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A Note on Hermite-based Truncated Euler Polynomials
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abstract: In this paper, we introduce a new class of generating function of Hermite-based truncated
Euler polynomials which is a generalization of Hermite-Euler polynomials. By making use of this generating
function, we obtain some new interesting properties and relations. Furthermore, we derive some new implicit
summation formulae.
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1. Introduction

Generalized and multivariable forms of the special functions of mathematical physics have witnessed
a significant evolution during the recent years. In particular, the special polynomials of two variables
provided new means of analysis for the solution of large classes of partial differential equations often
encountered in physical problems. Most of the special functions of mathematical physics and their gen-
eralizations have been suggested by physical problems. For example (see [4-7], [13-25])

The 2-variable Hermite Kampé de Fériet polynomials (2VHKdFP) Hn(x, y) are defined by the gen-
erating function (see [2], [4]):

ext+yt2

=
∞
∑

n=0

Hn(x, y)
tn

n!
, (1.1)

are solutions of the heat equation

∂

∂y
Hn(x, y) =

∂2

∂x2
Hn(x, y),

Hn(x, 0) = xn.

For non-negative integer m, the truncated Euler polynomials are defined by means of the following
generating function (see [13]):

2tm

m!

et + 1 −
m−1
∑

h=0

th

h!

ext =

∞
∑

n=0

Em,n(x)
tn

n!
. (1.2)

Taking m = 0 in (1.2) reduces to
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2

et + 1
ext =

∞
∑

n=0

E0,n(x)
tn

n!
, (| t |< π), (1.3)

where, En(x) are called the Euler polynomials (see [23]).

When x = 0 in (1.2), Em,n = Em,n(0) are called the truncated Euler numbers given by

2tm

m!

et + 1 −
m−1
∑

h=0

th

h!

=
∞
∑

n=0

Em,n

tn

n!
. (1.4)

Recently, Hassen et al. [9] introduced hypergeometric Bernoulli polynomials by means of the following
generating function:
For N ≥ 1, the hypergeometric Bernoulli numbers BN,n are defined by means of the following generating
function

1

1F1(1; N + 1; t)
=

tN

N !

et −
N−1
∑

n=0

tn

n!

=

∞
∑

n=0

BN,n

tn

n!
,

where

1F1(a; b; z) =

∞
∑

n=0

(a)n

(b)n

zn

n!

is the confluent hypergeometric function with (x)n = x(x+1) · · · (x+n−1), (n ≥ 1) and (x)0 = 1. When
N = 1, Bn = B1,n are called the classical Bernoulli numbers (with B1 = − 1

2 ) defined by

t

et − 1
=

∞
∑

n=0

Bn

tn

n!
.

In particular, the hypergeometric Bernoulli polynomials are defined by means of the following gener-
ating function (see [8], [9], [12]):

tm

m!

et −
m−1
∑

h=0

th

h!

ext =

∞
∑

n=0

Bm,n(x)
tn

n!
, (1.5)

or

ext

1F1(1; m + 1; t)
=

∞
∑

n=0

Bm,n(x)
tn

n!
. (1.6)

If we take m = 0, Eq. (1.5) becomes (see [13]):

e(x−1)t =

∞
∑

n=0

B0,n(x)
tn

n!
,

from where we see that B0,n(x) = (x − 1)n.

On setting m = 1 in (1.5), Bn(x) = B1,n(x) are called the classical Bernoulli polynomials given by

t

et − 1
ext =

∞
∑

n=0

Bn(x)
tn

n!
.
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For λ ∈ C with λ 6= 1 and a non negative integer r, Frobenius-Euler polynomials H
(r)
n (x|λ) are defined

by means of the following generating function (see [1])

(

1 − λ

et − λ

)r

ext =

∞
∑

n=0

H(r)
n (x|λ)

tn

n!
. (1.7)

Observe that H
(1)
n (x, λ) = Hn(x, λ), which denotes the Frobenius-Euler polynomials and H

(r)
n (0; λ) =

H
(r)
n (λ), which denotes the Frobenius-Euler numbers of order r. Hn(x; −1) = En(x), which denotes the

Euler polynomials (see [3], [8-11]).

In the year 2014, Pathan and Khan [23] introduced generalized Hermite-Euler polynomials of two
variable by means of the following generating function

(

2

et + 1

)α

ext+yt2

=

∞
∑

n=0

HE(α)
n (x, y)

tn

n!
. (1.8)

For α = 1, Eq. (1.8) reduces to the known result of Dattoli et al. [4].

The generating function of the Stirling numbers of the second kind denoted by

{

n

k

}

is given by (

[27])

(et − 1)k

k!
=

∞
∑

n=k

{

n

k

}

tn

n!
. (1.9)

The falling factorial (x)n and the rising factorial (x)(n) are defined by (x)n = x(x − 1) · · · (x − n + 1) and
(x)(n) = x(x + 1) · · · (x + n − 1), (n ≥ 1) with (x)0 = (x)(0) = 1, respectively.

The object of this paper is to present a systematic account of these families in a unified and general-
ized form. We develop some elementary properties and derive the implicit summation formulae for the
Hermite-based truncated Euler polynomials by using different analytical means on their respective gener-
ating functions. The approach given in recent papers of Khan [16] and Pathan and Khan [23] has indeed
allowed the derivation of implicit summation formulae in the two-variable Hermite-Euler polynomials. In
addition to this, we give some relevant connections between Hermite and truncated Euler polynomials.

2. Hermite-based truncated Euler polynomials

In this section, we define Hermite-based truncated Euler polynomials HEm,n(x, y) and investigate its
properties. Now we start at the following definition.
.

Definition 2.1. For nonnegative integer m, we define the Hermite-based truncated Euler polynomials

HEn,m(x, y) by means of the following generating function in a suitable neighborhood of t = 0:

2tm

m!

et + 1 −
m−1
∑

h=0

th

h!

ext+yt2

=

∞
∑

n=0

HEn,m(x, y)
tn

n!
. (2.1)

Clearly that (2.1) contains as its special cases not only generalized truncated Euler polynomials

E
(α)
n,m(x) (c.f.Eq.(1.2)) but also Kampé de Fériet generalization of the Hermite polynomials Hn(x, y)

(c.f.Eq.(1.1)). If we put m = 0, (2.1) gives a known result of Dattoli et al. [ [4], p.386(1.6)] in the form

2

et + 1
ext+yt2

=

∞
∑

n=0

HEn(x, y)
tn

n!
, (2.2)
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where HEn(x, y) are called the Hermite-Euler polynomials.

In particular, in terms of truncated Euler numbers En−s,m and Hermite polynomials Hs(x, y), trun-
cated Hermite-Euler polynomials HEn,m(x, y) are represented as

HEn,m(x, y) =
n
∑

s=0

(

n

s

)

En−s,mHs(x, y). (2.3)

It is possible to define truncated Hermite-Euler numbers HEn,m assuming that

HEn,m(0, 0) = HEn,m.

Taking x = m = 0, (2.1) gives the result

[ n

2
]

∑

s=0

(

n

s

)

En−sys = HEn(0, y). (2.4)

If we take m = 0 in (2.1), we can generalize some results involving summations of truncated Hermite-Euler
polynomials and numbers by using eit = cos t + i sin t and the result

∞
∑

n=0

f(n) =

∞
∑

n=0

f(2n) +

∞
∑

n=0

f(2n + 1). (2.5)

Since
2

eit + 1
=

2i(cos t + 1 − i sin t)

(cos t + 1 + i sin t)(cos t + 1 − i sin t)
=

2i(cos t + 1 − i sin t)

(cos t + 1)2 + (sin t)2

=
(2i sin t) + 2(cos t + 1)

Ω
. (2.6)

Thus, by (2.1) and (2.6), we have

eixt−yt2

(

(2i sin t) + 2(cos t + 1)

Ω

)

=
∞
∑

n=0

HE2n(x, y)
(−1)nt2n

(2n)!
+ i

∞
∑

n=0

HE2n+1(x, y)
(−1)nt2n+1

(2n + 1)!
, (2.7)

where Ω = (cos t + 1)2 + (sin t)2.

Therefore, we have

∞
∑

n=0

HE2n(x, y)
(−1)nt2n

(2n)!
=

e−yt2

Ω
2[cos(t − xt) + cos (xt)]. (2.8)

∞
∑

n=0

HE2n+1(x, y)
(−1)nt2n+1

(2n + 1)!
=

e−yt2

Ω
2[sin(t − xt) − cos (xt)], (2.9)

where Ω = (cos t + 1)2 + (sin t)2.

Theorem 2.2. For n ≥ 1, we have

HEn,1(x, y) = 2nHn((x − 1), y). (2.10)
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Proof. For m = 1 in (2.1) and using (1.1), we have

∞
∑

n=0

HEn,1(x, y)
tn−1

n!
= 2e(x−1)t+yt2

∞
∑

n=1

HEn,1(x, y)
tn

(n + 1)!
= 2

∞
∑

n=1

Hn((x − 1), y)
tn

n!
.

Comparing the coefficients of equal powers of t on both sides, we get the required result. �

Theorem 2.3. The following relation holds true:

HEm,j(x, y) = 2

(

n + m

n

)

Hn(x, y) −

n
∑

j=0

(

n + m

j

)

HEm,j(x, y), (n ≥ 0), (2.11)

where HEm,n(x, y) = 0, (n = 0, 1, · · · , m − 1).

Proof. From (2.1), we have

2tm

m!
ext+yt2

=

(

∞
∑

n=0

HEn,m(x, y)
tn

n!

)



1 +

∞
∑

j=m

tj

j!





2tm

m!

∞
∑

n=0

Hn(x, y)
tn

n!
=

∞
∑

n=0

HEn,m(x, y)
tn

n!
+

(

∞
∑

n=0

HEn,m(x, y)
tn

n!

)





∞
∑

j=0

tj+m

(j + m)!





(

∞
∑

n=0

HEn,m(x, y)
tn

n!

)





∞
∑

j=0

tj+m

(j + m)!



 =
2tm

m!

∞
∑

n=0

Hn(x, y)
tn

n!
−

∞
∑

n=0

HEn,m(x, y)
tn

n!

=

∞
∑

n=0

Hn(x, y)
2tn+m

n!m!
−

∞
∑

n=0

HEn+m,m(x, y)
tn+m

(n + m)!
−

m−1
∑

n=0

HEn,m(x, y)
tn

n!
. (2.12)

Also,
(

∞
∑

n=0

HEn,m(x, y)
tn

n!

)





∞
∑

j=0

tj+m

(j + m)!



 =

∞
∑

n=0

n
∑

j=0

HEm,j(x, y)
tj

j!

tn−j+m

(n − j + m)!

=

∞
∑

n=0





n
∑

j=0

(

n + m

j

)

HEm,j(x, y)





tn+m

(n + m)!
. (2.13)

Comparing the coefficients of tn in equation (2.12) and (2.13), we get the results (2.11). �

Theorem 2.4. The following relation holds true:

HEn,m(x + z, y) =

n
∑

s=0

(

n

s

)

En−s,m(z)Hs(x, y). (2.14)
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Proof. From (2.1), we have

∞
∑

n=0

HEn,m(x + z, y)
tn

n!
=

2tm

m!

et + 1 −
m−1
∑

h=0

th

h!

e(x+z)t+yt2

=
2tm

m!

et + 1 −
m−1
∑

h=0

th

h!

eztext+yt2

=

(

∞
∑

n=0

En,m(z)
tn

n!

)(

∞
∑

s=0

Hs(x, y)
ts

s!

)

.

Replacing n by n − s in above equation and comparing the coefficients of tn, we get the desired result. �

Theorem 2.5. The following relation holds true:

HEn,m(x + z, y) =

n
∑

k=0

n
∑

s=k

{

s

k

}(

n

s

)

HEn−s,m(x, y)(x)k. (2.15)

Proof. By Theorem 2.3, we have

HEn,m(x + z, y) =

n
∑

s=0

(

n

s

)

HEn−s,m(x, y)zs.

Using the concept of (1.9), we have

=

n
∑

s=0

(

n

s

)

HEn−s,m(x, y)

s
∑

k=0

{

s

k

}

(x)k

=

n
∑

k=0

n
∑

s=k

{

s

k

}(

n

s

)

HEn−s,m(x, y)(x)k.

�

Thus, it completes the proof.

Theorem 2.6. The following relation holds true:

HEn,m(x + z, y) =

n
∑

µ=0

n
∑

l=µ

(

n

l

){

l

µ

}

HEn−l,m(x − µ, y)(z)µ. (2.16)

Proof. Consider (2.1), we have

∞
∑

n=0

HEn,m(x + z, y)
tn

n!
=

2tm

m!

et + 1 −
m−1
∑

h=0

th

h!

ext+yt2

(e−t)−z

=
2tm

m!

et + 1 −
m−1
∑

h=0

th

h!

ext+yt2

∞
∑

µ=0

(

z + µ − 1
µ

)

(1 − e−t)−z

=
2tm

m!

et + 1 −
m−1
∑

h=0

th

h!

ext+yt2

∞
∑

µ=0

(z)µ (et − 1)µ

µ!
e−µt
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=

∞
∑

µ=0

(z)µ

(

∞
∑

n=0

{

n

µ

}

tn

n!

)(

∞
∑

n=0

HEn,m(x − µ, y)
tn

n!

)

=

∞
∑

µ=0

(z)µ

∞
∑

n=0

(

n

l

) n
∑

l=0

{

l

µ

}

HEn−l,m(x − µ, y)
tn

n!

=

∞
∑

n=0





n
∑

µ=0

n
∑

l=µ

(

n

l

){

l

µ

}

HEn−l,m(x − µ, y)(z)µ





tn

n!
.

Comparing the coefficients of tn, we obtain the required result. �

Theorem 2.7. The following relation holds true:

HEn,m(x, y) =

n
∑

µ=0

1

(1 − λ)r

(

n

µ

) r
∑

i=0

(

r

i

)

(−1)r−i
HEn−µ,m(0, y)H(r)

µ (x|λ). (2.17)

Proof. From (2.1), we have

∞
∑

n=0

HEn,m(x, y)
tn

n!
=

2tm

m!

et + 1 −
m−1
∑

h=0

th

h!

(

et − λ

1 − λ

)r (
1 − λ

et − λ

)r

ext+yt2

=

(

∞
∑

n=0

HEn,m(0, y)
tn

n!

)(

r
∑

i=0

(

r

i

)

(eit)(−λ)r−i 1

(1 − λ)r

)(

∞
∑

µ=0

H(r)
µ (x|λ)

tµ

µ!

)

=

r
∑

i=0

(

r

i

)

(−λ)r−i 1

(1 − λ)r
(eit)

∞
∑

n=0

n
∑

µ=0

(

n

µ

)

HEn−µ,m(0, y)H(r)
µ (x|λ)

tn

n!

=

∞
∑

n=0

n
∑

µ=0

1

(1 − λ)r

(

n

µ

) r
∑

i=0

(

r

i

)

(−1)r−i
HEn−µ,m(0, y)H(r)

µ (x|λ)
tn

n!
.

Equating the coefficients of equal powers of t on both sides, we obtain the desired result. �

Theorem 2.8. The following relation holds true:

(

n + m

n

) n
∑

j=0

(

n

j

)(

Bm,j(x)Hn−j(x, y) −
1

2
HEm,j(x, y)xn−j

)

=
1

2

n+m
∑

j=0

(

n + m

j

)

HEm,j(x, y)Bm,n+m−j(x). (2.18)

Proof. From (2.1), we have

tm

m!
ext+yt2

=

(

∞
∑

n=0

1

2
HEn,m(x, y)

tn

n!

)(

et + 1 −

m−1
∑

h=0

th

h!

)

=

(

∞
∑

n=0

1

2
HEn,m(x, y)

tn

n!

)(

et −

m−1
∑

h=0

th

h!

)

+

(

∞
∑

n=0

1

2
HEn,m(x, y)

tn

n!

)
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Now,

tm

m!
ext+yt2

∞
∑

n=0

Bm,n(x)
tn

n!
=

(

∞
∑

n=0

1

2
HEn,m(x, y)

tn

n!

)

tm

m!
ext

+

(

∞
∑

n=0

1

2
HEn,m(x, y)

tn

n!

)(

∞
∑

n=0

Bm,n(x)
tn

n!

)

,

which can be written as

tm

m!

(

ext+yt2

∞
∑

n=0

Bm,n(x)
tn

n!
− ext

∞
∑

n=0

1

2
HEn,m(x, y)

tn

n!

)

=

(

∞
∑

n=0

1

2
HEn,m(x, y)

tn

n!

)(

∞
∑

n=0

Bm,n(x)
tn

n!

)

.

Using Cauchy product rule, we get

tm

m!

∞
∑

n=0





n
∑

j=0

(

n

j

)(

Bm,j(x)Hn−j(x, y) −
1

2
HEm,j(x, y)xn−j

)





tn

n!

=
∞
∑

n=0





n
∑

j=0

1

2

(

n

j

)

HEm,j(x, y)Bm,n−j(x)





tn

n!

=

∞
∑

n=m





n
∑

j=0

1

2

(

n

j

)

HEm,j(x, y)Bm,n−j(x)





tn

n!
.

Here, we avoided the zero terms on the right-hand side. Thus

1

m!

∞
∑

n=0





n
∑

j=0

(

n

j

)(

Bm,j(x)Hn−j(x, y) −
1

2
HEm,j(x, y)xn−j

)





tn+m

n!

=
∞
∑

n=0









n+m
∑

j=0

1

2

(

n + m

j

)

HEm,j(x, y)Bm,n+m−j(x)





tn+m

(n + m)!



 .

Equating the coefficients of equal powers of t on both sides, we get the desired result. �

Theorem 2.9. For non-negative integer n and m, we have

2

n
∑

j=0

(

n

j

)

HEm+1,n−j(x, y)zj −
2n

m + 1

n−1
∑

j=0

(

n − 1
j

)

Em,n−j−1(z)Hj(x, y)

=

n
∑

j=0

(

n

j

)

HEm+1,n−j(x, y)Em,j(z). (2.19)

Proof. From the definition (2.1), we have

2tm+1

(m + 1)!
ext+yt2

=

(

∞
∑

n=0

HEm+1,n(x, y)
tn

n!

)



et + 1 −
m−1
∑

j=0

tj

j!
−

tm

m!




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=



et + 1 −

m−1
∑

j=0

tj

j!





(

∞
∑

n=0

HEm+1,n(x, y)
tn

n!

)

−
tm

m!

∞
∑

n=0

HEm+1,n(x, y)
tn

n!

Now,

2tm+1

(m + 1)!
ext+yt2

∞
∑

n=0

Em,n(z)
tn

n!

=
2tm

m!
ezt

∞
∑

n=0

HEm+1,n(x, y)
tn

n!
−

tm

m!

∞
∑

n=0

HEm+1,n(x, y)
tn

n!

∞
∑

n=0

Em,n(z)
tn

n!

2n

m + 1

∞
∑

n=1





n−1
∑

j=0

(

n − 1
j

)

Em,n−j−1(z)Hj(x, y)





tn

n!

= 2

∞
∑

n=1





n
∑

j=0

(

n

j

)

HEm+1,n−j(x, y)zj





tn

n!

−

∞
∑

n=1





n
∑

j=0

(

n

j

)

HEm+1,n−j(x, y)Em,j(z)





tn

n!
.

Comparing the coefficients of equal powers of t on both sides, we obtain the desired result. �

3. Summation formulae for Hermite-based truncated Euler polynomials

In this section, we prove the following results involving truncated Euler polynomials and Hermite
polynomials.

Theorem 3.1. The following implicit summation formula holds true:

HEm,k+l(z, y) =

k,l
∑

n,p=0

k!l!(z − x)n+p
HEm,k+l−p−n(x, y)

(k − n)!(l − p)!n!p!
. (3.1)

Proof. Replacing t by t + u and rewrite the generating function (2.1) as









2tm

m!

et+u + 1 −
m−1
∑

h=0

(t+u)h

h!









ey(t+u)2

= e−x(t+u)
∞
∑

k,l=0

HEm,k+l(x, y)
tk

k!

ul

l!
. (3.2)

Replacing x by z in the above equation and equating the resulting equation to the above equation, we
get

e(z−x)(t+u)
∞
∑

k,l=0

HEm,k+l(x, y)
tk

k!

ul

l!
=

∞
∑

k,l=0

HEm,k+l(x, y)
tk

k!

ul

l!
. (3.3)

On expanding exponential function (3.3) gives

∞
∑

N=0

[(z − x)(t + u)]N

N !

∞
∑

k,l=0

HEm,k+l(x, y)
tk

k!

ul

l!
=

∞
∑

k,l=0

HEm,k+l(x, y)
tk

k!

ul

l!
, (3.4)

which on using formula [ [26],p.52(2)]

∞
∑

N=0

f(N)
(x + y)N

N !
=

∞
∑

n,m=0

f(n + m)
xn

n!

ym

m!
, (3.5)
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in the left hand side becomes

∞
∑

n,p=0

(z − x)n+p

n!p!
tnup

∞
∑

k,l=0

HEm,k+l(x, y)
tk

k!

ul

l!
=

∞
∑

k,l=0

HEm,k+l(z, y)
tk

k!

ul

l!
. (3.6)

Now replacing k by k − n, l by l − p and using the lemma [ [26] ,p.100(1)] in the left hand side of (3.6),
we get

∞
∑

n,p=0

∞
∑

k,l=0

(z − x)n+p

n!p!
HEm,k+l−n−p(x, y)

tk

(k − n)!

ul

(l − p)!
=

∞
∑

k,l=0

HEm,k+l(z, y)
tk

k!

ul

l!
. (3.7)

Finally on equating the coefficients of the like powers of t and u in the above equation, we get the required
result.
�

Remark 3.2. By taking l = 0 in equation (3.1), we immediately deduce the following corollary.

Corollary 3.3. The following implicit summation formula holds true:

HEm,k(z, y) =

k
∑

n=0

(

k

n

)

(z − x)n
HE

[α,m−1]
m,k−n (x, y). (3.8)

Remark 3.4. On replacing z by z + x and setting y = 0 in Theorem 3.1, we get the following result
involving truncated Hermite-Euler polynomials of one variable

HEm,k+l(z + x) =

k,l
∑

n,m=0

k!l!(z)n+m
HEm,k+l−m−n(x)

(k − n)!(l − m)!n!m!
, (3.9)

whereas by setting z = 0 in Theorem 3.1, we get another result involving truncated Hermite-Euler
polynomials of one and two variables

HEm,k+l(y) =

k,l
∑

n,m=0

k!l!(−x)n+m
HEm,k+l−m−n(x, y)

(k − n)!(l − m)!n!m!
. (3.10)

Theorem 3.5. The following implicit summation formula holds true:

HEm,n(x + z, y + u) =

n
∑

m=0

(

n

m

)

HEm,n−s(x, y)Hs(z, u). (3.11)

Proof. We replace x by x + z and y by y + u in (2.1), use (1.2) and rewrite the generating function as

∞
∑

n=0

HEm,n(x + z, y + u)
tn

n!
=









2tm

m!

et + 1 −
m−1
∑

h=0

th

h!









e(xt+yt2

ezt+ut2

=
∞
∑

n=0

HEm,n(x, y)
tn

n!

∞
∑

s=0

Hs(z, u)
ts

s!
.

Now replacing n by n − s and comparing the coefficients of t, we get the result (3.11).
�
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Theorem 3.6. The following implicit summation formula holds true:

HEm,n(y, x) =

[ n

2
]

∑

k=0

Em,n−2k(y)
xk

(n − 2k)!k!
. (3.12)

Proof. We replace x by y and y by x in equation (2.1) to get

∞
∑

n=0

HEm,n(y, x)
tn

n!
=

∞
∑

n=0

Em,n(y)
tn

n!

∞
∑

k=0

xkt2k

k!
. (3.13)

Now replacing n by n − 2k and comparing the coefficients of t, we get the result (3.12).
�

Theorem 3.7. The following implicit summation formula holds true:

∞
∑

n=0

HEm,n(x, y) =

n
∑

r=0

(

n

r

)

HEm,n−r(x, y). (3.14)

Proof. From (2.1), we have

∞
∑

n=0

HEm,n(x + 1, y)
tn

n!
−

∞
∑

n=0

HEm,n(x, y)
tn

n!

=
2tm

m!

et + 1 −
m−1
∑

h=0

th

h!

ext+yt2

(et − 1)

=

∞
∑

n=0

HEm,n(x, y)
tn

n!

∞
∑

r=0

tr

r!
−

∞
∑

n=0

HEm,n(x, y)
tn

n!
.

Comparing the coefficients of t in both sides, we get the result.
�

4. Conclusion

In this paper, a new class of Hermite-based truncated Euler polynomials are introduced and their
properties are explored using various generating function methods. Several elementary properties and
implicit summation formulae are established for these polynomials. The generalization of these results
may lead to other interesting results, which may be helpful to the theory of fractional calculus. Sev-
eral techniques and methods are used which are applicable to the other fields of mathematics. The
applicability of these techniques to the these polynomials can also be explored. These aspects will be
undertaken in further investigation, as these results can be extended to Gould-Hopper-based truncated
Euler polynomials defined by the following generating function:

2tm

m!

et + 1 −
m−1
∑

h=0

th

h!

ext+ytr

=

∞
∑

n=0

gE(r)
n,m(x, y)

tn

n!
. (4.1)

Clearly, when r = 2 equation (4.1) immediately gives the known result (2.1).
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