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Results of Singular Direchelet Problem Involving the p(x)-laplacian with Critical Growth

Hassan Belaouidel, Mustapha Haddaoui and Najib Tsouli

abstract: In this paper, we study the existence and multiplicity of solutions for Dirichlet singular elliptic
problems involving the p(x)-Laplace equation with critical growth. The technical approach is mainly based
on the variational method combined with the genus theory.
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1. Introduction

In this work, we want to study the following nonlinear Dirichlet problem

{

− div(|∇u|p(x)−2∇u) − a(x)|u|p(x)−2u = µ |u|r(x)−2u
|x|s(x) + f(x, u) in Ω

u = 0 on ∂Ω,
(1.1)

where 0 ∈ Ω is an open bounded subset of R
N(N ≥ 2), with smooth boundary ∂Ω, µ > 0 are a reals

parameters, f : Ω×R → R is of Carathéodory function which satisfies somes growth conditions, p ∈ C+(Ω)
with 1 < p− := inf

Ω
p(x) ≤ p+ := sup

Ω

p(x) < N , r ∈ C+(Ω) with 1 < r− := inf
Ω

r(x) ≤ r+ := sup
Ω

r(x) < N

and s ∈ C+(Ω) with 1 < s− := inf
Ω

s(x) ≤ s+ := sup
Ω

s(x) < N .

The study of various mathematical problems with variable exponent growth condition has been re-
ceived considerable attention in recent years, we can for example refer to [9,15,20]. This great interest
may be justified by their various physical applications. In fact, there are applications concerning image
restoration [7], dielectric breakdown, electrical resistivity and polycrystal plasticity [3,4] and continuum
mechanics [2].

The study of differential equations and variational problems involving the p(x)-Laplace operator
−∆p(x)u := − div(|∇u|p(x)−2∇u), which is a natural generalization of the p-Laplace operator. The p(x)-
Laplacian operator possesses more complicated nonlinearities than the p-Laplacian operator, mainly due
to the fact that it is not homogeneous.

In the last decades, several authors have focused on Quasilinear elliptic problems involving the Hardy
potential driven by the p-Laplacian. The main interest of this kind of problems is the presence of the
singular potential 1

|x|s , 0 ≤ s ≤ p, 1
|x|s relating to the Hardy inequality and this equation arise in the

context of geophysical and industrial contents; see Callegari and Nachman [6].
In this context, with the critical Sobolev-Hardy exponent, we mention the paper of N. Ghoussoub

and C. Yuan [16] studied the following elliptic problem

{

− div(|∇u|p−2∇u) = µ |u|q−2u
|x|s + λ|u|r−2u in Ω

u = 0 on ∂Ω,
(1.2)
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where λ, µ > 0 and f verified some conditions. By variational methods, in [ [16],Theorem 8.1] are consider
the problem ((1.2)) with the critical Sobolev-Hardy exponent and with the critical Sobolev exponent
proved the existence of solutions under somes conditions but in [ [16],Theorem 10.1] under condition
1 < p ≤ q < p∗(s), r = p∗ are obtained some results under differ cases of the problem ((1.2)).

When p = 2, A. Ferrero and F. Gazzola [13] with the critical Sobolev exponent are studied ((1.2))
with the assumptions of perturbed fonctional g(x, s) and proved the result when, roughly speaking, g(x, s)
stays below λ1s in a neighborhood of s = 0.

Under p > 1, Y. Li, Q. Guo and P. Niu [17] are investigated the quasilinear elliptic equations with
Dirichlet boundary conditions and combined critical Sobolev–Hardy terms on bounded smooth domains
and proved the existence and multiplicity of solutions by employed Ekeland’s variational principle.

If the singular problem is driven by p(x)-laplacian operator, we refer to [18] and [21] where further
bibliographical references can be found. R. M. Khanghahia, A. Razania [18] are considered the following
problem

{

− div(|∇u|p(x)−2∇u) + |u|s−2u
|x|s = λf(x, u) in Ω

u = 0 on ∂Ω,
(1.3)

where Ω is an open bounded subset of RN (N ≥ 2), with smooth boundary and p ∈ C+(Ω) with

1 < p− := inf
Ω

p(x) ≤ p+ := sup
Ω

p(x) < +∞.

where λ > 0 is a real parameter and f : Ω×R → R is of Carathéodory function which satisfies Ambrosetti-
Rabinowitz’s type condition, and are proveded the existence of two weak solutions .

With the critical Sobolev-Hardy exponent, Y. Mei, F. Yongqiang and L. Wang [21] are considered
the following p(x)-Laplacian problem

{

− div(|∇u|p(x)−2∇u) + |u|p(x)−2u = h(x)|u|p∗

s(x)−2u
|x|s(x) + f(x, u) in Ω

u = 0 on ∂Ω,
(1.4)

where 0 ∈ Ω is an open bounded subset of RN (N ≥ 2), with smooth boundary and p ∈ C+(Ω) Lipschitz
and radially symmetric on Ω, s(x) is Lipschitz and radially symmetric on Ω with

1 < p− := inf
Ω

p(x) ≤ p+ := sup
Ω

p(x) < N,

0 ≤ s(x) ≪ p(x),

and f : Ω × R → R is of Carathéodory function which satisfies somes conditions.
In this paper, the author’s inspired of the of X.Fan [10] and based on the Theorem 2.10 and 2.11

established a principle of concentration compactness and obtained the existence of solutions for the
problem (1.4).

Motivated by this interest and inspired by the works cited above, the main contribution of the
manuscript is the existence and multiplicity of sulutions for ((1.1)) under the assumptions that the
nonlinearity g is superlinear and satisfies some subcritical growth conditions.

The aim of the article is to consider the problem ((1.1)) and we also considerably generalize the results
in [ [16],Theorem 10.1] and the results in [ [18],Theorem 2.2] under assumptions

f(x, u) = g(x, u) + λ|u|q(x)−2u

where A = {q(x) = p∗(x)} is nonempty and g : Ω × R → R is of Carathéodory function which satisfies
somes growth conditions.

The difficulty in our work, is due to the lack of compactness of the embedding W
1,p(x)
0 (Ω) →֒ Lp∗(x)(Ω)

and the Palais–Smale condition for the corresponding energy functional could not be checked directly.
To deal with this difficulty, we use a version of the concentration compactness lemma due to Lions for
variable exponents [5].

Throughout this work, we make the following assumptions on the Dirichlet problem (1.1):



Results of Singular Direchelet Problem Involving the p(x)-laplacian with Critical Growth 3

(H1)

1 < s(x) < p− < N, (1.5)

(H2)

1 < p+ < r− < p∗
s(x), (1.6)

where by [ [10], Remark 2.1] we defined

p∗
s(x) = p(x)

N − s(x)

N − p(x)
.

(H3)

p+ < q− := inf
Ω

q(x) ≤ q(x) ≤ p∗(x), (1.7)

where

p∗(x) =

{

Np(x)
N−p(x) if p(x) < N,

+∞ if p(x) ≥ N.

(A1) a(x) ∈ L∞(Ω) and there exists α > 0 such that

∫

Ω

(

|∇u|p(x)

p(x)
− a(x)

|u|p(x)

p(x)

)

dx ≥ α

∫

Ω

|u|p(x)

p(x)
dx, ∀u ∈ W

1,p(x)
0 (Ω)

(A2) p(x) = p+ for all x in Γ+ := {x ∈ Ω : a(x) > 0};

(G1) g ∈ C(∈ Ω × R,R), odd with respect to t and

g(x, t) = o(|t|p(x)−1), |t| → 0 uniformly x in Ω

g(x, t) = o(|t|q(x)−1), |t| → +∞ uniformly x in Ω

(G2) G(x, t) ≤ 1
p+ g(x, t) for all t > 0 and a.e in Ω, where G(x, t) =

∫ t

0
gx, s)ds.

to illustrate these conditions, you can consult example 1.1 in [19].

Our main results are the following

Theorem 1.1. Assume that (A1) − (A2),(G1) − (G2) hold. Then, there exist a sequence (λk) ⊂ (0, +∞)
with λk > λk+1, such that for any λ ∈ (λk+1, λk], problem (1.1) has at least k pairs of nontrivial solutions.

The remainder of this paper is organized as follows, in Section 2 we state some basic properties of
the variable exponent Lebesgue-Sobolev in order to solve our problem, finally, in Section 3 we prove the
main results of this work.
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2. Preliminaries

In the sequel, let p(x) ∈ C+(Ω), where

C+(Ω) =
{

h : h ∈ C(Ω), h(x) > 1 for any x ∈ Ω
}

.

The variable exponent Lebesgue space is defined by

Lp(x)(Ω) = {u : Ω → R measurable and

∫

Ω

|u(x)|p(x) dx < +∞}

furnished with the Luxemburg norm

|u|Lp(x)(Ω) = |u|p(x) = inf{σ > 0 :

∫

Ω

|
u(x)

σ
|p(x) dx ≤ 1},

Remark 2.1. Variable exponent Lebesgue spaces resemble to classical Lebesgue spaces in many respects,
they are separable Banach spaces and the Hölder inequality holds. The inclusions between Lebesgue
spaces are also naturally generalized, that is, if 0 < mes(Ω) < ∞ and p, q are variable exponents such
that p(x) < q(x) a.e. in Ω, then there exists a continuous embedding Lq(x)(Ω) →֒ Lp(x)(Ω).

The variable exponent Sobolev space is defined by

W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)}

equipped with the norm
‖u‖W 1,p(x)(Ω) = |u|Lp(x)(Ω) + |∇u|Lp(x)(Ω).

Denote by W
1,p(x)
0 (Ω) the closure of C∞

0 (Ω) in W 1,p(x)(Ω).

Proposition 2.2. [11,12] The spaces Lp(x)(Ω) and W 1,p(x)(Ω) are separable, uniformly convex, reflexive
Banach spaces. The conjugate space of Lp(x)(Ω) is Lq(x)(Ω), where q(x) is the conjugate function of p(x);
i.e.,

1

p(x)
+

1

q(x)
= 1,

for all x ∈ Ω. For u ∈ Lp(x)(Ω) and v ∈ Lq(x)(Ω) we have

1.
∣

∣

∣

∫

Ω

u(x)v(x)dx
∣

∣

∣
≤

( 1

p−
+

1

q−

)

|u|p(x)|v|q(x).

2. If p1, p2 ∈ C+(Ω), p1(x) ≤ p2(x) for any x ∈ Ω Lp2(x) →֒ Lp1(x) and the embedding is continuous.

Proposition 2.3 ( [23]). Let ρ(u) =
∫

Ω |u|p(x)dx. For u, un ∈ Lp(·)(Ω), we have

(1) |u|p(·) < (=; >); 1 ⇔ ρ(u) < (=; >) 1;

(2) |u|p(·) > 1 ⇒ |u|p
−

p(·) ≤ ρ(u) ≤ |u|p
+

p(·);

(3) |u|p(·) < 1 ⇒ |u|p
+

p(·) ≤ ρ(u) ≤ |u|p
−

p(·);

(4) |un|p(·) → 0 ⇔ ρ(un) → 0;

(5) |un|p(·) → ∞ ⇔ ρ(un) → ∞.

Moreover, if h1, h2, h3 : Ω → (1, ∞) are Lipschitz continuous functions such that 1
h1

+ 1
h2

+ 1
h3

= 1, then

for any u ∈ Lh1(x)(Ω), v ∈ Lh2(x)(Ω), w ∈ Lh3(x)(Ω), the following inequality holds see [9, Proposition
2.5]

∫

Ω

|uvw|dx ≤
( 1

h−
1

+
1

h−
2

+
1

h−
3

)

|u|h1(x)|v|h2(x)|w|h3(x). (2.1)
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Proposition 2.4. [8] Let p(x) and q(x) be measurable functions such that p(x) ∈ L∞(Ω) and 1 ≤
p(x)q(x) ≤ ∞, for a.e. x ∈ Ω. Let u ∈ Lq(x)(Ω), u 6= 0. Then

|u|p(x)q(x) ≤ 1 ⇒ |u|p
+

p(x)q(x) ≤ ||u|p(x)|q(x) ≤ |u|p
−

p(x)q(x),

|u|p(x)q(x) ≥ 1 ⇒ |u|p
−

p(x)q(x) ≤ ||u|p(x)|q(x) ≤ |u|p
+

p(x)q(x).

In particular if p(x) = p is a constant, then

| |u|p|q(x) = |u|ppq(x).

Proposition 2.5 ( [12]). In W
1,p(x)
0 (Ω) the Poincaré inequality holds; that is, there exists a positive

constant C0 such that

|u|Lp(x)(Ω) ≤ C0|∇u|Lp(x)(Ω), ∀u ∈ W
1,p(x)
0 (Ω).

So, |∇u|Lp(x)(Ω) is a norm equivalent to the norm ‖u‖ in the space W
1,p(x)
0 (Ω). We will use the

equivalent norm in the following discussion and write ‖u‖p = |∇u|Lp(x)(Ω) for simplicity.

Proposition 2.6. [11,12] Assume that the boundary of Ω possesses the cone property and p, q ∈ C+(Ω)
such that q(x) ≤ p∗(x) (q(x) < p∗(x)) for all x ∈ Ω, then there is a continuous (compact) embedding

W 1,p(x)(Ω) →֒ Lq(x)(Ω),

We write

I(u) =

∫

Ω

1

p(x)
|∇u|p(x) dx.

Proposition 2.7 ( [12]). The functional I : X → R is convex. The mapping I ′ : X → X∗ is a strictly
monotone, bounded homeomorphism, and is of (S+) type, namely

un ⇀ u and lim sup
n→+∞

I ′(un)(un − u) ≤ 0 implies un → u,

where X = W
1,p(x)
0 (Ω), X∗ is the dual space of X.

Let us now consider the weighted variable exponent Lebesgue space. Let a measurable function
c : Ω → R. Define

L
p(x)
c(x)(Ω) = {u : Ω → R measurable and

∫

Ω

c(x)|u(x)|p(x) dx < +∞}

furnished with the Luxemburg norm

|u|
L

p(x)

c(x)
(Ω)

= |u|(p(x),c(x)) = inf{σ > 0 :

∫

Ω

c(x)|
u(x)

σ
|p(x) dx ≤ 1}.

Then, L
p(x)
c(x)(Ω) is a Banach space.

Proposition 2.8 ( [10]). Set ρ(u) =
∫

Ω b(x)|u(x)|p(x)dx. For u ∈ L
p(x)
b(x)(Ω), we have

(i) |u|(p(x),b(x)) < 1(= 1; > 1) ⇔ ρ(u) < 1(= 1; > 1);

(ii) If |u|(p(x),b(x)) < 1 ⇒ |u|p
+

(p(x),b(x)) ≤ ρ(u) ≤ |u|p
−

(p(x),b(x));

(iii) If |u|(p(x),b(x)) > 1 ⇒ |u|p
−

(p(x),b(x)) ≤ ρ(u) ≤ |u|p
+

(p(x),b(x)).
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Proposition 2.9 ( [10], Corollary 2.1). Assume that 0 ∈ Ω and the boundary of Ω) possesses the cone

property.Suppose that p, s, r ∈ C(Ω ), 0 ≤ s(x) ≤ N .If r satisfies the condition 1 ≤ r(x) ≤ N−s(x)
N p∗(x)

∀ x ∈ Ω then there is a compact embedding W 1,p(x)(Ω) → L
r(x)

|x|−s(x)(Ω).

Lemma 2.10 ( [1]). Let h, r ∈ L∞(Ω) with h(x) ≤ r(x) a.e in Ω and u ∈ Lr(x)(Ω). Then, |u|h(x) ∈

L
r(x)
h(x) (Ω) and

‖|u|h(x)‖
L

r(x)

h(x (Ω)
≤ ‖u‖h+

Lr(x)(Ω) + ‖u‖h−

Lr(x)(Ω)

or
‖|u|h(x)‖

L
r(x)
h(x (Ω)

≤ max
(

‖u‖h+

Lr(x)(Ω), ‖u‖h−

Lr(x)(Ω)

)

Lemma 2.11 ( [1]). For each z ∈ Ω and u ∈ Lp(x),

∫

Ω

|u(x)∇φj,ǫ(x − z)|p(x)dx ≤ C5

{

‖u‖p+

Lp∗(Bǫ(z)))
+ ‖u‖p−

Lp∗(x)(Bǫ(z))

}

Proposition 2.12 ( [21], Lemma 3.1). let {un} ⊂ L
r(x)

|x|−s(x)(Ω) be bounded, and un → u ∈ L
r(x)

|x|−s(x)(Ω)

a.e on Ω, then

lim
n→∞

∫

Ω

[

|un|r(x)

|x|s(x)
−

|un − u|r(x)

|x|s(x)

]

dx =

∫

Ω

|u|r(x)

|x|s(x)
dx

Proposition 2.13 ( [5], Theorem 1.1). Let q(x) and p(x) be two continuous functions such that

1 < inf
x∈Ω

p(x) ≤ sup
x∈Ω

p(x) < N and 1 ≤ q(x) ≤ p∗(x) in Ω.

Let {uj}j∈N be a weakly convergent sequence in W
1,p(x)
0 (Ω) with weak limit u, and such that:

• |∇uj |p(x) ⇀ µ weakly-* in the sense of measures.

• |uj |q(x) −→ ν weakly-* in the sense of measures.

Also assume that A = {x ∈ Ω: q(x) = p∗(x)} is nonempty. Then, for some countable index set I, we
have:

ν = |u|q(x) +
∑

i∈I

νiδxi
νi > 0 (2.2)

µ ≥ |∇u|p(x) +
∑

i∈I

µiδxi
µi > 0 (2.3)

Sν
1/p∗(xi)
i ≤ µ

1/p(xi)
i ∀i ∈ I. (2.4)

where {xi}i∈I ⊂ A and S is the best constant in the Gagliardo-Nirenberg-Sobolev inequality for variable
exponents, namely

S = Sq(Ω) := inf
φ∈C∞

0 (Ω)

‖|∇φ|‖Lp(x)(Ω)

‖φ‖Lq(x)(Ω)

.
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3. Proof of Main result

Associated with the problem (1.1), we have the energy functional I : X := W
1,p(x)
0 (Ω) → R defined

by

I(u) =

∫

Ω

|∇u(x)|p(x)

p(x)
dx −

∫

Ω

a(x)

p(x)
|u(x)|p(x)dx − µ

∫

Ω

|u(x)|r(x)

|x|s(x)r(x)
dx

− λ

∫

Ω

1

q(x)
|u(x)|q(x)dx −

∫

Ω

G(x, u)dx. (3.1)

By conditions (A1) − (G1), I ∈ C(X,R) with

I
′

(u)v =

∫

Ω

|∇u|p(x)−2∇u∇vdx −

∫

Ω

a(x)|u|p(x)−2uvdx

− µ

∫

Ω

|u(x)|r(x)−2u

|x|s(x)
vdx − λ

∫

Ω

|u(x)|q(x)−2uvdx −

∫

Ω

g(x, u)vdx (3.2)

Definition 3.1. We say that u ∈ X is a weak solution of problem (1.1) if

∫

Ω

|∇u|p(x)−2∇u∇vdx −

∫

Ω

a(x)|u|p(x)−2uvdx

= µ

∫

Ω

|u(x)|r(x)−2u

|x|s(x)
vdx + λ

∫

Ω

|u(x)|q(x)−2uvdx +

∫

Ω

g(x, u)vdx

for all v ∈ X

We recall a version of the Mountain Pass Theorem for even functional involving genus theory, which
will be used in proof of Theorem (1.1). For details of the proof, see [22] or [14] .

Theorem 3.1. Let E be an infinite dimensional Banach space with E = V ⊕ X, where V is finite
dimensional and let I ∈ C1(E,R) be a even function with I(0) = 0 and satisfying

(i) There are constants β, ̺ > 0 such that I(u) ≥ β for all u ∈ ∂B̺ ∩ X;

(ii) There is τ > 0 such that I satisfies the (P S)c) condition 0 < c < τ ;

(iii) For each finite dimensional subspace Ẽ ⊂ E, there is R = R(Ẽ) > 0 such that I(u) ≤ 0 for all
u ∈ Ẽ\BR(0).

Suppose V is k dimensional and V = span{e1, ..., ek}. For n ≥ k, inductively choose en+1 6∈ En :=
span{e1, ..., en}. Let Rn = R(En) and Dn = BRn

∩ En. Define

Gn := {h ∈ C(Dn, E) : h is odd and h(u) = u, ∀ ∂BRn
∩ En} .

Γj =
{

h
(

Dn\Y
)

: h ∈ Gn, n ≥ j, Y ∈ Σ, and γ(Y ) ≤ n − j
}

,

where
Σ = {Y ⊂ E\{0} : Y is closed in E and Y = −Y, }

and γ(Y ) is the genus of Y ∈ Σ. For each j ∈ N, let

cj = inf
k∈Γj

max
u∈K

I(u)

Then 0 < β ≤ cj ≤ cj+1 for j > k, and if j > k and cj ≤ τ , we have that cj is the critical value of I.
Moreover, if cj = cj+1 = · · · = cj+l = c < τ for j > k, then γ(Kc) ≥ l + 1, where

Kc = {u ∈ E : I(u) = c and I
′

(u) = 0}.
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In the sequel, we derive some results related to the above theorem and Palais-Smale compactness
condition.

Lemma 3.2. Assume that (A1) and (G1) hold. Then for each λ > 0, I satisfies condition (i) given in
Theorem (3.1).

Proof. . Let δ > 0. By (A1), we have

∫

Ω

|∇u(x)|p(x)

p(x)
dx −

∫

Ω

a(x)

p(x)
|u(x)|p(x)dx

=
1

δ + 1

(∫

Ω

|∇u(x)|p(x)

p(x)
dx −

∫

Ω

a(x)

p(x)
|u(x)|p(x)dx

)

+
δ

δ + 1

∫

Ω

(

|∇u(x)|p(x)

p(x)
dx −

∫

Ω

a(x)

p(x)
|u(x)|p(x)dx

)

=
1

δ + 1

∫

Ω

(

|∇u(x)|p(x)

p(x)
dx −

∫

Ω

a(x)

p(x)
|u(x)|p(x)dx

)

+
δ

δ + 1

∫

Ω

(

|∇u(x)|p(x)

p(x)
dx

)

−
δ

δ + 1

∫

Ω

a(x)

p(x)
|u(x)|p(x)dx

≥
α

δ + 1

∫

Ω

a(x)

p(x)
|u(x)|p(x)dx +

δ

δ + 1

∫

Ω

(

|∇u(x)|p(x)

p(x)
dx

)

−
δ‖a‖∞

(1 + δ)p−

∫

Ω

u(x)|p(x)dx

≥
δ

δ + 1

∫

Ω

(

|∇u(x)|p(x)

p(x)
dx

)

+
1

δ + 1

(

α

p+
−

δ‖a‖∞

p−

)
∫

Ω

u(x)|p(x)dx.

We can choose δ > 0 such that C0 := 1
δ+1

(

α
p+ − δ‖a‖∞

p−

)

> 0. So

∫

Ω

(

|∇u(x)|p(x)

p(x)

)

dx −

∫

Ω

a(x)

p(x)
|u(x)|p(x)dx ≥

δ

δ + 1

∫

Ω

(

|∇u(x)|p(x)

p(x)
dx

)

(3.3)

+C0

∫

Ω

|u(x)|p(x)dx. (3.4)

On the other hand, form (A1) and (G1), given ǫ > 0, there exists Cǫ > 0 such that

|G(x, t)| ≤
ǫ

p(x)
|t|p(x) +

Cǫ

q(x)
|t|q(x). (3.5)

Combining (3.3) and (3.5),

I(u) ≥
δ

δ + 1

∫

Ω

(

|∇u(x)|p(x)

p(x)

)

dx − λ

∫

Ω

1

q(x)
|u(x)|q(x)dx

+

(

C0 −
ǫ

p−

) ∫

Ω

|u(x)|p(x)dx − Cǫ

∫

Ω

1

q(x)
|u(x)|q(x)dx − µ

∫

Ω

|u(x)|r(x)

|x|s(x)r(x)
dx

≥
δ

(δ + 1)p+

∫

Ω

(

|∇u(x)|p(x)
)

dx +

(

C0 −
ǫ

p−

) ∫

Ω

|u(x)|p(x)dx

−
λ + Cǫ

q−

∫

Ω

1

q(x)
|u(x)|q(x)dx − µ

∫

Ω

|u(x)|r(x)

|x|s(x)r(x)
dx.

Hence for ǫ sufficiently small,

I(u) ≥
δ

(δ + 1)p+

∫

Ω

(

|∇|u(x)|p(x)
)

dx −
λ + Cǫ

q−

∫

Ω

1

q(x)
|u(x)|q(x)dx − µ

∫

Ω

|u(x)|r(x)

|x|s(x)r(x)
dx.
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By the continuous embedding see Proposition (2.6) X →֒ Lq(x)(Ω), there exists C0 > 0 such that

|u|q− ≤ C0‖u‖,

and by Proposition (2.9) W 1,p(x)(Ω) → L
r(x)

|x|−s(x)(Ω), there exists C1 > 0 such that

|u|r(x)|x|−s(x) ≤ C1‖u‖.

Consequently, by Proposition (2.3), for ‖u‖ = ̺, with 0 < ̺ < 1,

I(u) ≥
δ

(δ + 1)p+
‖u‖p+

−
(λ + Cǫ)C0

q−
‖u‖q−

−
µC1

r−
‖u‖r−

.

Since λ, µ > 0, p+ < q− and p+ < r−, there exists β > 0 such that I(u) ≥ β for ‖u‖ = ̺, where ̺ is
chosen sufficiently small.

Lemma 3.3. Assume that (A1) and (G1) hold. Then for each λ > 0, I satisfies condition (iii) given in
Theorem (3.1).

A direct computation shows that given ǫ > 0, there is Mǫ > 0 such that

G(x, t) ≥ −Mǫ − ǫ|t|q(x)∀(x, t) ∈ Ω × R. (3.6)

Consequently,

I(u) ≤
1

p−

∫

Ω

(

|∇u(x)|p(x)
)

dx +
‖a‖∞

p−

∫

Ω

|u(x)|p(x)dx +

(

ǫ −
λ

q+

) ∫

Ω

|u(x)|q(x)dx

+ Mǫ|Ω| −
µ

r+

∫

Ω

|u(x)|r(x)

|x|s(x)
dx.

By choosing ǫ = λ
2q+

I(u) ≤
1

p−

∫

Ω

(

|∇u(x)|p(x)
)

dx +
‖a‖∞

p−

∫

Ω

|u(x)|p(x)dx +

(

ǫ −
λ

q+

) ∫

Ω

|u(x)|q(x)dx

+ Mǫ|Ω| −
µ

r+

∫

Ω

|u(x)|r(x)

|x|s(x)
dx

≤
1

p−

∫

Ω

|∇u(x)|p(x)dx + ‖a‖∞

∫

Ω

|u(x)|p(x)dx −
λ

2q+

∫

Ω

|u(x)|q(x)dx

+ Mǫ|Ω| −
µ

r+

∫

Ω

|u(x)|r(x)

|x|s(x)
dx.

Since dimE < ∞, the norms ‖.‖ and |.|q(x) and |u|r(x)|x|−s(x) are equivalent in E. According to

Proposition (2.3) and Proposition (2.8), for
(

‖u‖, |u|p(x), |u|q(x), |u|r(x)|x|−s(x)

)

> 1,

I(u) ≤
1

p−

∫

Ω

|∇u(x)|p(x)dx + ‖a‖∞

∫

Ω

|u(x)|p(x)dx −
λ

2q+

∫

Ω

|u(x)|q(x)dx

+ Mǫ|Ω| −
µ

r+

∫

Ω

|u(x)|r(x)

|x|s(x)
dx

≤
1

p−

(

‖u‖p+

+ ‖a‖∞C1‖u‖p+
)

−
λC2

2q+
‖u‖q−

−
µC3

r+
‖u‖r−

+ Mǫ|Ω|.

By λ, µ > 0, p+ < q− and p+ < r−, we conclude that I(u) < 0 for ‖u‖ ≥ R > 1, where R is chosen large
enough. �
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Lemma 3.4. Assume that (A1) − (A2),(G1) − (G2 hold. Then any (PS) sequence of I is bounded in X.

Let {un} be a (P S)d sequence of I. Then,

I(un) → d and I
′

(un) → 0 as n → +∞.

d + 1 + ‖un‖ ≥ I(un) −
1

p+
〈I

′

(un), un〉

=

∫

Ω

(

1

p(x)
−

1

p+

)

|∇un|p(x)dx +

∫

Ω

(

1

p+
−

1

p(x)

)

a(x)|un|p(x)dx

+ λ

∫

Ω

(

1

p+
−

1

q(x)

)

|un|q(x)dx + µ

∫

Ω

(

1

p+
−

1

r(x)

)

|un|r(x)

|x|s(x)
dx

+

∫

Ω

(

1

p+
g(x, un)un − G(x, un)

)

dx

≥

∫

Ω

(

1

p(x)
−

1

p+

)

|∇un|p(x)dx +

∫

Ω

(

1

p+
−

1

p(x)

)

a(x)|un|p(x)dx

+ λ

∫

Ω

(

1

p+
−

1

q(x)

)

|un|q(x)dx + µ

∫

Ω

(

1

p+
−

1

r(x)

)

|un|r(x)

|x|s(x)
dx.

Then, for n sufficiently large

λ

∫

Ω

(

1

p+
−

1

q−

)

|un|q(x)dx

≤ λ

∫

Ω

(

1

p+
−

1

q(x)

)

|un|q(x)dx

≤ d + 1 + ‖un‖ +

∫

Ω

(

1

p(x)
−

1

p+

)

a(x)|un|p(x)dx + µ

∫

Ω

(

1

r(x)
−

1

p+

)

|un|r(x)

|x|s(x)
dx

≤ d + 1 + ‖un‖ + ‖a‖∞

(

1

p−
−

1

p+

) ∫

Ω

|un|p(x)dx + µ

(

1

r−
−

1

p+

) ∫

Ω

|un|r(x)

|x|s(x)
dx.

On the other hand, by (1.5), for any ǫ > 0 there exists Cǫ > 0 such that

|t|p(x) < ǫ|t|q(x) + Cǫ for all (x, t) ∈ Ω × R. (3.7)

Sine p+ < r− < p∗
s(x), it follows that

λ

(

1

p+
−

1

q−

) ∫

Ω

|un|q(x)dx ≤ d + 1 + ‖un‖

+ ǫ‖a‖∞

(

1

p−
−

1

p+

) ∫

Ω

|un|q(x)dx + ‖a‖∞

(

1

p−
−

1

p+

)

Cǫ|Ω|.

Hence

(

λ

(

1

p+
−

1

q−

)

− ǫ‖a‖∞

(

1

p−
−

1

p+

)) ∫

Ω

|un|q(x)dx ≤ d + 1 + ‖un‖

ǫ‖a‖∞

(

1

p−
−

1

p+

) ∫

Ω

|un|q(x)dx + ‖a‖∞

(

1

p−
−

1

p+

)

Cǫ|Ω|.

Choosing ǫ = λ
2‖a‖∞

1

p+ − 1

q−

1

p−
− 1

p+
, we obtain

λ

2

(

1

p+
−

1

q−

) ∫

Ω

|un|q(x)dx ≤ d + 1 + ‖un‖ + ‖a‖∞

(

1

p−
−

1

p+

)

Cǫ|Ω|.
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Thus
∫

Ω

|un|q(x)dx ≤ C2(1 + ‖un‖). (3.8)

Similarly , for n sufficiently large

µ

(

1

p+
−

1

r−

) ∫

Ω

|un|r(x)

|x|s(x)
dx

≤ µ

∫

Ω

(

1

p+
−

1

r(x)

)

|un|r(x)

|x|s(x)
dx

≤ d + 1 + ‖un‖ +

∫

Ω

(

1

p(x)
−

1

p+

)

a(x)|un|p(x)dx + λ

∫

Ω

(

1

q(x)
−

1

p+

)

|un|q(x)dx

≤ d + 1 + ‖un‖ + ‖a‖∞

(

1

p−
−

1

p+

) ∫

Ω

|un|p(x)dx + λ

∫

Ω

(

1

q−
−

1

p+

)

|un|q(x)dx.

With p+ < q− and (3.7), it follows that

µ

(

1

p+
−

1

r−

) ∫

Ω

|un|r(x)

|x|s(x)
dx ≤ d + 1 + ‖un‖

+ǫ‖a‖∞

(

1

p−
−

1

p+

) ∫

Ω

|un|q(x)dx + ‖a‖∞

(

1

p−
−

1

p+

)

Cǫ|Ω|.

By (3.11), we obtain

µ

(

1

p+
−

1

r−

) ∫

Ω

|un|r(x)

|x|s(x)
dx ≤ d + 1 + ‖un‖

+ǫ‖a‖∞

(

1

p−
−

1

p+

)

C2(1 + ‖un‖) + ‖a‖∞

(

1

p−
−

1

p+

)

Cǫ|Ω|.

Thus
∫

Ω

|un|r(x)

|x|s(x)
dx ≤ C2(1 + ‖un‖). (3.9)

By (3.3)

δ

(δ + 1)p+

∫

Ω

|∇|un|p(x)dx ≤ I(un) + λ

∫

Ω

|un|q(x)dx +

∫

Ω

G(x, un)dx

≤ d + on(1) +
λ

q−

∫

Ω

|un|q(x)dx + ǫ

∫

Ω

|un|q(x)dx + Cǫ|Ω|

= d + on(1) +

(

λ

q−
+ ǫ

) ∫

Ω

|un|q(x)dx +
µ

r−

∫

Ω

|un|r(x)

|x|s(x)
dx + Cǫ|Ω|.

Therefore,for n sufficient large
∫

Ω

|∇|un|p(x)dx ≤ C3(1 + ‖un‖),

and so
min

(

‖un‖p+

, ‖un‖p−

)

≤ C4(1 + ‖un‖).

Consequently (un) is bounded in X .
In view of the last result, if (un) is (P S) sequence of I, we can extract a subsequence of (un),still

denoted by (un), and u ∈ X . such that

• un ⇀ u in X ,
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• un ⇀ u in Lq(x)(Ω),

• un → u in Lm(x)(Ω), m ∈ C+(Ω), m(x) < p∗(x) ∀ x ∈ Ω.

By (1.7), from the concentration compactness lemma [5], there exist two nonnegative measures µ, ν ∈
M(Ω), a countable set J, points {xj}j∈J in Ω and sequence {µj}j∈J, {νj}j∈J ⊂ [0, +∞), such that

|∇un|p(x) ⇀ µ ≥ |∇un|p(x) +
∑

j∈J

µjδxj
in Ω,

|un|q(x) → µ = |un|q(x) +
∑

j∈J

νjδxj
in Ω,

Sν
1

p∗(xj )

j ≤ µ
1

p∗(xj )

j for all j ∈ J,

(3.10)

where

S = Sq(Ω) = inf
φ∈C∞

0 (Ω)

‖φ‖

‖φ‖Lq(x)(Ω)

.

Let φ ∈ C∞
0 (RN) such that φ ≡ 1 in B1(0), φ ≡ 0 on Ω\B1(0)

For ǫ > 0 and j ∈ J consider φj,ǫ ∈ C∞(RN) such that

φj,ǫ(x) = φ(
x − xj

ǫ
), for all x ∈ R

N,

and |∇φj,ǫ|∞ ≤ 2
ǫ where xj ∈ Ω belongs to the support of ν.

Lemma 3.5. Under the conditions of Lemma (3.4), if {un} is a (P S) sequence for I and {νj} as above,
then for each j ∈ J

νj = 0 or νj >
SN

λ
N

p∗(x)

.

Let φj,ǫ as above. By Lemma (3.4), we see that for each j ∈ J , {unφj,ǫ} is bounded in X . Since

I
′

(un) → 0, 〈I
′

(un), unφj,ǫ〉 = on(1). Then

∫

Ω

|∇un|p(x)φj,ǫdx +

∫

Ω

un|∇un|p(x)−2∇un∇φj,ǫ + on(1) (3.11)

= λ

∫

Ω

|un|q(x)φj,ǫdx + µ

∫

Ω

|un|r(x)

|x|s(x)
φj,ǫdx +

∫

Ω

a(x)|un|p(x)φj,ǫdx +

∫

Ω

g(x, un)unφj,ǫdx.

For each δ > 0, applying Young’s inequality

∫

Ω

un|∇un|p(x)∇un∇φj,ǫ ≤ δ

∫

Ω

un|∇un|p(x)dx + C8(δ)

∫

Ω

|un∇φj,ǫ|
p(x), (3.12)

passing to the limit of n → +∞ in (3.13), we get

lim sup
n→∞

∫

Ω

|un|∇un|p(x)−2∇un∇φj,ǫ|dx ≤ δC9 + C8(δ)

∫

Ω

|u∇φj,ǫ|
p(x). (3.13)

Now,using Lemma (2.10)

lim sup
n→∞

∫

Ω

|un|∇un|p(x)−2∇un∇φj,ǫ|dx ≤ δC9 + C11C6

{

‖u‖p+

Lp∗(Bǫ(xj)))
+ ‖u‖p−

Lp∗(x)(Bǫ(xj))

}

. (3.14)

On the other hand, by the compactness lemma of strauss [24] and Sobolev embedding:

lim
n→∞

∫

Ω

g(x, un)unφj,ǫdx =

∫

Ω

g(x, u)uφj,ǫdx, (3.15)
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lim
n→∞

∫

Ω

a(x)|un|p(x)φj,ǫdx =

∫

Ω

a(x)|u|p(x)φj,ǫdx (3.16)

Since un → u in Lm(x)(Ω), m ∈ C+(Ω), m(x) < p∗(x) ∀ x ∈ Ω and by Proposition (2.9) W 1,p(x)(Ω) →

L
r(x)

|x|−s(x)(Ω), there exists C1 > 0 such that

|un − u|
r(x)

r(x)|x|−s(x) ≤ C1 min
(

‖un − u‖r−

, ‖un − u‖r+
)

Then by least result and Lemma (2.10) and Proposition (2.12), we have

lim
n→∞

∫

Ω

|un|r(x)

|x|s(x)
dx = lim

n→∞

∫

Ω

[

|un|r(x)

|x|s(x)
−

|un − u|r(x)

|x|s(x)
+

|un − u|r(x)

|x|s(x)

]

dx.

Then

lim
n→∞

∫

Ω

|un|r(x)

|x|s(x)
φj,ǫdx =

∫

Ω

|u|r(x)

|x|s(x)
φj,ǫdx. (3.17)

By (3.11) and (3.13)-(3.17)

∫

Ω

|∇un|p(x)φj,ǫdx ≤ lim
n→∞

λ

∫

Ω

|un|q(x)φj,ǫdx

+

∫

Ω

g(x, u)uφj,ǫdx +

∫

Ω

a(x)|u|p(x)φj,ǫdx + δC9

+ C11C6

{

‖u‖p+

Lp∗(Bǫ(xj)))
+ ‖u‖p−

Lp∗(x)(Bǫ(xj))

}

+ δ
′

C13 + C15‖
1

ǫ
|∇φj,ǫ|‖ + δ”C16 + C17

{

‖u‖p+

Lp∗(Bǫ(xj)))
+ ‖u‖p−

Lp∗(x)(Bǫ(xj))

}

.

Now, as
|∇un|p(x) → µ, and |u|q(x) → ν in M(Ω).

Then

∫

Ω

φj,ǫdµ ≤ lim
n→∞

λ

∫

Ω

φj,ǫdν + µ

∫

Ω

|un|r(x)

|x|s(x)
φj,ǫdx

+

∫

Bǫ(xj))

g(x, u)uφj,ǫdx +

∫

Bǫ(xj))

a(x)|u|p(x)φj,ǫdx + δC9

+ C11C6

{

‖u‖p+

Lp∗(Bǫ(xj)))
+ ‖u‖p−

Lp∗(x)(Bǫ(xj))

}

+ δ
′

C13 + C15‖
1

ǫ
|∇φj,ǫ|‖ + δ”C16 + C17

{

‖u‖p+

Lp∗(Bǫ(xj)))
+ ‖u‖p−

Lp∗(x)(Bǫ(xj))

}

.

Letting ǫ → 0 , δ → 0 , δ
′

→ 0 and δ” → 0 we obtain

µj ≤ λνj.

Therefore

νj >
SN

λ
N

p∗(x)

.

Lemma 3.6. Assume that (A1) − (A2) , (G1) − (G2) and (1.5) are satisfied. If λ < 1, then I satisfies

(P S)d for d < λ
1− N

p+

(

1
p+ − 1

q−

)

SN .
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Proof. Let {un} ⊂ X such that

I(un) → d and I
′

(un) → 0.

Then

d = I(un) −
1

p+
〈I

′

(un), un〉 + on(1)

=

∫

Ω

(

1

p(x)
−

1

p+

)

|∇un|p(x)dx +

∫

Ω

(

1

p+
−

1

p(x)

)

a(x)|un|p(x)dx

+ λ

∫

Ω

(

1

p+
−

1

q(x)

)

|un|q(x)dx + µ

∫

Ω

(

1

p+
−

1

r(x)

)

|un|r(x)

|x|s(x)
dx

+

∫

Ω

(

1

p+
g(x, un)un − G(x, un)

)

dx + on(1).

By (A2) and (G2), we have

d ≥ λ

(

1

p+
−

1

q−

) ∫

Ω

|un|q(x)dx + on(1).

By (3.10), we obtain

d ≥ λ

(

1

p+
−

1

q−

)

lim
n→+∞

∫

Ω

|un|q(x)dx

≥ λ

(

1

p+
−

1

q−

)





∫

Ω

|un|q(x)dx +
∑

j∈J

νj





≥ λ

(

1

p+
−

1

q−

)

νj for j ∈ J.

If νj > 0 for some j ∈ J, by Lemma (3.5)we get

d ≥ λ

(

1

p+
−

1

q−

)

SN

λ
N

p(xj )

.

Hence λ < 1,

d ≥ λ

(

1

p+
−

1

q−

)

SN

λ
N

p+

= λ
1− N

p+

(

1

p+
−

1

q−

)

SN .

Which is impossible, and νj = 0 for j ∈ J. Then

lim
n→+∞

∫

Ω

|un|q(x)dx =

∫

Ω

|u|q(x)dx

By the least limit we have

lim
n→+∞

∫

Ω

|un − u|q(x)dx = 0

Thanks to Proposition (2.3),we deduce

un → u in Lq(x)(Ω)
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On the other hand, we obtain

on(1) = 〈I
′

(un) − I
′

(u), un − u〉

=

∫

Ω

(

|∇un|p(x)−2∇un − |∇u|p(x)−2∇u
)

∇(un − u)dx

+

∫

Ω

a(x)
(

|un|p(x)−2un − |u|p(x)−2u
)

(un − u)dx

+ λ

∫

Ω

a(x)
(

|un|q(x)−2un − |u|q(x)−2u
)

(un − u)dx

+ µ

∫

Ω

(

|un|r(x)−2un

|x|s(x)
−

|u|r(x)−2u

|x|s(x)

)

(un − u)dx

−

∫

Ω

(g(x, un) − g(x, u)) (un − u)dx.

By standard argument, we see that

lim
n→+∞

∫

Ω

a(x)
(

|un|p(x)−2un − |u|p(x)−2u
)

(un − u)dx = 0,

lim
n→+∞

λ

∫

Ω

a(x)
(

|un|q(x)−2un − |u|q(x)−2u
)

(un − u)dx = 0,

lim
n→+∞

∫

Ω

(

|un|r(x)−2un

|x|s(x)
−

|u|r(x)−2u

|x|s(x)

)

(un − u)dx = 0

and lim
n→+∞

∫

Ω

(g(x, un) − g(x, u)) (un − u)dx = 0.

It follows that

lim
n→+∞

∫

Ω

(

|∇un|p(x)−2∇un − |∇u|p(x)−2∇u
)

∇(un − u)dx = 0. (3.18)

Let us consider the sets

Ω+ = {x ∈ Ω/p(x) ≥ 2} in Ω− = {x ∈ Ω/p(x) ≤ 2}.

We recall the following well-known inequalities, which hold any three real x, y and p

(

x|x|p−2|y|p−2
)

(x − y) ≥ c(p)

{

|x − y|p, if p ≥ 2,
|x−y|2

(|x|+|y|)2−p , if 1 < p < 2,
(3.19)

where c(p) = 22−p when p ≥ 2 and c(p) = p − 1 when 1 < p < 2.
By (3.19) and (3.18) we have

lim
n→+∞

∫

Ω+

|∇un − ∇u|p(x)dx = 0. (3.20)

Put

βn =

∫

Ω

(

|∇un|p(x)−2∇un − |∇u|p(x)−2∇u
)

∇(un − u)dx,

and δn = |∇un| + |∇u|.

Let {un} ⊂ X and un ⇀ u in X . By (3.19) we have for p(x) ≥ 2

For 1 < p(x) < 2 by (3.19) we obtain
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βn ≥

∫

Ω−

(

|∇un|p(x)−2∇un − |∆u|p(x)−2∇u
)

∇(un − u)dx

≥ (p− − 1)
|∇un − ∇u|2

δ2−p(x)
n

(3.21)

On the other hand, by (3.21) and Holder’s inequality,

∫

Ω−

|∇un − ∇u|p(x)dx ≤
1

p− − 1

∫

Ω−

(p(x) − 1)|∇un − ∇u|p(x)dx

≤
1

p− − 1

∫

Ω−

β
p(x)

2
n δ

2−p(x)
2

n dx.

Since {un} is bounded in X we have

∫

Ω−

|∇un − ∇u|p(x)dx ≤ C
′

p ‖ β
p(x)

2
n ‖L 2

p(x)
(Ω) .

It result that

lim
n→+∞

∫

Ω−

|∇un − ∇u|p(x)dx = 0. (3.22)

Using again results; Proposition (2.7), (3.20) and (3.22) we get

lim
n→+∞

∫

Ω

|∇un − ∇u|p(x)dx = 0.

and hence

un → u inX.

�

The next Lemma is similar to [ [25],Lemma5]

Lemma 3.7. Under assumptions of Theorem (1.1), there exists a sequence {Mn} ⊂ (0, +∞) independent
of λ, with Mn ⊂ Mn+1 such that for any λ > 0,

cλ
n = inf

K∈Γn

max
u∈K

I(u) < Mn.

Proof. (Proof of Theorem (1.1)) By choosing for each k ≥ 1, λk sufficiently small, we construct a sequence

(λk), with λk > λk+1 such that Mk < λ
1− N

p+

k

(

1
p+ − 1

q+

)

SN . Thus for λ ∈ (λk, λk+1],

0 < cλ
1 ≤ cλ

2 ≤ · · · ≤ cλ
k < λ

1− N

p+

(

1

p+
−

1

q+

)

SN .

Thanks to Theorem (3.1), the levels cλ
1 ≤ cλ

2 ≤ · · · ≤ cλ
k are critical values of I. So, if

cλ
1 < cλ

2 < · · · < cλ
k ,

I has at least k critical points. Now, if cλ
j < cλ

j+1 for some j = 1, · · · , k−1, again Theorem (3.1) implies
that Kcλ

j
is an infinite set [ [22],Cap.7].Then in this case, Problem (1.1) has infinitely many solutions.

Then Problem (1.1) has at least k pair solutions. �
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4. M. Bocea, M. Mihǎilescu, C. Popovici, On the asymptotic behavior of variable exponent power-law functionals and
applications, Ric. Mat. 59 (2010) 207–238.

5. J. F. Bonder, A. Silva, Concentration-compactness principle for variable exponent spaces and applications, Electron. J.
Differential Equations 2010, No. 141, 1–18. MR2729462

6. A. Callegari, A. Nachman, A nonlinear singular boundary value problem in the theory of pseudoplastic fuids, SIAM J.
Appl. Math. 38 (1980) 275–281

7. Y. Chen, S. Levine, R. Rao, Variable exponent, linear growth functionals in image restoration, SIAMJ. Appl. Math. 66
(2006) 1383–1406.
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