right\}, A=\left\{e_{1}, e_{2}\right\}$ and $\neg A=\left\{\neg e_{1}, \neg e_{2}\right\}$. Let (F, $\left.G, A\right)$ be a binary bipolar soft set as follows:

$$
(F, G, A)=\left\{\left(e_{1},(\emptyset, \emptyset)\right),\left(\neg e_{1},\left(U_{1}, U_{2}\right)\right),\left(e_{2},(\emptyset, \emptyset)\right),\left(\neg e_{2},\left(U_{1}, U_{2}\right)\right)\right\}
$$

Therefore, $(F, G, A)$ is a null binary bipolar soft set.
Definition 3.10. A binary bipolar soft set over $U_{1}, U_{2}$ is said to be a absolute binary bipolar soft set,


Example 3.11. Let $U_{1}, U_{2}, A$ and $\neg A$ be sets as in Example 3.9. Let $(F, G, A)$ be a binary bipolar soft set as follows:

$$
(F, G, A)=\left\{\left(e_{1},\left(U_{1}, U_{2}\right)\right),\left(\neg e_{1},(\emptyset, \emptyset)\right),\left(e_{2},\left(U_{1}, U_{2}\right)\right),\left(\neg e_{2},(\emptyset, \emptyset)\right)\right\}
$$

Therefore, $(F, G, A)$ is a absolute binary bipolar soft set. Clearly, $\left(\widetilde{\widetilde{\Phi, \mathfrak{U}, A})^{c}}=\widetilde{(\widetilde{\mathfrak{U}, \Phi, A}) \text { and }(\widetilde{\mathfrak{U}, \Phi, A})^{c}=}\right.$ $(\widetilde{\Phi, \mathfrak{U}, A})$.

Definition 3.12. The difference of two binary bipolar soft sets $(F, G, A)$ and $\left(F_{1}, G_{1}, A\right)$ over the common universe $U_{1}, U_{2}$ is the binary bipolar soft set $(H, I, A)$, where $H(e)=\left(\hat{X}_{1}-\hat{X}_{2}, \hat{Y}_{1}-\hat{Y}_{2}\right)$ and $I(\neg e)=$ $\left(\check{X}_{1}-\check{X}_{2}, \check{Y}_{1}-\check{Y}_{2}\right)$ for each $e \in A$ such that $F(e)=\left(\hat{X}_{1}, \hat{Y}_{1}\right), G(\neg e)=\left(\check{X}_{1}, \check{Y}_{1}\right), F_{1}(e)=\left(\hat{X}_{2}, \hat{Y}_{2}\right)$ and $G_{1}(\neg e)=\left(\tilde{X}_{2}, \check{Y}_{2}\right)$.

Definition 3.13. If $(F, G, A)$ and $\left(F_{1}, G_{1}, B\right)$ are two binary bipolar soft sets over $U_{1}, U_{2}$ then " $(F, G, A)$ and $\left(F_{1}, G_{1}, B\right)$ " denoted by $(F, G, A) \widetilde{\widetilde{\wedge}}\left(F_{1}, G_{1}, B\right)$ is defined by

$$
(F, G, A) \widetilde{\widetilde{\wedge}}\left(F_{1}, G_{1}, B\right)=(H, I, A \times B)
$$

where $H(a, b)=F(a) \widetilde{\cap} F_{1}(b)=\left(\hat{X}_{1}, \hat{Y}_{1}\right) \widetilde{\cap}\left(\hat{X}_{2}, \hat{Y}_{2}\right)$ and $I(\neg a, \neg b)=G(\neg a) \widetilde{\cup} G_{1}(\neg b)=\left(\check{X}_{1}, \check{Y}_{1}\right) \widetilde{\cup}\left(\check{X}_{2}, \check{Y}_{2}\right)$, for all $(a, b) \in A \times B$.
Definition 3.14. If $(F, G, A)$ and $\left(F_{1}, G_{1}, B\right)$ are two binary bipolar soft sets over $U_{1}, U_{2}$ then " $(F, G, A)$ or $\left(F_{1}, G_{1}, B\right)$ " denoted by $(F, G, A) \widetilde{\widetilde{V}}\left(F_{1}, G_{1}, B\right)$ is defined by

$$
(F, G, A) \widetilde{\widetilde{V}}\left(F_{1}, G_{1}, B\right)=(H, I, A \times B)
$$

where $H(a, b)=F(a) \widetilde{\cup} F_{1}(b)=\left(\hat{X}_{1}, \hat{Y}_{1}\right) \widetilde{\cup}\left(\hat{X}_{2}, \hat{Y}_{2}\right)$ and $I(\neg a, \neg b)=G(\neg a) \widetilde{\cap} G_{1}(\neg b)=\left(\check{X}_{1}, \check{Y}_{1}\right) \widetilde{\cap}\left(\check{X}_{2}, \check{Y}_{2}\right)$, for all $(a, b) \in A \times B$.
Proposition 3.15. If $(F, G, A)$ and $\left(F_{1}, G_{1}, B\right)$ are two binary bipolar soft sets over $U_{1}, U_{2}$ then
(1) $\left((F, G, A) \underset{\widetilde{\wedge}}{\widetilde{\sim}}\left(F_{1}, G_{1}, B\right)\right)^{c}=(F, G, A)^{c} \widetilde{\widetilde{V}}\left(F_{1}, G_{1}, B\right)^{c}$
(2) $\left((F, G, A) \widetilde{\widetilde{V}}\left(F_{1}, G_{1}, B\right)\right)^{c}=(F, G, A)^{c} \widetilde{\widetilde{\wedge}}\left(F_{1}, G_{1}, B\right)^{c}$

Proof. It is obvious from Definitions 3.6, 3.13 and 3.14.

Definition 3.16. Extended Union of two binary bipolar soft sets $(F, G, A)$ and $\left(F_{1}, G_{1}, B\right)$ over the common universes $U_{1}, U_{2}$ is the binary bipolar soft set $(H, I, C)$, where $C=A \cup B$ and for all $e \in C$,

$$
\begin{gathered}
H(e)= \begin{cases}\left(\hat{X}_{1}, \hat{Y}_{1}\right) & \text { if } e \in A-B \\
\left(\hat{X}_{2}, \hat{Y}_{2}\right) & \text { if } e \in B-A \\
\left(\hat{X}_{1}, \hat{Y}_{1}\right) \widetilde{\cup}\left(\hat{X}_{2}, \hat{Y}_{2}\right) & \text { if } e \in A \cap B\end{cases} \\
I(\neg e)= \begin{cases}\left(\check{X}_{1}, \check{Y}_{1}\right) & \text { if } \neg e \in(\neg A)-(\neg B) \\
\left(\check{X}_{2}, \check{Y}_{2}\right) & \text { if } \neg e \in(\neg B)-(\neg A) \\
\left(\check{X}_{1}, \check{Y}_{1}\right) \widetilde{\cap}\left(\check{X}_{2}, \check{Y}_{2}\right) & \text { if } \neg e \in(\neg A) \cap(\neg B)\end{cases}
\end{gathered}
$$

such that $F(e)=\left(\hat{X}_{1}, \hat{Y}_{1}\right), G(\neg e)=\left(\check{X}_{1}, \check{Y}_{1}\right)$ for each $e \in A$ and $F_{1}(e)=\left(\hat{X}_{2}, \hat{Y}_{2}\right), G_{1}(\neg e)=\left(\check{X}_{2}, \check{Y}_{2}\right)$ for each $e \in B$. In addition $\left(\hat{X}_{1}, \hat{Y}_{1}\right) \widetilde{\cup}\left(\hat{X}_{2}, \hat{Y}_{2}\right)=\left(\hat{X}_{1} \cup \hat{X}_{2}, \hat{Y}_{1} \cup \hat{Y}_{2}\right)$ and $\left(\check{X}_{1}, \check{Y}_{1}\right) \widetilde{\cap}\left(\check{X}_{2}, \check{Y}_{2}\right)=\left(\check{X}_{1} \cup \check{X}_{2}, \check{Y}_{1} \cup \check{Y}_{2}\right)$. We denote it by $(F, G, A) \widetilde{\sim}\left(F_{1}, G_{1}, B\right)=(H, I, C)$.

Definition 3.17. Extended Intersection of two binary bipolar soft sets $(F, G, A)$ and $\left(F_{1}, G_{1}, B\right)$ over the common universes $U_{1}, U_{2}$ is the binary bipolar soft set $(H, I, C)$, where $C=A \cup B$ and for all $e \in C$,

$$
\begin{gathered}
H(e)= \begin{cases}\left(\hat{X}_{1}, \hat{Y}_{1}\right) & \text { if } e \in A-B \\
\left(\hat{X}_{2}, \hat{Y}_{2}\right) & \text { if } e \in B-A \\
\left(\hat{X}_{1}, \hat{Y}_{1}\right) \widetilde{\cap}\left(\hat{X}_{2}, \hat{Y}_{2}\right) & \text { if } e \in A \cap B\end{cases} \\
I(\neg e)= \begin{cases}\left(\check{X}_{1}, \check{Y}_{1}\right) & \text { if } \neg e \in(\neg A)-(\neg B) \\
\left(\check{X}_{2}, \check{Y}_{2}\right) & \text { if } \neg e \in(\neg B)-(\neg A) \\
\left(\check{X}_{1}, \check{Y}_{1}\right) \widetilde{\cup}\left(\check{X}_{2}, \check{Y}_{2}\right) & \text { if } \neg e \in(\neg A) \cap(\neg B)\end{cases}
\end{gathered}
$$

such that $F(e)=\left(\hat{X}_{1}, \hat{Y}_{1}\right), G(\neg e)=\left(\check{X}_{1}, \check{Y}_{1}\right)$ for each $e \in A$ and $F_{1}(e)=\left(\hat{X}_{2}, \hat{Y}_{2}\right), G_{1}(\neg e)=\left(\check{X}_{2}, \check{Y}_{2}\right)$ for each $e \in B$. In addition $\left(\hat{X}_{1}, \hat{Y}_{1}\right) \widetilde{\cap}\left(\hat{X}_{2}, \hat{Y}_{2}\right)=\left(\hat{X}_{1} \cap \hat{X}_{2}, \hat{Y}_{1} \cap \hat{Y}_{2}\right)$ and $\left(\check{X}_{1}, \check{Y}_{1}\right) \widetilde{\cup}\left(\check{X}_{2}, \check{Y}_{2}\right)=\left(\tilde{X}_{1} \cap \check{X}_{2}, \check{Y}_{1} \cap \check{Y}_{2}\right)$. We denote it by $(F, G, A) \widetilde{\widetilde{\Pi}}\left(F_{1}, G_{1}, B\right)=(H, I, C)$.

Definition 3.18. Restricted Union of two binary bipolar soft sets $(F, G, A)$ and $\left(F_{1}, G_{1}, B\right)$ over the common universes $U_{1}, U_{2}$ is the binary bipolar soft set $(H, I, C)$, where $C=A \cap B$ is non-empty and for all $e \in C$

$$
H(e)=F(e) \widetilde{\cup} F_{1}(e) \text { and } I(\neg e)=G(\neg e) \widetilde{\cap} G_{1}(\neg e)
$$

such that $F(e)=\left(\hat{X}_{1}, \hat{Y}_{1}\right), G(\neg e)=\left(\check{X}_{1}, \check{Y}_{1}\right)$ for each $e \in A$ and $F_{1}(e)=\left(\hat{X}_{2}, \hat{Y}_{2}\right), G_{1}(\neg e)=\left(\check{X}_{2}, \check{Y}_{2}\right)$ for each $e \in B$. We denote it by $(F, G, A) \widetilde{\widetilde{ป}}_{\mathfrak{R}}\left(F_{1}, G_{1}, B\right)=(H, I, C)$.
Definition 3.19. Restricted Intersection of two binary bipolar soft sets $(F, G, A)$ and $\left(F_{1}, G_{1}, B\right)$ over the common universes $U_{1}, U_{2}$ is the binary bipolar soft set $(H, I, C)$, where $C=A \cap B$ is non-empty and for all $e \in C$

$$
H(e)=F(e) \widetilde{\cap} F_{1}(e) \text { and } I(\neg e)=G(\neg e) \widetilde{\cup} G_{1}(\neg e)
$$

such that $F(e)=\left(\hat{X}_{1}, \hat{Y}_{1}\right), G(\neg e)=\left(\check{X}_{1}, \check{Y}_{1}\right)$ for each $e \in A$ and $F_{1}(e)=\left(\hat{X}_{2}, \hat{Y}_{2}\right), G_{1}(\neg e)=\left(\check{X}_{2}, \check{Y}_{2}\right)$ for each $e \in B$. We denote it by $(F, G, A) \widetilde{\widetilde{न}}_{\mathfrak{R}}\left(F_{1}, G_{1}, B\right)=(H, I, C)$.

Proposition 3.20. Let $(F, G, A)$ and $\left(F_{1}, G_{1}, A\right)$ be two binary bipolar soft sets over a common universes $U_{1}, U_{2}$. Then the following are true
(1) $\left((F, G, A) \underset{\widetilde{\sqcup}}{\widetilde{\sim}}\left(F_{1}, G_{1}, B\right)\right)^{c}=(F, G, A)^{c} \underset{\widetilde{\nabla}}{\widetilde{\sim}}\left(F_{1}, G_{1}, B\right)^{c}$,
(2) $\left((F, G, A) \widetilde{\widetilde{\eta}}\left(F_{1}, G_{1}, B\right)\right)^{c}=(F, G, A)^{c} \widetilde{\widetilde{\rightharpoonup}}\left(F_{1}, G_{1}, B\right)^{c}$,
(3) $\left((F, G, A) \widetilde{\widetilde{ป}}_{\mathfrak{R}}\left(F_{1}, G_{1}, B\right)\right)^{c}=(F, G, A)^{c} \widetilde{\widetilde{\sqcap}}_{\mathfrak{R}}\left(F_{1}, G_{1}, B\right)^{c}$,
(4) $\left((F, G, A) \widetilde{\Pi}_{\mathfrak{R}}\left(F_{1}, G_{1}, B\right)\right)^{c}=(F, G, A)^{c} \widetilde{\widetilde{ป}}_{\mathfrak{R}}\left(F_{1}, G_{1}, B\right)^{c}$.

Proof. (1) Let $(F, G, A) \widetilde{\widetilde{U}}\left(F_{1}, G_{1}, B\right)=(H, I, A \cup B)$ where for each $e \in A \cup B$

$$
\begin{aligned}
& H(e)= \begin{cases}\left(\hat{X}_{1}, \hat{Y}_{1}\right) & \text { if } e \in A-B \\
\left(\hat{X}_{2}, \hat{Y}_{2}\right) & \text { if } e \in B-A \\
\left(\hat{X}_{1} \cup \hat{X}_{2}, \hat{Y}_{1} \cup \hat{Y}_{2}\right) & \text { if } e \in A \cap B\end{cases} \\
& I(\neg e)= \begin{cases}\left(\check{X}_{1}, \check{Y}_{1}\right) & \text { if } \neg e \in(\neg A)-(\neg B) \\
\left(\check{X}_{2}, \check{Y}_{2}\right) & \text { if } \neg e \in(\neg B)-(\neg A) \\
\left(\check{X}_{1} \cap \check{X}_{2}, \check{Y}_{1} \cap \check{Y}_{2}\right) & \text { if } \neg e \in(\neg A) \cap(\neg B)\end{cases}
\end{aligned}
$$

such that $F(e)=\left(\hat{X}_{1}, \hat{Y}_{1}\right), G(\neg e)=\left(\check{X}_{1}, \check{Y}_{1}\right)$ for each $e \in A$ and $F_{1}(e)=\left(\hat{X}_{2}, \hat{Y}_{2}\right), G_{1}(\neg e)=\left(\check{X}_{2}, \check{Y}_{2}\right)$ for each $e \in B$. Hence, $\left((F, G, A) \widetilde{\widetilde{U}}\left(F_{1}, G_{1}, B\right)\right)^{c}=(H, I, A \cup B)^{c}=\left(H^{c}, I^{c}, A \cup B\right)$.
Now, $H^{c}(e)=\left(U_{1}-\hat{X}, U_{2}-\hat{Y}\right)$ and $I^{c}(e)=\left(U_{1}-\tilde{X}, U_{2}-\check{Y}\right)$ for each $e \in A \cup B$ such that $H(e)=(\hat{X}, \hat{Y})$ and $I(\neg e)=(\check{X}, \check{Y})$. Therefore

$$
H^{c}(e)= \begin{cases}\left(U_{1}-\hat{X}_{1}, U_{2}-\hat{Y}_{1}\right) & \text { if } e \in A-B \\ \left(U_{1}-\hat{X}_{2}, U_{2}-\hat{Y}_{2}\right) & \text { if } e \in B-A \\ \left(U_{1}-\left(\hat{X}_{1} \cup \hat{X}_{2}\right), U_{2}-\left(\hat{Y}_{1} \cup \hat{Y}_{2}\right)\right) & \text { if } e \in A \cap B\end{cases}
$$

$$
I^{c}(\neg e)= \begin{cases}\left(U_{1}-\check{X}_{1}, U_{2}-\check{Y}_{1}\right) & \text { if } \neg e \in(\neg A)-(\neg B) \\ \left(U_{1}-\check{X}_{2}, U_{2}-\check{Y}_{2}\right) & \text { if } \neg e \in(\neg B)-(\neg A) \\ \left(U_{1}-\left(\check{X}_{1} \cap \check{X}_{2}\right), U_{2}-\left(\check{Y}_{1} \cap \check{Y}_{2}\right)\right) & \text { if } \neg e \in(\neg A) \cap(\neg B)\end{cases}
$$

Now, $(F, G, A)^{c} \widetilde{\widetilde{\Pi}}\left(F_{1}, G_{1}, B\right)^{c}=\left(F^{c}, G^{c}, A\right) \widetilde{\widetilde{\Pi}}\left(F_{1}^{c}, G_{1}^{c}, B\right)=(K, L, A \cup B)$, where

$$
\begin{aligned}
& K(e)= \begin{cases}\left(U_{1}-\hat{X}_{1}, U_{2}-\hat{Y}_{1}\right) & \text { if } e \in A-B \\
\left(U_{1}-\hat{X}_{2}, U_{2}-\hat{Y}_{2}\right) & \text { if } e \in B-A \\
\left(U_{1}-\left(\hat{X}_{1} \cup \hat{X}_{2}\right), U_{2}-\left(\hat{Y}_{1} \cup \hat{Y}_{2}\right)\right) & \text { if } e \in A \cap B\end{cases} \\
& L(\neg e)= \begin{cases}\left(U_{1}-\check{X}_{1}, U_{2}-\check{Y}_{1}\right) & \text { if } \neg e \in(\neg A)-(\neg B) \\
\left(U_{1}-\check{X}_{2}, U_{2}-\check{Y}_{2}\right) & \text { if } \neg e \in(\neg B)-(\neg A) \\
\left(U_{1}-\left(\check{X}_{1} \cap \check{X}_{2}\right), U_{2}-\left(\check{Y}_{1} \cap \check{Y}_{2}\right)\right) & \text { if } \neg e \in(\neg A) \cap(\neg B)\end{cases}
\end{aligned}
$$

Finally, " $H^{c}$ and $K$ " and " $I^{c}$ and $L$ " are same. So, proof is completed.
(2), (3) and (4) options are proved by a similar way.

Proposition 3.21. If $(\widetilde{\Phi, \mathfrak{U}, A})$ is a null binary bipolar soft set, $(\widetilde{\mathfrak{U}, \Phi, A})$ an absolute binary bipolar soft set, and $(F, G, A),\left(F_{1}, G_{1}, A\right)$ are binary bipolar soft sets over $U_{1}, U_{2}$, then
(1) $(F, G, A) \widetilde{\widetilde{U}}\left(F_{1}, G_{1}, A\right)=(F, G, A) \widetilde{\widetilde{U}}_{\mathfrak{R}}\left(F_{1}, G_{1}, A\right)$,
(2) $(F, G, A) \widetilde{\widetilde{\Pi}}\left(F_{1}, G_{1}, A\right)=(F, G, A) \widetilde{\widetilde{\Pi}}_{\mathfrak{R}}\left(F_{1}, G_{1}, A\right)$,
(3) $(F, G, A) \widetilde{\widetilde{\sqcup}}(F, G, A)=(F, G, A) ;(F, G, A) \widetilde{\widetilde{\Pi}}(F, G, A)=(F, G, A)$,
(4) $(F, G, A) \widetilde{\tilde{U}}(\widetilde{\Phi, \mathfrak{U}, A})=(F, G, A) ;(F, G, A) \widetilde{\widetilde{\pi}}(\widetilde{(\overline{\Phi, \mathfrak{U}, A})}=(\widetilde{(\Phi, \mathfrak{U}, A)}$,
(5) $(F, G, A) \widetilde{\tilde{U}}(\widetilde{\mathfrak{U}, \Phi, A})=(\widetilde{(\tilde{U}, \Phi, A}) ;(F, G, A) \widetilde{\widetilde{\pi}}(\widetilde{\mathfrak{U}, \Phi, A})=(F, G, A)$.

Proof. Straightforward.
Proposition 3.22. Let $\left(F_{1}, G_{1}, A\right),\left(F_{2}, G_{2}, B\right)$ and $\left(F_{3}, G_{3}, C\right)$, be three binary bipolar soft sets. Then we have the following results:
(1) $\left(F_{1}, G_{1}, A\right) \widetilde{\breve{U}}\left(\left(F_{2}, G_{2}, B\right) \tilde{\widetilde{\Pi}}\left(F_{3}, G_{3}, C\right)\right)=\left(\left(F_{1}, G_{1}, A\right) \widetilde{\breve{U}}\left(F_{2}, G_{2}, B\right)\right) \widetilde{\Pi}\left(\left(F_{1}, G_{1}, A\right) \widetilde{\breve{U}}\left(F_{3}, G_{3}, C\right)\right)$.
$\left(F_{1}, G_{1}, A\right) \widetilde{\widetilde{\Pi}}\left(\left(F_{2}, G_{2}, B\right) \widetilde{\widetilde{\rightharpoonup}}\left(F_{3}, G_{3}, C\right)\right)=\left(\left(F_{1}, G_{1}, A\right) \widetilde{\widetilde{\Pi}}\left(F_{2}, G_{2}, B\right)\right) \widetilde{\widetilde{U}}\left(\left(F_{1}, G_{1}, A\right) \widetilde{\widetilde{\Pi}}\left(F_{3}, G_{3}, C\right)\right)$.
Proof. It is obvious from Definition 3.16 and 3.17.
Example 3.23. Consider the following sets:
$U_{1}=\left\{s_{1}, s_{2}, s_{3}, s_{4}, s_{5}\right\}$ is the set of $t$-shirts.
$U_{2}=\left\{t_{1}, t_{2}, t_{3}, t_{4}\right\}$ is the set of ties.
$E=\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ and $\neg E=\left\{\neg e_{1}, \neg e_{2}, \neg e_{3}, \neg e_{4}\right\}$ is the sets of parameters, where $e_{1}$ :colorful, $\neg e_{1}$ : plain, $e_{2}:$ sport, $\neg e_{2}:$ classic, $e_{3}:$ cheap, $\neg e_{3}:$ expensive, $e_{4}:$ modern, $\neg e_{4}:$ traditional.

Suppose that $A=\left\{e_{1}, e_{2}, e_{3}\right\}$, and $B=\left\{e_{2}, e_{3}, e_{4}\right\}$. The binary bipolar soft sets $(F, G, A)$ and $\left(F_{1}, G_{1}, B\right)$ describe the "the special features of both the $t$-shirts and the ties" which Mr. X and Mr. $Y$ are going to buy respectively. Suppose that

$$
\begin{aligned}
& F\left(e_{1}\right)=\left(\left\{s_{1}, s_{3}\right\},\left\{t_{2}, t_{4}\right\}\right), F\left(e_{2}\right)=\left(\left\{s_{2}, s_{3}\right\},\left\{t_{1}\right\}\right), F\left(e_{3}\right)=\left(\left\{s_{5}\right\},\left\{t_{3}, t_{4}\right\}\right), \\
& G\left(\neg e_{1}\right)=\left(\left\{s_{2}, s_{4}\right\},\left\{t_{1}, t_{3}\right\}\right), G\left(\neg e_{2}\right)=\left(\left\{s_{1}, s_{5}\right\},\left\{t_{2}\right\}\right), G\left(\neg e_{3}\right)=\left(\left\{s_{4}\right\},\left\{t_{1}\right\}\right) .
\end{aligned}
$$

and

$$
\begin{aligned}
& F_{1}\left(e_{2}\right)=\left(\left\{s_{3}, s_{5}\right\},\left\{t_{1}, t_{3}\right\}\right), F_{1}\left(e_{3}\right)=\left(\left\{s_{2}, s_{5}\right\},\left\{t_{2}, t_{4}\right\}\right), F_{1}\left(e_{4}\right)=\left(\left\{s_{3}\right\},\left\{t_{4}\right\}\right), \\
& G_{1}\left(\neg e_{2}\right)=\left(\left\{s_{1}, s_{3}\right\},\left\{t_{2}, t_{4}\right\}\right), G_{1}\left(\neg e_{3}\right)=\left(\left\{s_{4}\right\},\left\{t_{1}, t_{3}\right\}\right), G_{1}\left(\neg e_{4}\right)=\left(\left\{s_{1}\right\},\left\{t_{2}, t_{3}\right\}\right) .
\end{aligned}
$$

Now, we approximate the resulting binary bipolar soft sets obtained by applying the above mentioned operations on $(F, G, A)$ and $\left(F_{1}, G_{1}, B\right)$.

Let $(F, G, A) \widetilde{\widetilde{ป}}\left(F_{1}, G_{1}, B\right)=\left(H_{1}, I_{1}, A \cup B\right)$. Then

$$
\begin{gathered}
H_{1}\left(e_{1}\right)=\left(\left\{s_{1}, s_{3}\right\},\left\{t_{2}, t_{4}\right\}\right), H_{1}\left(e_{2}\right)=\left(\left\{s_{2}, s_{3}, s_{5}\right\},\left\{t_{1}, t_{3}\right\}\right), \\
H_{1}\left(e_{3}\right)=\left(\left\{s_{2}, s_{5}\right\},\left\{t_{2}, t_{3}, t_{4}\right\}\right), H_{1}\left(e_{4}\right)=\left(\left\{s_{3}\right\},\left\{t_{4}\right\}\right)
\end{gathered}
$$

and

$$
\begin{gathered}
I_{1}\left(\neg e_{1}\right)=\left(\left\{s_{2}, s_{4}\right\},\left\{t_{1}, t_{3}\right\}\right), I_{1}\left(\neg e_{2}\right)=\left(\left\{s_{1}\right\},\left\{t_{2}\right\}\right) \\
I_{1}\left(\neg e_{3}\right)=\left(\left\{s_{4}\right\},\left\{t_{1}\right\}\right), I_{1}\left(\neg e_{4}\right)=\left(\left\{s_{1}\right\},\left\{t_{2}, t_{3}\right\}\right)
\end{gathered}
$$

$\operatorname{Let}(F, G, A) \widetilde{\widetilde{\Pi}}\left(F_{1}, G_{1}, B\right)=\left(H_{2}, I_{2}, A \cup B\right)$. Then

$$
\begin{gathered}
H_{2}\left(e_{1}\right)=\left(\left\{s_{1}, s_{3}\right\},\left\{t_{2}, t_{4}\right\}\right), H_{2}\left(e_{2}\right)=\left(\left\{s_{2}\right\},\left\{t_{1}\right\}\right), \\
H_{2}\left(e_{3}\right)=\left(\left\{s_{5}\right\},\left\{t_{4}\right\}\right), H_{2}\left(e_{4}\right)=\left(\left\{s_{3}\right\},\left\{t_{4}\right\}\right),
\end{gathered}
$$

and

$$
\begin{gathered}
I_{2}\left(\neg e_{1}\right)=\left(\left\{s_{2}, s_{4}\right\},\left\{t_{1}, t_{3}\right\}\right), I_{2}\left(\neg e_{2}\right)=\left(\left\{s_{1}, s_{3}, s_{5}\right\},\left\{t_{2}, t_{4}\right\}\right) \\
I_{2}\left(\neg e_{3}\right)=\left(\left\{s_{4}\right\},\left\{t_{1}, t_{3}\right\}\right), I_{2}\left(\neg e_{4}\right)=\left(\left\{s_{1}\right\},\left\{t_{2}, t_{3}\right\}\right)
\end{gathered}
$$

$\operatorname{Let}(F, G, A) \widetilde{\widetilde{ป}}_{\mathfrak{R}}\left(F_{1}, G_{1}, B\right)=\left(H_{3}, I_{3}, A \cap B\right)$. Then

$$
\begin{gathered}
H_{3}\left(e_{2}\right)=\left(\left\{s_{2}, s_{3}, s_{5}\right\},\left\{t_{1}, t_{3}\right\}\right), H_{3}\left(e_{3}\right)=\left(\left\{s_{2}, s_{5}\right\},\left\{t_{2}, t_{3}, t_{4}\right\}\right), \\
I_{3}\left(\neg e_{2}\right)=\left(\left\{s_{1}\right\},\left\{t_{2}\right\}\right), I_{3}\left(\neg e_{3}\right)=\left(\left\{s_{4}\right\},\left\{t_{1}\right\}\right)
\end{gathered}
$$

$\operatorname{Let}(F, G, A) \widetilde{\widetilde{ }}_{\mathfrak{R}}\left(F_{1}, G_{1}, B\right)=\left(H_{4}, I_{4}, A \cap B\right)$. Then

$$
\begin{gathered}
H_{4}\left(e_{2}\right)=\left(\left\{s_{2}\right\},\left\{t_{1}\right\}\right), H_{4}\left(e_{3}\right)=\left(\left\{s_{5}\right\},\left\{t_{4}\right\}\right) \\
I_{4}\left(\neg e_{2}\right)=\left(\left\{s_{1}, s_{3}, s_{5}\right\},\left\{t_{2}, t_{4}\right\}\right), I_{4}\left(\neg e_{3}\right)=\left(\left\{s_{4}\right\},\left\{t_{1}, t_{3}\right\}\right)
\end{gathered}
$$

$\operatorname{Let}(F, G, A) \widetilde{\widetilde{V}}\left(F_{1}, G_{1}, B\right)=\left(H_{5}, I_{5}, A \times B\right)$. Then

$$
\begin{gathered}
H_{5}\left(e_{1}, e_{2}\right)=\left(\left\{s_{1}, s_{2}, s_{3}, s_{5}\right\}, U_{2}\right), H_{5}\left(e_{1}, e_{3}\right)=\left(\left\{s_{1}, s_{2}, s_{3}, s_{5}\right\},\left\{t_{1}, t_{2}, t_{4}\right\}\right) \\
H_{5}\left(e_{1}, e_{4}\right)=\left(\left\{s_{1}, s_{3}\right\},\left\{t_{2}, t_{4}\right\}\right), H_{5}\left(e_{2}, e_{2}\right)=\left(\left\{s_{2}, s_{3}, s_{5}\right\},\left\{t_{1}, t_{3}\right\}\right)
\end{gathered}
$$

and

$$
\begin{gathered}
I_{5}\left(e_{1}, e_{2}\right)=(\emptyset, \emptyset), I_{5}\left(e_{1}, e_{3}\right)=\left(\left\{s_{4}\right\},\left\{t_{3}\right\}\right) \\
I_{5}\left(e_{1}, e_{4}\right)=\left(\emptyset,\left\{t_{3}\right\}\right), I_{5}\left(e_{2}, e_{2}\right)=\left(\left\{s_{1}\right\},\left\{t_{2}\right\}\right)
\end{gathered}
$$

and so on.
$\operatorname{Let}(F, G, A) \widetilde{\widetilde{\wedge}}\left(F_{1}, G_{1}, B\right)=\left(H_{6}, I_{6}, A \times B\right)$. Then

$$
\begin{gathered}
H_{6}\left(e_{1}, e_{2}\right)=(\emptyset, \emptyset), H_{6}\left(e_{1}, e_{3}\right)=\left(\emptyset,\left\{t_{2}, t_{4}\right\}\right), \\
H_{6}\left(e_{1}, e_{4}\right)=\left(\left\{s_{3}\right\},\left\{t_{4}\right\}\right), H_{6}\left(e_{2}, e_{2}\right)=\left(\left\{s_{2}\right\},\left\{t_{1}\right\}\right),
\end{gathered}
$$

and

$$
\begin{gathered}
I_{6}\left(e_{1}, e_{2}\right)=\left(\left\{s_{1}, s_{2}, s_{3}, s_{4}\right\}, U_{2}\right), I_{6}\left(e_{1}, e_{3}\right)=\left(\left\{s_{2}, s_{4}\right\},\left\{t_{1}, t_{3}\right\}\right) \\
I_{6}\left(e_{1}, e_{4}\right)=\left(\left\{s_{1}, s_{2}, s_{4}\right\},\left\{t_{1}, t_{2}, t_{3}\right\}\right), I_{6}\left(e_{2}, e_{2}\right)=\left(\left\{s_{1}, s_{3}, s_{5}\right\},\left\{t_{2}, t_{4}\right\}\right)
\end{gathered}
$$

and so on.

## 4. A Characteristic Function of the Binary Bipolar Soft Set

A characteristic function of the binary bipolar soft set may be represented in a similar way as characteristic function of binary soft sets is given by Açıkgöz and Taş in [9]. The characteristic function is as follows:

Consider the following sets:

$$
\begin{aligned}
U_{1} & =\left\{h_{j}: 1 \leq j \leq n\right\}, \\
U_{2} & =\left\{t_{k}: 1 \leq k \leq m\right\}, \\
E & =\left\{e_{i}: 1 \leq i \leq p\right\}, \\
\neg E & =\left\{\neg e_{i}: 1 \leq i \leq p\right\} .
\end{aligned}
$$

Let $(F, G, E)=\left\{\left(e_{i},\left(\hat{X}_{i}, \hat{Y}_{i}\right)\right),\left(\neg e_{i},\left(\check{X}_{i}, \check{Y}_{i}\right)\right): 1 \leq i \leq p ; \hat{X}_{i}, \check{X}_{i} \subseteq U_{1} ; \hat{Y}_{i}, \check{Y}_{i} \subseteq U_{2}\right\}$ is the binary bipolar soft set.

$$
\begin{gathered}
\hat{f}_{E}\left(e_{i}\right)_{j}=\left\{\begin{array}{ll}
1 & h_{j} \in \hat{X}_{i} \\
0 & h_{j} \notin \hat{X}_{i}
\end{array} \quad \hat{f}_{E}\left(e_{i}\right)_{k}= \begin{cases}1 & t_{k} \in \hat{Y}_{i} \\
0 & t_{k} \notin \hat{Y}_{i}\end{cases} \right. \\
\check{g}_{E}\left(\neg e_{i}\right)_{j}=\left\{\begin{array}{ll}
-1 & h_{j} \in \check{X}_{i} \\
0 & h_{j} \notin \check{X}_{i}
\end{array} \quad \check{g}_{E}\left(\neg e_{i}\right)_{k}= \begin{cases}-1 & t_{k} \in \check{Y}_{i} \\
0 & t_{k} \notin \check{Y}_{i}\end{cases} \right.
\end{gathered}
$$

Table 1. The Elements of Universal Sets for the Given Parameters

| $E-\neg E / U_{1}-U_{2}$ | $h_{1}$ | $h_{2}$ | $\ldots$ | $h_{n}$ | $t_{1}$ | $t_{2}$ | $\ldots$ | $t_{m}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $e_{1}$ | $\hat{f}_{E}\left(e_{1}\right)_{1}$ | $\hat{f}_{E}\left(e_{1}\right)_{2}$ | $\ldots$ | $\hat{f}_{E}\left(e_{1}\right)_{n}$ | $\hat{f}_{E}\left(e_{1}\right)_{1}$ | $\hat{f}_{E}\left(e_{1}\right)_{2}$ | $\ldots$ | $\hat{f}_{E}\left(e_{1}\right)_{m}$ |
| $e_{2}$ | $\hat{f}_{E}\left(e_{2}\right)_{1}$ | $\hat{f}_{E}\left(e_{2}\right)_{2}$ | $\ldots$ | $\hat{f}_{E}\left(e_{2}\right)_{n}$ | $\hat{f}_{E}\left(e_{2}\right)_{1}$ | $\hat{f}_{E}\left(e_{2}\right)_{2}$ | $\ldots$ | $\hat{f}_{E}\left(e_{2}\right)_{m}$ |
| $e_{i}$ | $\vdots$ | $\vdots$ | $\ldots$ | $\vdots$ | $\vdots$ | $\vdots$ | $\ldots$ | $\vdots$ |
| $e_{p}$ | $\hat{f}_{E}\left(e_{p}\right)_{1}$ | $\hat{f}_{E}\left(e_{p}\right)_{2}$ | $\ldots$ | $\hat{f}_{E}\left(e_{p}\right)_{n}$ | $\hat{f}_{E}\left(e_{p}\right)_{1}$ | $\hat{f}_{E}\left(e_{p}\right)_{2}$ | $\ldots$ | $\hat{f}_{E}\left(e_{p}\right)_{m}$ |
| $\neg e_{1}$ | $\check{g}_{E}\left(e_{1}\right)_{1}$ | $\check{g}_{E}\left(e_{1}\right)_{2}$ | $\ldots$ | $\check{g}_{E}\left(e_{1}\right)_{n}$ | $\check{g}_{E}\left(e_{1}\right)_{1}$ | $\check{g}_{E}\left(e_{1}\right)_{2}$ | $\ldots$ | $\check{g}_{E}\left(e_{1}\right)_{m}$ |
| $\neg e_{2}$ | $\check{g}_{E}\left(e_{2}\right)_{1}$ | $\check{g}_{E}\left(e_{2}\right)_{2}$ | $\ldots$ | $\check{g}_{E}\left(e_{2}\right)_{n}$ | $\check{g}_{E}\left(e_{2}\right)_{1}$ | $\check{g}_{E}\left(e_{2}\right)_{2}$ | $\ldots$ | $\check{g}_{E}\left(e_{2}\right)_{m}$ |
| $\neg e_{i}$ | $\vdots$ | $\vdots$ | $\ldots$ | $\vdots$ | $\vdots$ | $\vdots$ | $\ldots$ | $\vdots$ |
| $\neg e_{p}$ | $\check{g}_{E}\left(e_{p}\right)_{1}$ | $\check{g}_{E}\left(e_{p}\right)_{2}$ | $\ldots$ | $\check{g}_{E}\left(e_{p}\right)_{n}$ | $\check{g}_{E}\left(e_{p}\right)_{1}$ | $\check{g}_{E}\left(e_{p}\right)_{2}$ | $\ldots$ | $\check{g}_{E}\left(e_{p}\right)_{m}$ |

Now we investigate a following example:
Example 4.1. Consider the following sets:
$U_{1}=\left\{t_{1}, t_{2}, t_{3}, t_{4}\right\}$ is the set of trousers,
$U_{2}=\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\}$ is the set of shoes,
$E=\left\{e_{1}=\right.$ expensive, $e_{2}=$ sport, $e_{3}=$ beautiful $\} \neg E=\left\{\neg e_{1}=\right.$ cheap,$\neg e_{2}=$ classic, $\neg e_{3}=$ ugly $\}$ is the sets of parameters.
Let $(F, G, E)$ is a binary bipolar soft sets as follows:

$$
\begin{aligned}
(F, G, E)= & \left(e_{1},\left(\hat{X}_{1}=\left\{t_{1}, t_{3}\right\}, \hat{Y}_{1}=\left\{c_{1}, c_{2}\right\}\right)\right),\left(\neg e_{1},\left(\check{X}_{1}=\left\{t_{2}\right\}, \check{Y}_{1}=\left\{c_{3}, c_{4}\right\}\right)\right) \\
& \left(e_{2},\left(\hat{X}_{2}=\left\{t_{2}, t_{4}\right\}, \hat{Y}_{2}=\left\{c_{3}\right\}\right)\right),\left(\neg e_{2},\left(\check{X}_{2}=\left\{t_{1}\right\}, \check{Y}_{2}=\left\{c_{1}\right\}\right)\right) \\
& \left(e_{3},\left(\hat{X}_{3}=\left\{t_{3}\right\}, \hat{Y}_{3}=\left\{c_{2}, c_{4}\right\}\right)\right),\left(\neg e_{3},\left(\check{X}_{3}=\left\{t_{2}, t_{4}\right\}, \check{Y_{3}}=\left\{c_{3}\right\}\right)\right)
\end{aligned}
$$

Then, for $1 \leq i \leq 3$ and $1 \leq j, k \leq 4$,

$$
\hat{f}_{E}\left(e_{i}\right)_{j}=\left\{\begin{array}{ll}
1, & t_{j} \in \hat{X}_{i} \\
0, & t_{j} \notin \hat{X}_{i}
\end{array} \quad \check{f}_{E}\left(e_{i}\right)_{k}= \begin{cases}1, & c_{k} \in \hat{Y}_{i} \\
0, & c_{k} \notin \hat{Y}_{i}\end{cases}\right.
$$

$$
\hat{g}_{E}\left(\neg e_{i}\right)_{j}=\left\{\begin{array}{ll}
-1, & t_{j} \in \check{X}_{i} \\
0, & t_{j} \notin \check{X}_{i}
\end{array} \quad \check{g}_{E}\left(\neg e_{i}\right)_{k}= \begin{cases}-1, & c_{k} \in \check{Y}_{i} \\
0, & c_{k} \notin \check{Y}_{i}\end{cases}\right.
$$

Table 2. Trousers and Shoes Providing Parameter Properties

| $E-\neg E / U_{1}-U_{2}$ | $t_{1}$ | $t_{2}$ | $t_{3}$ | $t_{4}$ | $c_{1}$ | $c_{2}$ | $c_{3}$ | $c_{4}$ |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $e_{1}$ | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 |
| $e_{2}$ | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 |
| $e_{3}$ | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
| $\neg e_{1}$ | 0 | -1 | 0 | 0 | 0 | 0 | -1 | -1 |
| $\neg e_{2}$ | -1 | 0 | 0 | 0 | -1 | 0 | 0 | 0 |
| $\neg e_{3}$ | 0 | -1 | 0 | -1 | 0 | 0 | -1 | 0 |

In the above table, we see some trousers and shoes providing parameter properties. For example, the second trouser is sport but the first and third trouser are not sport. At the same time the second trouser is cheap and ugly but not classic. Similarly, the third shoe is sport but the other shoes are not sport. Again likewise the fist shoe is classic but the other shoes are not classic.

## 5. Results and Discussion

In this paper, we introduce binary bipolar soft sets by using binary soft sets and bipolar soft sets. We also study basic operations of complement, union, intersection, restricted union, restricted intersection, difference, "AND", "OR" on binary bipolar soft sets. Thereafter, the basic properties of these operations are proven along with several examples to illustrate those properties. Finally, the characteristic function defined on binary bipolar soft sets hope that it might be useful for solving decision-making problem.

## References

1. D., Molodtsov, Soft set theory first results, Comput. Math. Appl., 37, 19-31, (1999).
2. M., Shabir, M., Naz, On bipolar soft set, Retrieved from https://arxiv.org/abs/1303.1344, (2013).
3. F., Karaaslan, S., Karatas, A new approach to bipolar soft sets and its applications, Discrete Math. Algorithm. Appl., 07, 1550054, (2015).
4. K.Y., Qin, Z.Y., Hong, On soft equality, Journal of Computational and Applied Mathematics, 234, 1347-1355, (2010).
5. Z., Xiao, K., Gong, S., Xia, Y., Zou, Exclusive disjunctive soft sets, Computers and Mathematics with Applications, 59, 2128-2137, (2010).
6. K., Gong, Z., Xiao, X., Zhang, The bijective soft set with its operations, Computers and Mathematics with Applications, 60, 2270-2278, (2010).
7. Y.K., Kima, W.K., Minb, Full soft sets and full soft decision systems, Journal of Intelligent and Fuzzy Systems, DOI:10.3233/IFS-130783.
8. P. K., Maji, R., Biswas and A. R., Roy, Soft set theory, Computers and Mathematics with Applications, 45, 555-562, (2003).
9. A., Açıkgöz, N., Tas, Binary Soft Set Theory, Eur.Jl. of Pure. and Appl. Math., 9, 452-463, (2016).
10. S.S., Benchalli, P.G., Patil, Abeda, S., Dodamani, On Binary Soft Topological Spaces, Journal of Inter disciplinary Mathematics, Communicated.

Naime Demirtas,
Department of Mathematics,
Mersin University,
33343, Mersin, TURKEY.
E-mail address: naimedemirtas@mersin.edu.tr
and
Orhan Dalkılıç,
Department of Mathematics,
Mersin University,
33343, Mersin, TURKEY.
E-mail address: orhandlk952495@hotmail.com


[^0]:    2010 Mathematics Subject Classification: 03E20,03E72,28E15.
    Submitted November 15, 2019. Published May 10, 2021

