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q-analogue of a Class of Harmonic Functions

Omendra Mishra and Saurabh Porwal

abstract: The purpose of the present paper is to introduce a new subclass of harmonic univalent functions
associated with a q-Ruscheweyh derivative operator. A necessary and sufficient convolution condition for the
functions to be in this class is obtained. Using this necessary and sufficient coefficient condition, results based
on the extreme points, convexity and compactness for this class are also obtained.
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1. Introduction

The theory of q-calculus has motivated the researchers due to its applications in the field of physical
sciences, specially in quantum physics. Jackson [9,10] was the first to give some applications of q-calculus
by introducing the q-analogues of derivative and integral. Jackson’s q-derivative operator ∂q on a function
h analytic in D = {z ∈ C : |z| < 1} is defined for 0 < q < 1, by

∂qh(z) =

{
h(z)−h(qz)

(1−q)z
z 6= 0,

h′(0) z = 0.

For a power function h(z) = zk, k ∈ N = {1, 2, 3, · · · },

∂qh(z) = ∂q(zk) = [k]qz
k−1,

where [k]q is the q-integer number k defined by

[k]q =
1 − qk

1 − q
= 1 + q + q2 + ...qk−1. (1.1)

For any non-negative integer k the q-number factorial is defined by

[k]q! = [1]q[2]q[3]q . . . [k]q ([0]q! = 1).

For more detailed study see [1]. Clearly, lim
q→1−

[k]q = k and lim
q→1−

∂qh(z) = h′(z).

Let A denote the class of functions h(z) that are analytic in D = {z ∈ C : |z| < 1} with the normal-
ization h(0) = h′(0) − 1 = 0. Complex-valued harmonic functions of the form: f = u+ iv, where u and v
are real-valued harmonic functions in D, can also be expressed as f = h+ ḡ, where h and g are analytic
in D. The Jacobian of the function f = h + g is given by Jf (z) = |h′(z)|2 − |g′(z)|2. According to the
Lewy [15], every harmonic function f = h+ g is locally univalent and sense preserving in D if and only
if Jf (z) > 0 in D which is equivalent to the existence of an analytic function ω(z) = g′(z)/h′(z) in D such
that

|ω(z)| < 1 for all z ∈ D.
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The function ω(z) is called the dilatation of f . By requiring harmonic function to be sense-preserving,
we retain some basic properties exhibited by analytic functions, such as the open mapping property, the
argument principal, and zeros being isolated (see for detail [5]).

A class of harmonic functions f = h+g with the normalized conditions h(0) = 0 = g(0) and h′(0) = 1
is denoted by H and functions therein are of the form:

f(z) = z +

∞∑

k=2

akz
k +

∞∑

k=1

bkzk. (1.2)

A sub class of functions f = h + g ∈ H with the additional condition g′(0) = 0 is denoted by H0. The
class of all univalent, sense preserving harmonic functions f = h+ g ∈ H

(
H0
)

is denoted by SH

(
S0
H

)
.

Further, if g(z) ≡ 0, the class SH reduces to the class S of univalent functions in A.
Motivated by Dziok et al. [3], the function f ∈ H0 is subordinate to a function F , and write

f(z) ≺ F (z), if there exists a analytic function ω, which maps D into oneself with ω(0) = 0, such that
f(z) = F (ω(z)) (see [4,24,3]).

The convolution of two analytic functions h(z) =
∑

∞

n=1 anz
n and g(z) =

∑
∞

n=1 bnz
n is defined by

(f ∗ g)(z) =
∑

∞

n=1 anbnz
n. The convolution ∗̃ of two harmonic functions f = h + g and F = H + G is

defined by (f ∗̃F )(z) = (g ∗G) (z) + (h ∗H)(z).
The q- generalized Pochammer symbol for t ∈ R and n ∈ N is defined as

([t]q)n =

{
[t]q[t+ 1]q[t+ 2]q . . . [t+ (n− 1)]q, if n ≥ 1

1, if n = 0.

for t > 0. Let q-gamma function is defined as

Γq(t+ 1) = [t]qΓq(t) and Γq(1) = 1.

A function f ∈ SH is said to be starlike and convex, respectively, of order α and in the classes,
respectively, S∗

H(α) and Sc
H(α) (investigated by Jahangiri [11]) if and only if

ℜe

{
Df(z)

f(z)

}
> α

where
Df(z) = zh′(z) − zg′(z).

In 2014, Kanas and Raducanu [14] also (see [16] ) define the q-analogue of Ruscheweyh operator

Dn
q h(z) = h(z) ∗ φq,n+1(z) = z +

∞∑

k=2

Γq(k + n)

[k − 1]q!Γq(n+ 1)
akz

k, (n > −1),

where

φq,n+1(z) = z +

∞∑

k=2

Γq(k + n)

[k − 1]q!Γq(n+ 1)
zk,

For convenience, we use

ψk−1 =
Γq(k + n)

[k − 1]q!Γq(n+ 1)
.

The q-Ruscheweyh operator Dn
q of order n ∈ N0 = N∪ {0} for an analytic function h(z) is defined by

D0
qh(z) = h(z), D1

qh(z) = Dqh(z) = z∂qh(z).

and for n ∈ N,
Dn

q h(z) = Dq(Dn−1
q h(z)), (1.3)
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Dn
q h(z) =

z∂n
q (zn−1h(z))

[n]q!
,

Observe that

Dqh(z) = h(z) ∗Dq

(
z

1 − z

)
, (1.4)

and

Dq

(
z

1 − z

)
= z +

∞∑

k=2

[k]qz
k,

=
z

(1 − z) (1 − qz)
, (1.5)

where [k]q is the q-integer number defined by (1.1). The operator Dn
q reduces to the well known

Ruscheweyh operator Dn [23] as q → 1−.

Further, the q-Ruscheweyh operator Dn
q of order n ∈ N0 for the harmonic function f = h+g is defined

by ( [13])

D
n
q f(z) = Dn

q h(z) + (−1)nDn
q g(z).

As q → 1−, the operator Dn
q reduces to the operator Dn which is the Ruscheweyh operator for a harmonic

function f = h+ ḡ ( [17]).

Involving the q-Ruscheweyh operator Dn
q , we define a subclass S0

H(n, q, A,B) of harmonic functions
f ∈ H0 that satisfy the condition

Dq

(
Dn

q f(z)
)

Dn
q f(z)

≺
1 +Az

1 +Bz
(−1 ≤ A < B ≤ 1; z ∈ D) . (1.6)

We denote by TS0
H(n, q, A,B) a subclass of harmonic functions f = h + ḡ ∈ S0

H(n, q, A,B) where n, h
and g are of the form:

h(z) = z −
∞∑

k=2

|ak|zk and g(z) = (−1)n

∞∑

k=2

|bk|zk (z ∈ D) . (1.7)

When q → 1− the class S0
H(n, q, A,B) reduces to the class Sn

H(A,B) which was studied by Dziok [2] (see
also [3]). Further, we denote the class S0

H(n, q, (1 + q)α − 1, q) (0 ≤ α < 1) by Hn
q (α) and hence, the

classes H0
q(α) and H1

q(α) are the q-analogue of harmonic starlike and harmonic convex functions of order
α, respectively. As q → 1−, the classes H

0
q(α) =: S∗

H(α) and H
1
q(α) =: Sc

H(α) are the well known classes
of the functions f ∈ S0

H which are starlike and convex functions of order α, respectively, in D and are
investigated by Jahangiri [11].

Research work in connection with function theory and q-calculus was first introduced by Ismail et al.
[8]. Recently, q-calculus is involved in the theory of analytic functions in the work [6,7,16]. But research
on q-calculus in connection with harmonic functions is fairly new and not much published (one may find
papers [20], [21], [12], [13], [18], [22], [19]).

In this paper, a class S0
H(n, q, A,B) of harmonic functions f ∈ H0, associated with q-Ruscheweyh

operator is defined as above (1.6). A necessary and sufficient convolution condition for the functions
f ∈ H0 to be in this class is proved as Theorem 2.1 below. A sufficient coefficient condition for the
functions f ∈ H0 to be sense preserving and univalent and in the same class is obtained as Theorem 2.4.
It is proved that this coefficient condition is necessary for the functions in its sub class TS0

H(n, q, A,B)
as Theorem 2.5. Using this necessary and sufficient coefficient condition, in the subsequent work, and
extreme points for the functions in the class TS0

H(n, q, A,B) are obtained. This research work will
motivate future research to work in the area of q-calculus operators together with harmonic functions.
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2. Main Results

Theorem 2.1. Let f ∈ H0. Then the function f ∈ S0
H(n, q, A,B) if and only if

D
n
q f(z)∗̃Φ(z; ζ) 6= 0 (ζ ∈ C, |ζ| = 1, z ∈ D\{0}) ,

where

Φ(z; ζ) =
(B −A) ζz + (1 +Aζ) qz2

(1 − z) (1 − qz)

−
2z̄ + (B +A) ζz̄ − (1 +Aζ) qz̄2

(1 − z̄) (1 − qz̄)
. (2.1)

Proof. Let f ∈ H0 be of the form (1.2). Then f ∈ S0
H(n, q, A,B) if and only if (1.6) holds or equivalently

Dq

(
Dn

q f(z)
)

Dn
q f(z)

6=
1 +Aζ

1 +Bζ
(ζ ∈ C, |ζ| = 1, z ∈ D\{0}) ,

or,
(1 +Bζ)Dq

(
D

n
q f(z)

)
− (1 +Aζ)Dn

q f(z) 6= 0. (2.2)

On using (1.4) and (1.5), the condition (2.2) may also be given by

D
n
q h(z) ∗

[
(1 +Bζ)

z

(1 − z)(1 − qz)
− (1 +Aζ)

z

1 − z

]

− (−1)n
Dn

q g(z) ∗

[
(1 +Bζ)

z̄

(1 − z̄)(1 − qz̄)
+ (1 +Aζ)

z̄

1 − z̄

]
6= 0

or
D

n
q f(z)∗̃Φ(z; ζ) 6= 0.

where the function Φ(z; ζ) is given by (2.1). �

Remark 2.2. The result of Theorem 2.1 coincides with the result of Dziok [2] for (k = 2), If we consider
q → 1− in Theorem 2.1, we get following result involving the Ruscheweyh operator Dn:

Corollary 2.3. [2] Let f ∈ H0. Then the function f ∈ S0
H(n,A,B) if and only if

D
nf(z)∗̃φ(z; ζ) 6= 0 (ζ ∈ C, |ζ| = 1, z ∈ D\{0}) ,

where

φ(z; ζ) =
(B −A)ζz + (1 +Aζ) z2

(1 − z)2 −
2z + (A+B) ζz −

(
1 +Aζ

)
z2

(1 − z)2 .

Theorem 2.4. Let f = h+ ḡ ∈ H0 be of the form (1.2) and let −1 ≤ A < B ≤ 1. If

∞∑

k=2

(Ck|ak| +Dk|bk|) ≤ B −A, (2.3)

where
Ck = ψk−1{[k]q(1 +B) − (1 +A)}, (2.4)

Dk = ψk−1{[k]q(1 +B) + (1 +A)}, (2.5)

and [k]q is the q-integer number k defined by (1.1), then

(i) the function f is locally univalent and sense-preserving as q → 1− and univalent in D,

(ii) the function f ∈ S0
H(n, q, A,B).
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Proof. It is clear that the theorem is true for the function f(z) ≡ z . Let f = h + ḡ, where h and g of
the form (1.2) and assume that there exist k ∈ {2, 3, . . .} such that ak 6= 0 or bk 6= 0. Since, from (1.1),
[k]q > 1, we observe from (2.4) and (2.5) that Dk ≥ Ck > [k]q(B − A) (k = 2, 3, . . . ), by which the
condition (2.3) implies the condition

∞∑

k=2

[k]q (|ak| + |bk|) < 1 (2.6)

and hence, we get for any q (0 < q < 1) ,

|∂qh(z)| − |∂qg(z)| ≥ 1 −

∞∑

k=2

[k]q|ak||zk−1| −

∞∑

k=2

[k]q|bk||zk−1|

> 1 − |z|
∞∑

k=2

[k]q (|ak| + |bk|) > 1 − |z| > 0.

in D which implies as q → 1− that |h′(z)| > |g′(z)| in D that is the function f is locally univalent and
sense-preserving in D. Moreover, if z1, z2 ∈ D and for some q (0 < q < 1) , z1 6= qz2. Then for that q,

∣∣∣∣
zk

1 − (qz2)k

z1 − (qz2)

∣∣∣∣ =

∣∣∣∣∣

k∑

l=1

zl−1
1 (qz2)k−l

∣∣∣∣∣ ≤

k∑

l=1

|z1|l−1qk−l|z2|k−l < [k]q (k = 2, 3, . . . ).

Hence, for that value of q, from (2.6), we have

|f(z1) − f(qz2)| ≥ |h(z1) − h(qz2)| − |g(z1) − g(qz2)|

≥

∣∣∣∣∣z1 − qz2 −

∞∑

k=2

ak(zk
1 − (qz2)k)

∣∣∣∣∣−

∣∣∣∣∣

∞∑

k=2

bk(zk
1 − (qz2)k)

∣∣∣∣∣

≥ |z1 − qz2|

(
1 −

∞∑

k=2

|ak|

∣∣∣∣
zk

1 − (qz2)k

z1 − qz2

∣∣∣∣−

∞∑

k=2

|bk|

∣∣∣∣
zk

1 − (qz2)k

z1 − qz2

∣∣∣∣

)

> |z1 − qz2|

(
1 −

∞∑

k=2

[k]q|ak| −
∞∑

k=2

[k]q|bk|

)
> 0

which proves that f is univalent in D. This proves the result (i). On the other hand f ∈ S0
H(n, q, A,B)

if there exists a function w, w(0) = 0, |w(z)| < 1, (z ∈ D) such that

Dq

(
Dn

q f(z)
)

Dn
q f(z)

=
1 +Az

1 +Bz
.

or equivalently

∣∣∣∣∣
Dq

(
Dn

q f(z)
)

− Dn
q f(z)

B
(
Dq

(
Dn

q f(z)
))

−ADn
q f(z)

∣∣∣∣∣ < 1(z ∈ D). (2.7)

The above inequality (2.7) holds, since for f = h + ḡ, where h and g of the form (1.2) and for |z| = r
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(0 < r < 1), we obtain

∣∣Dq

(
D

n
q f(z)

)
− D

n
q f(z)

∣∣−|BDq

(
D

n
q f(z)

)
−ADn

q f(z)|

=

∣∣∣∣∣

∞∑

k=2

(ψk−1)([k]q − 1)akz
k − (−1)n

∞∑

k=2

(ψk−1)([k]q + 1)bkzk

∣∣∣∣∣

−

∣∣∣∣∣(B −A)z +

∞∑

k=2

(ψk−1)(B[k]q −A)akz
k

−(−1)n

∞∑

k=2

(ψk−1)(B[k]q +A)bkzk

∣∣∣∣∣

≤

∞∑

k=2

(ψk−1)([k]q − 1)|ak|rk +

∞∑

k=2

(ψk−1)([k]q + 1)|bk|rk

− (B −A)r +
∞∑

k=2

(ψk−1)(B([k]q −A)|ak|rk

+

∞∑

k=2

(ψk−1)(B[k]q +A)|bk|rk

<

∞∑

k=2

(Ck|ak| +Dk|bk|)rk−1 − (B −A),

≤

∞∑

k=2

(Ck|ak| +Dk|bk|)rk−1 − (B −A) < 0.

if the condition (2.3) holds, where Ck and Dk are given, respectively, by (2.4) and (2.5). This proves the
result (ii). This completes the proof of theorem. �

Theorem 2.5. Let f = h+ ḡ ∈ H0, where h and g are given by (1.7). Then f ∈ TS0
H(n, q, A,B), if and

only if the condition (2.3) holds.

Proof. If part is proved in Theorem 2.4. To prove only if part let f = h+ ḡ ∈ TS0
H(n, q, A,B), where h

and g are given by (1.7). Then by the class condition (1.6) we have from (2.7) that for any z ∈ D,

∣∣∣∣∣

∑
∞

k=2(ψk−1)([k]q − 1)|ak|zk +
∑

∞

k=2(ψk−1)([k]q + 1)|bk|zk

(B −A)z −
∑

∞

k=2(ψk−1)(B[k]q −A)|ak|zk −
∑

∞

k=2(ψk−1)(B[k]q +A)|bk|zk

∣∣∣∣∣ < 1,

where for z = r (0 ≤ r < 1), we obtain

∑
∞

k=2(ψk−1)([k]q − 1)|ak|rk−1 +
∑

∞

k=2(ψk−1)([k]q + 1)|bk|rk−1

(B −A) −
∑

∞

k=2(ψk−1)(B[k]q −A)|ak|rk−1 −
∑

∞

k=2(ψk−1)(B[k]q +A)|bk|rk−1
< 1.

which proves for Ck and Dk defined, respectively, by (2.4) and (2.5), that

∞∑

k=2

(Ck|ak| +Dk|bk|) rk−1 < (B −A) (0 ≤ r < 1). (2.8)

Let σk be the sequence of partial sums of the series

∞∑

k=2

(Ck|ak| +Dk|bk|) .
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Then σk is a non decreasing sequence and by (2.8) it is bounded above. Thus, as r → 1−, it is convergent
and

∞∑

k=2

[Ck|ak| +Dk|bk|] = lim
k→∞

σk ≤ (B −A).

This gives the condition (2.3).
�

Theorem 2.6. The class TS0
H(n, q, A,B) is a convex and compact subclass of the class of functions

f = h+ ḡ ∈ H0, where h and g are of the form (1.7).

Proof. Let for t = 1, 2, ft ∈ TS0
H(n, q, A,B), and let for this n it is of the form

ft(z) = z −

∞∑

k=2

|at,k|zk + (−1)n

∞∑

k=2

|bt,k|zk ( z ∈ D). (2.9)

Then for 0 ≤ ρ ≤ 1,

F (z) = ρf1(z) + (1 − ρ)f2(z)

= z −

∞∑

k=2

{ρ|a1,k| + (1 − ρ)|a2,k|} zk + (−1)n

∞∑

k=2

{ρ|b1,k| + (1 − ρ)|b2,k|} zk

and by Theorem (2.5), we get for Ck and DK defined by (2.4), that

∞∑

k=2

[Ck {ρ|a1,k| + (1 − ρ)|a2,k|} +Dk {ρ|b1,k| + (1 − ρ)|b2,k|}]

= ρ

∞∑

k=2

{Ck|a1,k| +Dk|b1,k|} + (1 − ρ)

∞∑

k=2

{Ck|a2,k| +Dk|b2,k|}

≤ ρ(B −A) + (1 − ρ)(B − A) = (B −A).

This proves that the function F ∈ TS0
H(n, q, A,B). Hence, the class TS0

H(n, q, A,B) is convex. On the
other hand, if we consider a sequence of functions ft ∈ TS0

H(n, q, A,B), t ∈ N = {1, 2, 3, ...} of the form
(2.9), then by Theorem (2.5), we get for Ck and Dk defined by (2.4),

∞∑

k=2

{Ck|at,k| +Dk|bt,k|} ≤ (B −A). (2.10)

Hence, for |z| ≤ r (0 < r < 1),

|ft(z)| ≤ r +

∞∑

k=2

{|at,k| + |bt,k|}rk

≤ r +

∞∑

k=2

{Ck|at,k| +Dk|bt,k|}rk

< r + (B −A)r2.

Therefore, class TS0
H(n, q, A,B) is locally uniformly bounded. Let f = h+ ḡ, where h and g are given

by (1.7). If we assume that ft → f , then we conclude that |at,k| → |ak| and |bt,k| → |bk| as t → ∞ for
any k=2, 3, ... . Hence, from (2.10), we get

∞∑

k=2

{Ck|ak| +Dk|bk|} ≤ (B −A),

which proves that f ∈ TS0
H(n, q, A,B) and therefore the class TS0

H(n, q, A,B) is closed. This proves the
compactness of the class TS0

H(n, q, A,B). �
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Theorem 2.7. TS0
H(n, q, A,B) = {hk : k ∈ N} ∪ {gk : k ∈ 2, 3 . . .},

h1(z) = z, hk(z) = z −
(B −A)

Ck

zk,

gk(z) = z + (−1)n (B −A)

Dk

z̄k (z ∈ D), (2.11)

Proof. Let gk = ρf1 + (1 − ρ)f2 where 0 < ρ < 1 and f1, f2 ∈ TS0
H(n, q, A,B) are functions of the form

ft(z) = z −
∞∑

k=2

|at,k| + (−1)n

∞∑

k=2

|bt,k|z̄k (z ∈ D, t = 1, 2),

Then, by (2.3), we have

|b1,k| = |b2,k| =
(B −A)

Dk

.

and therefore a1,t = a2,t = 0 for t ∈ {2, 3, . . .} and b1,t = b2,t = 0 for t ∈ {2, 3, . . .} \ {k}. it follows that
gk(z) = f1(z) = f2(z) and gk are in the class of extreme point of the functions class TS0

H(n, q, A,B).
Similarly, we can verify that the functions hkz are the extreme point of the class TS0

H(n, q, A,B). Now,
suppose that a function f of the form (1) is in the family of extreme point of the class TS0

H(n, q, A,B)
anf f is not in the form (2.11). Then there exists m ∈ {2, 3, . . .} such that

0 < |am| <
(B −A)

Cm

,

or

0 < |bm| <
(B −A)

Dm

,

if

0 < |am| <
(B −A)

Cm

,

then putting

ρ =
|am|Cm

B −A
,

and

ϕ =
f − ρhm

1 − ρ
.

and 0 < ρ < 1, hm 6= ϕ. Therefore, f is not in the family of extreme point of the class TS0
H(n, q, A,B).

similarly, if

0 < |bm| <
(B −A)

Dm

,

then putting

ρ =
|bm|Dm

(B −A)
,

and

ϕ =
f − ρgm

1 − ρ
.

we have 0 < ρ < 1, hm 6= ϕ.
It follows that f is not in the family of extreme points of the class TS0

H(n, q, A,B) and so the proof is
completed. �
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Corollary 2.8. Let f ∈ TS0
H(n, q, A,B) be of the form (1.7). Then

|ak| ≤
B −A

Ck

and |bk| ≤
B −A

Dk

, k = 2, 3, 4, ...,

where Ck and Dk are defined, respectively, by (2.4) and (2.5). Equality occur for the extremal functions
hk(z) and gk(z) given in (2.11) for k = 2, 3, 4, ...
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