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Necessary and sufficient Tauberian conditions under which convergence follows from Ar,δ

summability method for double sequences ∗

Çaǧla Kambak and İbrahim Çanak

abstract: Let x = (xmn) be a double sequence of real or complex numbers. The Ar,δ-transform of a
sequence (xmn) is defined by

(Ar,δx)mn = σ
r,δ
mn(x) =

1

(m + 1)(n + 1)

m
∑

j=0

n
∑

k=0

(1 + rj)(1 + δk)xjk , 0 < r, δ < 1

The Ar,∗ and A∗,δ transformations are defined respectively by

(Ar,∗x)mn = σ
r,∗
mn(x) =

1

m + 1

m
∑

j=0

(1 + rj)xjn, 0 < r < 1,

and

(A∗,δx)mn = σ
∗,δ
mn(x) =

1

n + 1

n
∑

k=0

(1 + δk)xmk, 0 < δ < 1.

We say that (xmn) is (Ar,δ ,1,1) summable to l if (σr,δ
mn(x)) has a finite limit l. It is known that if

limm,n→∞ xmn = l and (xmn) is bounded, then the limit limm,n→∞ σ
r,δ
mn(x) = l exists. But the inverse of

this implication is not true in general. Our aim is to obtain necessary and sufficient conditions for (Ar,δ,1,1)
summability method under which the inverse of this implication holds. Following Tauberian theorems for
(Ar,δ , 1, 1) summability method, we also introduce Ar,∗ and A∗,δ transformations of double sequences and
obtain Tauberian theorems for the (Ar,∗, 1, 0) and (A∗,δ, 0, 1) summability methods.

Key Words: (Ar,δ, 1, 1), (Ar,∗, 1, 0) and (A∗,δ, 0, 1) summability methods, Pringsheim’s convergence,
slow decrease and slow oscillation in different senses, Tauberian conditions and theorems.
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1. Introduction

Let x = (xmn) be a double sequence of real or complex numbers. The Ar,δ-transform of a sequence
(xmn) is defined by

(Ar,δx)mn = σr,δ
mn(x) =

1

(m + 1)(n + 1)

m
∑

j=0

n
∑

k=0

(1 + rj)(1 + δk)xjk ,

where 0 < r, δ < 1. If
lim

m,n→∞
σr,δ

mn(x) = l, (1.1)

then we say that (xmn) is summable to l by (Ar,δ,1,1) summability method.
The Ar,∗ and A∗,δ transformations are defined respectively by

(Ar,∗x)mn = σr,∗
mn(x) =

1

m + 1

m
∑

j=0

(1 + rj)xjn, 0 < r < 1

and

(A∗,δx)mn = σ∗,δ
mn(x) =

1

n + 1

n
∑

k=0

(1 + δk)xmk, 0 < δ < 1.

A double sequence (xmn) is said to be convergent in Pringsheim’s sense (or P -convergent) to l if for every
ǫ > 0 there exists a positive integer n0 = n0(ǫ) such that |xmn − l| < ǫ whenever m, n ≥ n0 (see [4]). The
number l is called the Pringsheim limit of x and we denote by P − limm,n→∞ xmn = l.

If
lim

m,n→∞
σr,∗

mn(x) = l (1.2)

or
lim

m,n→∞
σ∗,δ

mn(x) = l, (1.3)

then we say that (xmn) is summable to l by (Ar,∗,1,0) or (A∗,δ,0,1) summability method, respectively. It
is easy to check that if the limit

lim
m,n→∞

xmn = l (1.4)

exists and (xmn) is bounded, then we also have (1.1). However, the converse implication is not true

in general. If we define the sequence (xmn) by xmn = (−1)mn ((1 + rm)(1 + δn))
−1

for all nonnegative
integers m and n, then it is easy to see that

(Ar,δx)mn = σr,δ
mn(x) =

1

(m + 1)(n + 1)

m
∑

j=0

n
∑

k=0

(−1)jk.

Hence, we have σr,δ
mn(x) → 0 as m, n → ∞. This shows that (xmn) is (Ar,δ,1,1) summable to zero, but it

is not convergent. We notice that (1.1) implies (1.4) under certain condition, which is called a Tauberian
condition, imposed on the sequence (xmn). Any theorem which states that convergence of sequences
follows from its (Ar,δ,1,1) and some Tauberian condition(s) is said to be a Tauberian theorem for the
(Ar,δ,1,1) summability method.

As an extension of a classical Tauberian theorem for Cesàro summability method [2], Móricz [3] de-
rived necessary and sufficient Tauberian conditions for Cesàro summability method. Following Móricz [3],
Talo and Başar [6] obtained necessary and sufficent Tauberian conditions for the Ar summability method
which was introduced by Başar [1]. In this paper, we extend their results in [6] to (Ar,δ,1,1) summability
method for double sequences and introduce necessary and sufficient conditions for summability (Ar,δ,1,1)
under which the existence of the limit (1.4) follows from that of (1.1). Following Tauberian theorems
for (Ar,δ, 1, 1) summability method, we also introduce Ar,∗ and A∗,δ transformations of double sequences
and obtain Tauberian theorems for the (Ar,∗, 1, 0) and (A∗,δ, 0, 1) summability methods.
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2. Tauberian theorems for (Ar,δ, 1, 1) summability method

2.1. An auxiliary result

We prove the following lemma which is needed in the sequel. We denote the integer part of the
product λ and n by λn := [λn].

Lemma 2.1. If a sequence (xmn) is (Ar,δ,1,1) summable to a finite number l, then

lim
m,n→∞

1

(λm − m)(λn − n)

λm
∑

j=m+1

λn
∑

k=n+1

(1 + rj)(1 + δk)xjk = l (2.1)

for every λ > 1 and

lim
m,n→∞

1

(m − λm)(n − λn)

m
∑

j=λm+1

n
∑

k=λn+1

(1 + rj)(1 + δk)xjk = l (2.2)

for every 0 < λ < 1.

Proof: Case λ > 1. By definition, we have

τr,δ
mn :=

1

(λm − m)(λn − n)

λm
∑

j=m+1

λn
∑

k=n+1

(1 + rj)(1 + δk)xjk

=
1

(λm − m)(λn − n)

λm
∑

j=0

λn
∑

k=0

(1 + rj)(1 + δk)xjk

−
1

(λm − m)(λn − n)

λm
∑

j=0

n
∑

k=0

(1 + rj)(1 + δk)xjk

−
1

(λm − m)(λn − n)

m
∑

j=0

λn
∑

k=0

(1 + rj)(1 + δk)xjk

+
1

(λm − m)(λn − n)

m
∑

j=0

n
∑

k=0

(1 + rj)(1 + δk)xjk

=
(λm + 1)(λn + 1)

(λm − m)(λn − n)
σr,δ

λm,λn

−
(λm + 1)(n + 1)

(λm − m)(λn − n)
σr,δ

λm,n

−
(m + 1)(λn + 1)

(λm − m)(λn − n)
σr,δ

m,λn

+
(m + 1)(n + 1)

(λm − m)(λn − n)
σr,δ

mn

=
(λm + 1)(λn + 1)

(λm − m)(λn − n)
σr,δ

λm,λn

−

(

−
λm + 1

λm − m
σr,δ

λm,n +
(λm + 1)(λn + 1)

(λm − m)(λn − n)
σr,δ

λm,n

)

−

(

−
λn + 1

λn − n
σr,δ

m,λn

+
(λm + 1)(λn + 1)

(λm − m)(λn − n)
σr,δ

m,λn

)

+

(

−
λm + 1

λm − m
σr,δ

mn −
λn + 1

λn − n
σr,δ

mn +
(λm + 1)(λn + 1)

(λm − m)(λn − n)
σr,δ

mn + σr,δ
mn

)

.

Arranging the terms on the last identity gives

τ r,δ
mn = σr,δ

mn +
(λm + 1)(λn + 1)

(λm − m)(λn − n)
(σr,δ

λm,λn

− σr,δ
λm,n − σr,δ

m,λn

+ σr,δ
mn)

+
λm + 1

λm − m
(σr,δ

λm,n − σr,δ
mn) +

λn + 1

λn − n
(σr,δ

m,λn

− σr,δ
mn). (2.3)
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It is clear that for all λ > 1 and large enough m and n,

λ2

2(λ − 1)2
≤

(λm + 1)(λn + 1)

(λm − m)(λn − n)
≤

3λ2

2(λ − 1)2
(2.4)

and
λ

2(λ − 1)
≤

λm + 1

λm − m
≤

3λ

2(λ − 1)
. (2.5)

It follows from (1.1), (2.4) and (2.5) that limm,n→∞ τr,δ
mn = l.

ii-) Case 0 < λ < 1. By definition, we have, as in the case λ > 1,

τ r,δ
mn = σr,δ

mn +
(λm + 1)(λn + 1)

(m − λm)(n − λn)
(σr,δ

λm,λn

− σr,δ
λm,n − σr,δ

m,λn

+ σr,δ
mn)

+
λm + 1

m − λm

(σr,δ
λm,n − σr,δ

λm,λn

) +
λn + 1

n − λn

(σr,δ
m,λn

− σr,δ
λm,λn

). (2.6)

It is clear that for all 0 < λ < 1 and large enough m and n,

λ2

2(1 − λ)2
≤

(λm + 1)(λn + 1)

(m − λm)(n − λn)
≤

3λ2

2(1 − λ)2
(2.7)

and
λ

2(1 − λ)
≤

λm + 1

m − λm

≤
3λ

2(1 − λ)
. (2.8)

It follows from (1.1), (2.7) and (2.8) that limm,n→∞ τr,δ
mn = l. �

2.2. Main results

First, we consider double sequences of real numbers and prove the following one-sided Tauberian
theorem.

Theorem 2.2. If (xmn) is a sequence of real numbers which is (Ar,δ,1,1) summable to a finite limit l,
then (1.4) holds if and only if the following two conditions are satisfied:

sup
λ>1

lim inf
m,n→∞

1

(λm − m)(λn − n)

λm
∑

j=m+1

λn
∑

k=n+1

(

(1 + rj)(1 + δk)xjk − xmn

)

≥ 0 (2.9)

and

sup
0<λ<1

lim inf
m,n→∞

1

(m − λm)(n − λn)

m
∑

j=λm+1

n
∑

k=λn+1

(

xmn − (1 + rj)(1 + δk)xjk

)

≥ 0. (2.10)

A sequence (xmn) of real numbers is said to be slowly decreasing in sense (1,1) if

lim
λ→1+

lim inf
m,n→∞

min
m<j≤λm

n<k≤λn

(xjk − xmn) ≥ 0. (2.11)

Note that condition (2.11) can be equivalently reformulated as follows:

lim
λ→1−

lim inf
m,n→∞

min
λm<j≤m
λn<k≤n

(xmn − xjk) ≥ 0. (2.12)

Note that the concept of slow decreasing was introduced by Schmidt [5] for the sequences of real numbers.
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Corollary 2.3. Let (1.1), (1.2) and (1.3) be satisfied. If a sequence (xmn) of real numbers is slowly
decreasing in sense (1,1), then (1.4) is satisfied.

Remark 2.4. If conditions (1.1) and (1.4) or equivalently, conditions (1.1), (2.9) and (2.10) are satisfied,
then we necessarily have

lim
m,n→∞

1

(λm − m)(λn − n)

λm
∑

j=m+1

λn
∑

k=n+1

(

(1 + rj)(1 + δk)xjk − xmn

)

= 0 (2.13)

for every λ > 1 and

lim
m,n→∞

1

(m − λm)(n − λn)

m
∑

j=λm+1

n
∑

k=λn+1

(

xmn − (1 + rj)(1 + δk)xjk

)

= 0 (2.14)

for every 0 < λ < 1.

Remark 2.5. Theorem 2.2 remains true if conditions (2.9) and (2.10) are replaced by their symmetric
counterparts:

inf
λ>1

lim sup
m,n→∞

1

(λm − m)(λn − n)

λm
∑

j=m+1

λn
∑

k=n+1

(

(1 + rj)(1 + δk)xjk − xmn

)

≤ 0 (2.15)

and

inf
0<λ<1

lim sup
m,n→∞

1

(m − λm)(n − λn)

m
∑

j=λm+1

n
∑

k=λn+1

(

xmn − (1 + rj)(1 + δk)xjk

)

≤ 0. (2.16)

Second, we consider double sequences of complex numbers and prove the following two-sided Tauberian
theorem.

Theorem 2.6. If (xmn) is a double sequence of complex numbers which is (Ar,δ,1,1) summable to a
finite limit l, then (xmn) converges to the same limit if and only if one of the following two conditions is
satisfied:

inf
λ>1

lim sup
m,n→∞

∣

∣

∣

∣

∣

∣

1

(λm − m)(λn − n)

λm
∑

j=m+1

λn
∑

k=n+1

(

(1 + rj)(1 + δk)xjk − xmn

)

∣

∣

∣

∣

∣

∣

= 0 (2.17)

or

inf
0<λ<1

lim sup
m,n→∞

∣

∣

∣

∣

∣

∣

1

(m − λm)(n − λn)

m
∑

j=λm+1

n
∑

k=λn+1

(

xmn − (1 + rj)(1 + δk)xjk

)

∣

∣

∣

∣

∣

∣

= 0. (2.18)

We recall that a sequence (xmn) of complex numbers is said to be slowly oscillating in sense (1,1) if

lim
λ→1+

lim sup
m,n→∞

max
m<j≤λm

n<k≤λn

|xjk − xmn| = 0. (2.19)

The concept of slow oscillation was introduced by Hardy [2] for the sequences of complex numbers. An
equivalent reformulation of (2.19) can be given as follows:

lim
λ→1−

lim sup
m,n→∞

max
λm<j≤m
λn<k≤n

|xmn − xjk| = 0. (2.20)

We have the following corollary of Theorem 2.6.

Corollary 2.7. Let (1.1), (1.2) and (1.3) be satisfied. If a sequence (xmn) of complex numbers is slowly
oscillating in sense (1,1), then (1.4) is satisfied.
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2.3. Proofs

Proof of Theorem 2.2
Necessity. Assume that (1.1) and (1.4) are satisfied. Then Lemma 2.1 yields (2.9) in case λ > 1 and
(2.10) in case 0 < λ < 1.
Sufficiency. Assume that (1.1), (2.9) and (2.10) are satisfied. First we consider the case λ > 1. Let ǫ > 0
be given. By (2.9), there exists some λ > 1 such that

lim inf
m,n→∞

1

(λm − m)(λn − n)

λm
∑

j=m+1

λn
∑

k=n+1

(

(1 + rj)(1 + δk)xjk − xmn

)

≥ −ǫ. (2.21)

By (2.3), we have

xmn − σr,δ
mn =

(λm + 1)(λn + 1)

(λm − m)(λn − n)
(σr,δ

mn − σr,δ
λm,n − σr,δ

m,λn

+ σr,δ
λm,λn

)

+
λm + 1

λm − m
(σr,δ

λm,n − σr,δ
mn) +

λn + 1

λn − n
(σr,δ

m,λn

− σr,δ
mn)

−
1

(λm − m)(λn − n)

λm
∑

j=m+1

λn
∑

k=n+1

(

(1 + rj)(1 + δk)xjk − xmn

)

. (2.22)

By (1.1), (2.4) and (2.5), the first three terms on the right hand-side of (2.22) vanish as m, n → ∞.

It follows from (2.22) that

lim sup
m,n→∞

(xmn − σr,δ
mn)

≤ − lim inf
m,n→∞

1

(λm − m)(λn − n)

λm
∑

j=m+1

λn
∑

k=n+1

(

(1 + rj)(1 + δk)xjk − xmn

)

≤ ǫ.

Consequently, we have

lim sup
m,n→∞

xmn ≤ l + ǫ. (2.23)

Second, we consider the case 0 < λ < 1. Let ǫ > 0 be given. By (2.10), there exists some 0 < λ < 1 such
that

lim inf
m,n→∞

1

(m − λm)(n − λn)

m
∑

j=λm+1

n
∑

k=λn+1

(

xmn − (1 + rj)(1 + δk)xjk

)

≥ −ǫ. (2.24)

By (2.6), we have

xmn − σr,δ
mn =

(λm + 1)(λn + 1)

(m − λm)(n − λn)
(σr,δ

λm,λn

− σr,δ
λm,n − σr,δ

m,λn

+ σr,δ
mn)

+
λm + 1

m − λm

(σr,δ
λm,n − σr,δ

λm,λn

) +
λn + 1

n − λn

(σr,δ
m,λn

− σr,δ
λm,λn

)

+
1

(m − λm)(n − λn)

m
∑

j=λm+1

n
∑

k=λn+1

(

xmn − (1 + rj)(1 + δk)xjk

)

. (2.25)

By (1.1), (2.7) and (2.8), the first three terms on the right hand-side of (2.25) vanish as m, n → ∞.
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It follows from (2.25) that

lim inf
m,n→∞

(xmn − σr,δ
mn)

≥ lim inf
m,n→∞

1

(m − λm)(n − λn)

m
∑

j=λm+1

n
∑

k=λn+1

(

xmn − (1 + rj)(1 + δk)xjk

)

≥ −ǫ.

Consequently, we have

lim inf
m,n→∞

xmn ≥ l − ǫ. (2.26)

Combining (2.23) and (2.26) yields

l − ǫ ≤ lim inf
m,n→∞

xmn ≤ lim sup
m,n→∞

xmn ≤ l + ǫ.

Being ǫ arbitrary small, hence (1.4) follows. �

Proof of Corollary 2.3. For λ > 1, we have the following inequality:

1

(λm − m)(λn − n)

λm
∑

j=m+1

λn
∑

k=n+1

(

(1 + rj)(1 + δk)xjk − xmn

)

≥ min
m<j≤λm

n<k≤λn

(

δkxjk + rjxjk + rjδkxjk

)

+ min
m<j≤λm

n<k≤λn

(xjk − xmn) .

It follows from the definition of σr,δ
mn(x) that

xmn

mn
=

(m + 1)(n + 1)σr,δ
mn − m(n + 1)σr,δ

m−1,n − (m + 1)nσr,δ
m,n−1 + mnσr,δ

m−1,n−1

mn(1 + rm)(1 + δn)
.

Since (xmn) is (Ar,δ,1,1) summable to l, then we have xmn/mn → 0, as m, n → ∞. Therefore,
rmδnxmn → 0 as m, n → ∞. By the definition of σr,∗

mn(x) and σ∗,δ
mn(x), we have

xmn

m
=

(m + 1)σr
mn − mσr

m−1,n

m(1 + rm)

and

xmn

n
=

(n + 1)σδ
mn − nσδ

m,n−1

n(1 + δn)
,

respectively. Since (xmn) is (Ar,∗,1,0) and (A∗,δ,0,1) summable to l, then we have xmn/m → 0 and
xmn/n → 0 as m, n → ∞, respectively. Hence, rmxmn → 0 and δnxmn → 0 as m, n → ∞. So, condition
(2.11) clearly implies condition (2.9). Similarly, (2.12) implies (2.10). By Theorem 2.2, we have (1.4). �

Proof of Theorem 2.6
Necessity. The proof is similar to the proof of the necessity part of Theorem 2.2.
Sufficiency. Assume that (1.1) and one of conditions (2.17) and (2.18) is satisfied. Let any ǫ > 0 be
given. By (2.17), there exists some λ > 1 such that

lim sup
m,n→∞

∣

∣

∣

∣

∣

∣

1

(λm − m)(λn − n)

λm
∑

j=m+1

λn
∑

k=n+1

(

(1 + rj)(1 + δk)xjk − xmn

)

∣

∣

∣

∣

∣

∣

< ǫ. (2.27)
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By (1.1), (2.4) and (2.5), we have

lim sup
m,n→∞

|xmn − σr,δ
mn|

≤ lim sup
m,n→∞

∣

∣

∣

∣

∣

∣

1

(λm − m)(λn − n)

λm
∑

j=m+1

λn
∑

k=n+1

(

(1 + rj)(1 + δk)xjk − xmn

)

∣

∣

∣

∣

∣

∣

≤ ǫ. (2.28)

Let any ǫ > 0 be given. By (2.18), there exists some 0 < λ < 1 such that

lim sup
m,n→∞

∣

∣

∣

∣

∣

∣

1

(m − λm)(n − λn)

m
∑

j=λm+1

n
∑

k=λn+1

(

xmn − (1 + rj)(1 + δk)xjk

)

∣

∣

∣

∣

∣

∣

< ǫ.

By (1.1), (2.7) and (2.8), we have

lim sup
m,n→∞

|xmn − σr,δ
mn|

≤ lim sup
m,n→∞

∣

∣

∣

∣

∣

∣

1

(m − λm)(n − λn)

m
∑

j=λm+1

n
∑

k=λn+1

(

xmn − (1 + rj)(1 + δk)xjk

)

∣

∣

∣

∣

∣

∣

≤ ǫ (2.29)

By (2.28) or (2.29), in either case we obtain

lim sup
m,n→∞

|xmn − σr,δ
mn| = 0 (2.30)

whence it follows that
lim

m,n→∞
|xmn − σr,δ

mn| = 0. (2.31)

Now we conclude (1.4) from (1.1) and (2.31). �

Proof of Corollary 2.7. For λ > 1, we have the following inequality:

∣

∣

∣

∣

∣

∣

1

(λm − m)(λn − n)

λm
∑

j=m+1

λn
∑

k=n+1

(

(1 + rj)(1 + δk)xjk − xmn

)

∣

∣

∣

∣

∣

∣

≤ max
m<j≤λm

n<k≤λn

|δkxjk + rjxjk + rjδkxjk| + max
m<j≤λm

n<k≤λn

|xjk − xmn|

As in the proof of Corollary 2.3, we have xmn/mn → 0 as m, n → ∞, xmn/m → 0, as m, n → ∞ and
xmn/n → 0, as m, n → ∞. Hence, rmδnxmn → 0, rmxmn → 0 and δnxmn → 0 as m, n → ∞. Hence,
condition (2.19) clearly implies the condition (2.17). Similarly, (2.20) implies (2.18). By Theorem 2.6,
we have (1.4). �

3. Tauberian theorems for (Ar,∗, 1, 0) summability method

3.1. An auxiliary result

Lemma 3.1. If a sequence (xmn) is (Ar,∗, 1, 0) summable to a finite limit l, then

lim
m,n→∞

1

λm − m

λm
∑

j=m+1

(1 + rj)xjn = l (3.1)
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for every λ > 1 and

lim
m,n→∞

1

m − λm

m
∑

j=λm+1

(1 + rj)xjn = l (3.2)

for every 0 < λ < 1.

Proof of Lemma 3.1. i-) Case λ > 1. By definition of σr,∗
mn, we have

σr,∗
λm,n − σr,∗

mn =
1

λm + 1

λm
∑

j=0

(1 + rj)xjn −
1

m + 1

m
∑

j=0

(1 + rj)xjn

=
1

λm + 1

m
∑

j=0

(1 + rj)xjn +
1

λm + 1

λm
∑

j=m+1

(1 + rj)xjn −
1

m + 1

m
∑

j=0

(1 + rj)xjn

=

(

1

λm + 1
−

1

m + 1

) m
∑

j=0

(1 + rj)xjn +
1

λm + 1

λm
∑

j=m+1

(1 + rj)xjn

=
m − λm

(m + 1)(λm + 1)

m
∑

j=0

(1 + rj)xjn +
1

λm + 1

λm
∑

j=m+1

(1 + rj)xjn

=
m − λm

λm + 1
σr

mn +
1

λm + 1

λm
∑

j=m+1

(1 + rj)xjn.

Multiplying both sides by
λm + 1

λm − m
, we have

λm + 1

λm − m
(σr,∗

λm,n − σr,∗
mn) = −σr

mn +
1

λm − m

λm
∑

j=m+1

(1 + rj)xjn. (3.3)

It follows from (3.3) that

1

λm − m

λm
∑

j=m+1

(1 + rj)xjn = σr,∗
mn +

λm + 1

λm − m
(σr,∗

λm,n − σr,∗
mn). (3.4)

Taking (1.2) and (2.5) into account, we have (3.1) from (3.4).
ii-) Case 0 < λ < 1. By definition, we have

1

m − λm

m
∑

j=λm+1

(1 + rj)xjn = σr,∗
mn +

λm + 1

m − λm

(σr,∗
mn − σr,∗

λm,n). (3.5)

Taking (1.3) and (2.8) into account, we have (3.2) from (3.5). �

3.2. Main results

Theorem 3.2. If (xmn) is a sequence of real numbers which is (Ar,∗, 1, 0) summable to a finite limit l,
then (1.4) holds if and only if

sup
λ>1

lim inf
m,n→∞

1

λm − m

λm
∑

j=m+1

(

(1 + rj)xjn − xmn

)

≥ 0 (3.6)
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and

sup
0<λ<1

lim inf
m,n→∞

1

m − λm

m
∑

j=λm+1

(

xmn − (1 + rj)xjn

)

≥ 0, (3.7)

in which case we necessarily have

lim
m,n→∞

1

λm − m

λm
∑

j=m+1

(

(1 + rj)xjn − xmn

)

= 0

for all λ > 1 and

lim
m,n→∞

1

m − λm

m
∑

j=λm+1

(

xmn − (1 + rj)xjn

)

= 0

for all 0 < λ < 1.

A sequence (xmn) of real numbers is said to be slowly decreasing in sense (1, 0) if

lim
λ→1+

lim inf
m,n→∞

min
m<j≤λm

(xjn − xmn) ≥ 0 (3.8)

Note that condition (3.8) can be equivalently reformulated as follows:

lim
λ→1−

lim inf
m,n→∞

min
λm<j≤m

(xmn − xjn) ≥ 0 (3.9)

Corollary 3.3. Let (1.2) be satisfied. If a sequence (xmn) of real numbers is slowly decreasing in sense
(1, 0), then (1.4) is satisfied.

Theorem 3.4. If (xmn) is a sequence of complex numbers which is (Ar,∗, 1, 0) summable to l, then (xmn)
converges to the same limit if and only if one of the following two conditions is satisfied:

inf
λ>1

lim sup
m,n→∞

∣

∣

∣

∣

∣

∣

1

λm − m

λm
∑

j=m+1

(

(1 + rj)xjn − xmn

)

∣

∣

∣

∣

∣

∣

= 0 (3.10)

or

inf
0<λ<1

lim sup
m,n→∞

∣

∣

∣

∣

∣

∣

1

m − λm

m
∑

j=λm+1

(

xmn − (1 + rj)xjn

)

∣

∣

∣

∣

∣

∣

= 0. (3.11)

We recall that a sequence (xmn) of complex numbers is said to be slowly oscillating in sense (1,0) if

lim
λ→1+

lim sup
m,n→∞

max
m<j≤λm

|xjn − xmn| = 0. (3.12)

An equivalent reformulation of (3.12) can be given as follows:

lim
λ→1−

lim sup
m,n→∞

max
λm<j≤m

|xmn − xjn| = 0. (3.13)

Corollary 3.5. Let (1.2) be satisfied. If a sequence (xmn) of complex numbers is slowly oscillating in
sense (1,0), then (1.4) is satisfied.
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3.3. Proofs

Proof of Theorem 3.2.
Necessity. Assume that (1.1) and (1.2) are satisfied. Then Lemma 3.1 yields (3.6) in case λ > 1 and (3.7)
in case 0 < λ < 1.
Sufficiency. Assume that (1.1), (3.6) and (3.7) are satisfied. First, we consider the case λ > 1. Let ǫ > 0
be given. By (3.6), there exists some λ > 1 such that

lim inf
m,n→∞

1

λm − m

λm
∑

j=m+1

(

(1 + rj)xjn − xmn

)

≥ −ǫ. (3.14)

It follows from (3.4) that

xmn − σr,∗
mn =

λm + 1

λm − m
(σr,∗

λm,n − σr,∗
mn) −

1

λm − m

λm
∑

j=m+1

(

(1 + rj)xjn − xmn

)

. (3.15)

By (1.2) and (2.5), the first term on the right hand-side of (3.15) vanishes as m, n → ∞. It follows
from (3.15) that

lim sup
m,n→∞

(xmn − σr,∗
mn) ≤ − lim inf

m,n→∞

1

λm − m

λm
∑

j=m+1

(

(1 + rj)xjn − xmn

)

≤ ǫ.

Consequently, we have

lim sup
m,n→∞

xmn ≤ l + ǫ. (3.16)

Second, we consider the case 0 < λ < 1. Let ǫ > 0 be given. By (3.7), there exists some 0 < λ < 1 such
that

lim inf
m,n→∞

1

m − λm

m
∑

j=λm+1

(

xmn − (1 + rj)xjn

)

≥ −ǫ. (3.17)

It follows from (3.5) that

xmn − σr,∗
mn =

λm + 1

m − λm

(σr,∗
mn − σr,∗

λm,n) +
1

m − λm

m
∑

j=λm+1

(

xmn − (1 + rj)xjn

)

. (3.18)

Using a similar argument as above, we conclude by (3.18) that

lim inf
m,n→∞

(xmn − σr,∗
mn) ≥ lim inf

m,n→∞

1

m − λm

m
∑

j=λm+1

(

xmn − (1 + rj)xjn

)

≥ −ǫ.

Consequently, we have

lim inf
m,n→∞

xmn ≥ l − ǫ. (3.19)

Combining (3.16) and (3.19) yields

l − ǫ ≤ lim inf
m,n→∞

xmn ≤ lim sup
m,n→∞

xmn ≤ l + ǫ.
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Being ǫ arbitrary small, hence (1.4) follows. �

Proof of Corollary 3.3. For λ > 1, we have the following inequality:

1

λm − m

λm
∑

j=m+1

(

(1 + rj)xjn − xmn

)

≥ min
m<j≤λm

(rjxjk) + min
m<j≤λm

(xjn − xmn).

We have

xmn

m
=

(m + 1)σr,∗
mn − mσr,∗

m−1,n

m(1 + rm)

Since (xmn) is (Ar,∗, 1, 0) summable to l, then we have xmn/m → 0 as m, n → ∞. Therefore, rmxmn → 0
as m, n → ∞. So condition (3.8) clearly implies the condition (3.6). Similarly, (3.9) implies (3.7). By
Theorem 3.2, we have (1.4). �

Proof of Theorem 3.4.
Necessity. The proof is similar to the proof of the necessity part of Theorem 2.6.
Sufficiency. Assume that (1.2) and one of conditions (3.10) and (3.11) is satisfied. Let ǫ > 0 be given.
By (3.10), there exists some λ > 1 such that

lim sup
m,n→∞

∣

∣

∣

∣

∣

∣

1

λm − m

λm
∑

j=m+1

(

(1 + rj)xjn − xmn

)

∣

∣

∣

∣

∣

∣

< ǫ. (3.20)

By (1.2), (2.4) and (2.5), we have

lim sup
m,n→∞

|xmn − σr,∗
mn| ≤

lim sup
m,n→∞

∣

∣

∣

∣

∣

∣

1

λm − m

λm
∑

j=m+1

(

(1 + rj)xjn − xmn

)

∣

∣

∣

∣

∣

∣

≤ ǫ. (3.21)

Let any ǫ > 0 be given. By (3.11, there exists some 0 < λ < 1 such that

lim sup
m,n→∞

∣

∣

∣

∣

∣

∣

1

m − λm

m
∑

j=λm+1

(

xmn − (1 + rj)xjn

)

∣

∣

∣

∣

∣

∣

< ǫ.

By (1.2), (2.7) and (2.8), we have

lim sup
m,n→∞

|xmn − σr,∗
mn| ≤ lim sup

m,n→∞

∣

∣

∣

∣

∣

∣

1

m − λm

m
∑

j=λm+1

(

xmn − (1 + rj)xjn

)

∣

∣

∣

∣

∣

∣

≤ ǫ. (3.22)

By (3.21) or (3.22), in either case we obtain

lim sup
m,n→∞

|xmn − σr,∗
mn| = 0

whence it follows that

lim
m,n→∞

|xmn − σr,∗
mn| = 0. (3.23)

Now, we conclude (1.4) from (1.2) and (3.23).
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4. Tauberian theorems for (A∗,δ, 0, 1) summability method

The symmetric counterparts of Theorem 3.2 and Corollary 3.3 are also valid, when we consider summa-
bility (A∗,δ, 0, 1) instead of (Ar,∗, 1, 0).

Lemma 4.1. If a sequence (xmn) is (A∗,δ, 0, 1) summable to a finite limit l, then

lim
m,n→∞

1

λn − n

λn
∑

k=n+1

(1 + δk)xmk = l (4.1)

for every λ > 1 and

lim
m,n→∞

1

n − λn

n
∑

k=λn+1

(1 + δk)xmk = l (4.2)

for every 0 < λ < 1.

Theorem 4.2. If (xmn) is a sequence of real numbers which is (A∗,δ, 0, 1) summable to a finite limit l,
then (1.4) holds if and only if

sup
λ>1

lim inf
m,n→∞

1

λn − n

λn
∑

k=n+1

(

(1 + δk)xmk − xmn

)

≥ 0 (4.3)

and

sup
0<λ<1

lim inf
m,n→∞

1

n − λn

n
∑

k=λn+1

(

xmn − (1 + δk)xmk

)

≥ 0. (4.4)

A sequence (xmn) of real numbers is said to be slowly decreasing in sense (0, 1) if

lim
λ→1+

lim inf
m,n→∞

min
n<k≤λn

(xmk − xmn) ≥ 0. (4.5)

Note that condition (4.5) can be equivalently reformulated as follows:

lim
λ→1−

lim inf
m,n→∞

min
λn<k≤n

(xmn − xmk) ≥ 0 (4.6)

Corollary 4.3. Let (1.3) be satisfied. If a sequence (xmn) of real numbers is slowly decreasing in sense
(0, 1), then (1.4) is satisfied.

Theorem 4.4. If (xmn) is a sequence of complex numbers which is (A∗,δ, 0, 1) summable to l, then (xmn)
converges to the same limit if and only if one of the following two conditions is satisfied:

inf
λ>1

lim sup
m,n→∞

∣

∣

∣

∣

∣

1

λn − n

λn
∑

k=n+1

(

(1 + δk)xmk − xmn

)

∣

∣

∣

∣

∣

= 0 (4.7)

or

inf
0<λ<1

lim sup
m,n→∞

∣

∣

∣

∣

∣

1

n − λn

n
∑

k=λn+1

(

xmn − (1 + δk)xmk

)

∣

∣

∣

∣

∣

= 0. (4.8)

Theorem 4.2 and Theorem 4.4 can be proved by the similar techniques as in the proofs of Theorem
3.2 and Theorem 3.4. So we omit them.

We recall that a sequence (xmn) of complex numbers is said to be slowly oscillating in sense (0,1) if

lim
λ→1+

lim sup
m,n→∞

max
n<k≤λn

|xmk − xmn| = 0. (4.9)

An equivalent reformulation of (4.9) can be given as follows:

lim
λ→1−

lim sup
m,n→∞

max
λn<k≤n

|xmn − xmk| = 0. (4.10)

Corollary 4.5. Let (1.3) be satisfied. If a sequence (xmn) of complex numbers is slowly oscillating in
sense (0, 1), then (1.4) is satisfied.
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References
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Department of Mathematics,

Ege University,

Turkey.

E-mail address: ibrahim.canak@ege.edu.tr


	Introduction
	Tauberian theorems for (Ar,0=x"010E,1,1) summability method
	An auxiliary result
	Main results
	Proofs

	Tauberian theorems for (Ar,*,1,0) summability method
	An auxiliary result
	Main results
	Proofs

	Tauberian theorems for (A*,0=x"010E,0,1) summability method

