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Some Calculations on Kaluza-Klein Metric with Respect to Lifts in Tangent Bundle

Hasim Cayir

ABSTRACT: In the present paper, a Riemannian metric on the tangent bundle, which is another generalization
of Cheeger-Gromoll metric and Sasaki metric, is considered. This metric is known as Kaluza-Klein metric in
literature which is completely determined by its action on vector fields of type X and YV. We obtain the
covarient and Lie derivatives applied to the Kaluza-Klein metric with respect to the horizontal and vertical
lifts of vector fields, respectively on tangent bundle T'M.
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1. Introduction

The research in the topic of the differential geometry of the tangent bundle TM of a Riemannian
manifold (M, g) started with the work of S. Sasaki in 1958, [14]. Although the Sasaki metric is naturally
defined, it has been shown in many papers that a lot of geometric properties (like locally symmetricity,
having constant scalar curvature, being Einstein manifold etc.) of tangent bundle with the Sasaki metric
can not be ensured unless the base manifold is local flat. Recall that when the base manifold is local
flat, the tangent bundle with the Sasaki metric is local flat too. This rigidity leads mathematicians
to search for other metrics. One of them is Cheeger-Gromoll metric [5]. For geometric properties of
Cheeger-Gromoll metric, see [2,8,15,16]. Later, some different metrics are defined with generalize both
of Sasaki and Cheeger-Gromoll metrics. For these metrics, we refer to [3,7,9,11].

In the present paper, a Riemannian metric on the tangent bundle, which is another generalization of
Cheeger-Gromoll metric and Sasaki metric, is considered. This metric is known as Kaluza-Klein metric
in literature which is completely determined by its action on vector fields of type X and YV'. We obtain
the covarient and Lie derivatives applied to the Kaluza-Klein metric with respect to the horizontal and
vertical lifts of vector fields, respectively.

Let TM be the tangent bundle over an n—dimensional manifold M and m« the natural projection
7 : TM — M. Suppose the manifold M be covered by a system of coordinate neighborhoods (U, x?),
where (2%), i = 1,...,n is a local coordinate system defined in the neighborhood U. Let (u') be the
Cartesian coordinates in each tangent space T,M at P € M with respect to the natural base {% p},
P being an arbitrary point in U whose coordinates are (z*). Then we can introduce local coordinates
(z%,u') on open set 7~ 1(U) C TM. We call them induced coordinates on 7= 1(U) from (U,z'). The
projection 7 is represented by (z%,u’) — (2%). The indices I, .J,... run from 1 to 2n, the indices 7, j...
run from n + 1 to 2n. Summation over repeated indices in always implied.

Let X = X* 6‘2,; be the local expression in U of a vector field X on M. Then the vertical lift XV and
the horizontal lift X of X are given, with respect to the induced coordinates, by

XV =Xxio, (1.1)
X" = X'9; — wTi X", (1.2)

where 0; = %, O = %i and I‘é-k are the coefficients of the Levi-Civita connection V of g [17].
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In particular, we have the vertical spray u" and the horizontal spray u’ on TM defined by
u’ =u(0;)V =0, u = ' (0;)7 = 'S,
where §; = 0; — u/ I‘?iag. u" is also called the canonical or Liouville vector field on T'M.

For any (z,u) € TM, the energy density on T'M in direction of u is defined to be ¢t = g(u,u)/2. Let
f be any smooth function of R to R, we have

XH(f(1)) =0 (1.3)
XV(f1) = f'(t)g(X,u) (1.4)
and in particular, we get
X2ty =0 (1.5)
XV(t) = g(X,u). (1.6)

Let X, Y and Z be any vector fields on M, then we have

XA (g(Y,u) = g((VxY),u), (1.7)
XV(g(Y,u)) = g(X,Y), (1.8)
XM ((g(v,2)Y) = X(9(Y, 2)) (1.9)
XV ((g(v, 2)") =0 [1] (1.10)

Proposition 1.1. Let X and Y be any vector fields on a Riemannian manifold (M, g), we have [17]

XH YR = X, V)" —(R(X,Y)u), (1.11)
[XHvYV] = (VXY)Vf
[vayv] = 0

where R is the Riemannian curvature tensor of g defined by
R(Xa Y) = [VX,VY] _V[X,Y]' (112)

Definition 1.2. [4] Let (M, g) be a Riemannian manifold. The Kaluza-Klein metric KX g is defined for
any vector fields X and Y with these three equations below:

KRg(XT Y™y = cg(X,Y), (1.13)
KEgx"yV)y = o,
KRgXV, YY) = ag(X,Y) +bg(X,u)g(Y,u)

where a, b and ¢ are smooth functions of t over [0,4o00] and t = g(u,u)/2.
Remark 1.3. Special cases of the Kaluza-Klein metric are listened below:

i) If a(t) = b(t) = (1+2t)!, ¢ = 1, we get the Cheeger-Gromoll metric ““g,
i) If a(t) = 1, b(t) = 0, ¢ = 1, we get the Sasaki metric °g,

iti) If a(t) = b(t), ¢ = 1, we get metric g, which depends on one parameter,
iv) If ¢ = 1, we get the metric g, which depend on two parameters.
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2. Main Results

Definition 2.1. Let M be an n—dimensional differentiable manifold of class C*°. Differantial transfor-
mation, defined by D = Lx, is called as Lie derivation with respect to vector field X if

Lxf = Xf, Vfe3pM), (2.1)
LxY = [X,Y], VX,Y € S§(M).

[X,Y] is called by Lie bracked. The Lie derivative Lx F of a tensor field F of type (1,1) with respect to
a vector field X s defined by [17]

(LxF)Y = [X,FY] — FIX,Y].
Proposition 2.2. For any X,Y € S§(M,,) [17]

D [xXV, v = (X, Y]V = (VxY)V = —(VyX)Y, (2.2)
i) (X9, YH] = [X,Y]" —~(LxY),
i) [XT,YV] = [X, Y]V + (VyX)Y,
w) [XH YH] = [X, Y] —4R(X,Y),

where R denotes the curvature tensor of the affine connection V.

Theorem 2.3. Let XX g be Kaluza-Klein metric is defined by (1.13) and Lx the operator Lie derivation
with respect to X. From (1.11),(2.2) and Definition (2.1), we get the following results

i) (Lxv "Fg) ¥V, 2") a' (t)g(X,u)g(Y, Z) + V' (t)g(X,u)g(Y,u)g(Z, u)
+b9(X,Y)g(Z,u) + bg(Y,u)g(X, Z),

”) (LXV KKQ)(YVv ZH) = ag(Y, (@ZX)) + bg(Y, u)g((@ZX),u),
iti) (Lxv *Xg) (Y™, 2V) = ag((VyX),Z)+bg((Vy X),u)g(Z,u),
iv) (Lyx "¥g)(YV,2Y) = a(Vxg)(Y,Z)+bg(VxY),u)g(Z,u) + bg(Y,u)g((Vx Z),u)

~bg((VxY),u)g(Z,u) = bg(Y,u)g((Vx Z), u)
v) (Lyn "Rq)(Y™,ZY) = ag((R(X,Y)u), Z) + bg((R(X,Y), u)g(Z, u),

vi) (Lxv ®Fg)(¥ ", 2") = d(t)g(X, u)g(Y, Z),

’Uii) (LXH KKQ)(YV7 ZH) ag(Y7 (R(Xv Z)u) + bg(Y7 u)g(R(X, Z)u’ u),

viii) (Lyn *¥g) (Y™, Z) c((Lxg)(Y, 2)),

where the vertical lift XV € S{(TM) of X € 39(M) and the horizontal lifts X# € S{(TM) of
X € 3§(M) defined by (1.1) and (1.2), respectively.

Proof. 1)
(Lxv *Fq)(YV,2") = Lyxv ®Fg(YV,2V) 5 g(LxvYV,2V) K5 g(YV, LxvZ")
XV KK vV, 7V
XY (ag(Y, Z) +bg(Y,u)g(Z, u))
= d()g(X,u)g(Y,Z) + V' (t)g(X,u)g(Y,u)g(Z,u)
+bg(X,Y)g(Z,u) + bg(Y,u)g(X, Z)
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ii)
(Lxv "¥g) YV, Z") = Lyxv ®¥g(yV, Z") 5K g(LxvYV, Z2") KK g(vV, Lyv Z")
_KKg(va [Xa Z]V - (VXZ)V)
—EEGYV,(VzX)Y)
= ag(Y,(VzX)) +bg(Y,u)g((VzX),u)

iii)
(Lxv ®*Fq)(Y™,2Y) = Lyxv ®Rg(Y",27) RE g(LxvY ™, 2V) K8 gV, LxvZY)
= (XYY - (VxY)V -, 2Y)
= KEg(=(VyX)", 2Y)
= ag((VyX),Z) +bg((Vy X),u)g(Z,u)

i)

(Lxn "¥g)(YV,2Y) = Lxu "Fg(yV,2") 5K g(LxuYV,2") 5K g(YV LxuZ")

= X"(ag(Y,2) +bg(Y,u)g(Z,u)) +*5 g(Lyv X", 2V)
+EEG(yV, Lyv XH)

= aX(9(Y,2)) +bg(VxY),u)g(Z,u) + bg(Y,u)g((Vx Z), u)
+HEEG(—(VxY)V, Z2V) 5K g(vV, = (Vx 2)Y)

= aX(9(Y,2)) +bg(VxY),u)g(Z,u) + bg(Y,u)g((Vx Z), u)
_KKg((@Xy)V7 ZV) _ KK g(YV, (@XZ)V)

= aX(g(Y,2)) + bg(VxY),u)g(Z,u) + bg(Y,u)g((Vx Z), u)
—ag((VxY),Z) = bg((VxY),u)g(Z,u) — ag(Y,(Vx 2))
—bg(Y,u)g((Vx Z),u)

= a((Vxg)(Y, Z) + bg(VxY),u)g(Z,u) + bg(Y,u)g((Vx Z),u)
—bg((VxY),u)g(Z,u) — bg(Y,u)g((Vx Z), u)

(Lxu KRg)(YH,2V) = Lxn ®Fg(Y",2V) K8 g(LxnY ™, 2V) KK gV " LxuZ")
= _KKQ([Xv Y]H - (R(Xv Y)u)v’ ZV) +KK g(YH’ LZVXH)
= +(RX, Y)Y, Z27) K g(vH (VX 2)")
= ag((R(X,Y)u),Z) + bg((R(X,Y),u)g(Z,u)

v1)
(Lxv "Fg)Y", 2"y = Lyv KKg(Y", Z27) KK g(Lyv YT, 27 KK g7 Lyv Z™)

= XY(eg(Y,2)) +" K g(Vy X)V, Z2%) 55 g(v ¥, (V2 X))
= c'(t)g(X,u)g(Y,Z)

vit)

(Lxn "Fg) (Y'Y, 2™) Lyn ®Kg(yV, 21) K5 g(LxnYV, ZM") KK (Y'Y, Lxn Z")
= FRg(Lyv XM, 27) KR (VY (X, 21" = (R(X, Z)u)")
KKQ(_(VXY)V’ ZH) KK g(YV’ [Xv Z]H) +KK g(YV7 (R(Xv Z)u)v)

= ag(Y,(R(X, Z)u) + bg(Y,u)g(R(X, Z)u,u)
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viii)
(Lxun KRg) (YT, 2M) = Lyxw KRg(YH, 21) K8 g(LynY ™, Z27) HE g(YH, LynZ™)
= X(eg(Y,2)) =" g(IX, Y] — (R(X,Y)uw)", Z2")
KKQ(YHv[X Z]H (R(X, Z)u)")
= X(g(Y,2)) -"F g(IX, Y] ZM) KR gy (X, Z17)
cX(9(Y,Z)) — cg([X,Y], Z) — cg(Y, [X, Z])
= ((Lxg)(Y,Z))

O

Definition 2.4. Let M be an n—dimensional diferentiable manifold. Differantial transformation of
algebra T M, defined by
D=Vx:T(M)—T(M), X cI(M)

is called as covariant derivation with respect to vector field X if
Vixygvt = fVxt+gVyt, (2.3)
Vxf = X[,
where Vf,g € SY(M), VX, Y € S§(M), Vt € S(M) (see [10], p.123).
On the other hand, a transformation defined by
Vi SH(M) x S§(M) — (M)
is called as an affin connection (see for details [10,13]).
Proposition 2.5. The horizontal lift of an affine connection V in M to T (M), denoted by V. defined
by
viyY = o, V& YH =0, (2.4)
VELYY = (VxY)V, VE.YVH = (VxY)H
for any X,Y € S§(M) [17].

Theorem 2.6. Let ““g be Kaluza-Klein metric, is defined by (1.13) and the horizontal lift v of a
symetric affine connection V in M to T(M). From (2.4) and Definition (2.4), we get the following results

i) (Vv ") (Y'Y, 2") = d'()g(X,u)g(Y,Z) + V' (t)g(X, u)g(Y,u)g(Z,u)
+bg(X,Y)g(Z,u) + bg(Y,u)g(X, Z),

i) (Vin ") (YV,2V) = a((Vxg)(Y.2)),
iit) (VE, KK H ZH) = dg(X,u)g(Y, Z),
iv) (Via g (Y",2%) = «((Vxg)(Y, 2)),
v) (VR K vV, 21 = o,
vi) (Vv *Fg(v,2¥) = o,
vit) (Vs KEg)(YH,ZV) = o,

viii) (Vi *Xg)(YV, 2" = o,
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where the vertical lift XV € S§(TM) of X € 39(M) and the horizontal lifts X# € S{(TM) of
X € S§(M) defined by (1.1) and (1.2), respectively.

Proof. 1)
(Vxv (v, 2%) = Vyv MgV, 27) KE g(Ve Y, 2V) KR g(vV Vi 2Y)
= XY(ag(Y,Z) + bg(Y,u)g(Z,u))
o (t)g(X,u)g(Y, Z) + b () g(X,u)g(Y,u)g(Z, u)
+bg9(X,Y)g(Z,u) + bg(Y,u)g(X, Z)
)
(Via KEqvV,2V) = VEa KEgvV,2V) KK g(viayV,2V) KK g(vV, Vi ZY)
= X"(ag(Y,Z) + bg(Y,u)g(Z,u)) =% g((VxY)",Z")
—KEgYV,(Vx2)")
= aXg(Y,Z) +bg(VxY),u)g(Z,u) + bg(Y,u)g((Vx Z),u)
—ag((VxY),Z) = bg((VxY),u)g(Z,u)
= a((Vxg)(Y,2))
iii)
(Viv KB, zH) = Vi, KEgyH zH) KK g((VE Y H), 27) KK gvH (Vi Z7))
= XV(ey(v,2))
= dg(X,u)g(Y,2)
iv)
(VXn (T, 27) = Vi Ky, 21 KK (VY T, 27) K (Y7 Vs ZT)
= X(cg(Y,2)) =5 g((Vx)T, 2T) K g(vT (Vx2)T)
= cXg(Y,Z) - cg((VxY),Z) — cg(Y,(Vx Z))
= ((Vxg)(Y,Z2))
v)
(Vv KE(Y", 2H) = Vi KRV, 27) —FE (VR YV, Z7) KR g(vV, Vi Z2T)
= Vv ", 21
= 0
Vi)
(Viv KK, Z2V) = Vi KEgvH, Z2V) KK g(vi Y H, 2V KK gy ? v ZY)
= Vv (v, 27)
= 0
vit)
(Vs KK (Y H.2Y) = Viu KEgvH 2V KK gV EayH, 2V) KK gy vz

= (VX)) Z2Y) R (YT (VX 2)Y)
=0
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vii7)
(Vi KKV, 27) = Vi KKV, 27) KK (YY), 27) KK GV (T 2"))
= ME((VxY)V, Z27) KR (Y, (Vx2))
= 0
O
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