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Finding the Closest Efficient Targets in DEA by a Numeration Method: The FDH

Non-Convex Technology

J. Vakili and R. Sadighi Dizaji

abstract: Satisfying the Production Possibility Set (PPS) in Free Disposability Hull (FDH) property, there
is only a few approaches which discuss on identifying the closest efficient targets of Decision Making Units
(DMUs) in Data Envelopment Analysis (DEA). In this paper, without solving any optimization problem, a
successful numeration method is proposed to compute the minimum distance of units from the strong efficient
frontier of the FDH non-convex PPS. In fact, by some ratios obtained from a linear mixed-integer bi-level
programming problem, the closest efficient targets of units are calculated. Moreover, there is an interesting
discuss about simplifying a linear mixed-integer bi-level programming problem to reach to the ratios. Finally,
the applicability of the proposed method to a real-world problem is illustrated through a numerical example.

Key Words: Data envelopment analysis (DEA), closest targets Free disposal hull (FDH).

Contents

1 Introduction 1

2 Preliminaries 2

3 Existing Methods 3

4 Numeration method for obtaining the closest efficient targets in the FDH PPSs 5

4.1 Distance to the strong efficient frontier of TFDH-VRS . . . . . . . . . . . . . . . . . . . . . 6
4.2 Distance to the strong efficient frontier of TFDH-CRS . . . . . . . . . . . . . . . . . . . . . 8

5 Illustrative Application to Bank Branches 12

6 Conclusion 13

7 Figures and Tables 13

1. Introduction

Data Envelopment Analysis (DEA), originally developed by Charnes et al. [6] and later extended by
Banker et al. [4], is a non-parametric linear programming-based method to evaluate the relative efficiency
of a set of homogeneous Decision Making Units (DMUs) which use some inputs to produce some outputs.
The relative comparison in DEA is made with reference to a set of the inputs-outputs vectors as the
Production Possibility Set (PPS) constructed from all the points which can convert their inputs into
their outputs by assuming several postulates. Afterwards, based on both the information about existing
data on the performance of the units and some preliminary assumptions, DEA forms an empirical efficient
frontier in the PPS. The points on the efficient boundary (the efficient points) result in the maximum
achievable outputs from a given input set (or alternatively the minimum inputs necessary to produce the
given outputs). In other words, an efficient point has no potential improvement, whereas an inefficient
point can become efficient by deleting its input excess and augmenting the output shortfall. Therefore,
the input-output vectors on the efficient boundary can be patterns and targets for the inefficient DMUs
to imitate and they can also point out keys for inefficient DMUs to improve their performance by an
appropriate movement towards the efficient boundary. In fact, the closer an inefficient DMU is to the
efficient boundary, the easier it is to remove its inefficiency i.e., less variation in its inputs and/or outputs
is needed. DEA models not only try to obtain an approximation of the distance between the DMUs and
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the efficient boundary of the PPS but also determine an appropriate efficient target for the DMU under
assessment. In other words, by projecting the DMU under assessment to the efficient boundary, these
models try to find an appropriate efficient projection for this DMU among an infinite number of efficient
points and a suitable way among an infinite number of ways to reach to the efficient boundary. However,
many traditional DEA models can not compute the exact distance of an inefficient DMU from the efficient
boundary and therefore, can not obtain the closest efficient target; as a result these models may project an
inefficient unit onto the furthest efficient projection to the evaluated DMU, which makes the attainment
of this efficient projection more difficult. Calculating the least distance measures of units to the efficient
frontier and finding the closest efficient targets have attracted increasing interest of researchers in recent
DEA literature ([1-3,6,8-10,12-14]).
On the other hand, one of the assumed postulates in constructing the PPSs of the conventional DEA
is the convexity assumption. By relaxing the convexity assumption, Deprins et al. [8] proposed an
extension of the conventional technologies called Free Disposal Hull (FDH) non-convex technology. In
fact, the FDH technology is based on a representation of the production technology given by observed
production plans, imposing strong disposability of inputs and outputs without the convexity assumption.
Most of the papers obtain the minimum distances of units to the efficient boundary for convex PPSs and
in fact, there are a few papers which discuss about these distances for nonconvex PPSs.
The paper unfolds as follows: Some preliminaries and basic concepts on DEA in the next section are
reviewed. Section 3 discusses about some existing methods to obtain the closest efficient targets. In
Section 4, a numeration approach for finding the closest efficient targets for a given unit is proposed.
Section 5 includes an empirical illustration of the proposed approach. The last section is the conclusion.

2. Preliminaries

The following definitions and notations from DEA are needed for the next discussions. First of all and
as usual, it is assumed that we have observed n decision making units (DMUs) where each DMUj (j ∈
J = {1, 2, · · · , n}) produces s outputs yrj (r = 1, 2, · · · , s), using m inputs xij (i = 1, 2, · · · , m). Define
xj = (x1j , x2j , · · · , xmj)t ∈ Rm

+ and yj = (y1j , y2j , . . . , ysj)t ∈ Rs
+ as the input and output vectors of

DMUj , respectively. All components of the vectors xj and yj for all the DMUs are non-negative and
each DMU has at least one positive input and output, that is: xj ≥ 0, xj 6= 0 and yj ≥ 0, yj 6= 0

for any j = 1, 2, . . . , n. Also, assume that matrices X = [x1, x2, . . . , xn] and Y = [y1, y2, . . . , yn] are
m × n and s × n matrices of inputs and outputs, respectively. The production possibility set (PPS) T is
generally defined as:

T = {(x, y) ∈ Rm
+ × Rs

+ | x can produce y}.

The mathematical definition of the PPS depends on the conditions of the problem and the postulates
selected by the manager. The traditional FDH technology introduced by Deprins et al. [8] for the variable
returns to scale (VRS) is as follows:

TFDH-VRS = ∪n
j=1{(x, y) ∈ Rm

+ × Rs
+ | xj ≤ x, yj ≥ y}.

Moreover„ in the case of constant returns to scale (CRS), another FDH technology is introduced by
Kerstens and Vanden Eeckaut [12] as follows:

TFDH-CRS = ∪n
j=1{(x, y) ∈ Rm

+ × Rs
+ | λjxj ≤ x, λjyj ≥ y, λj ≥ 0}.

Definition 2.1. Let (x, y) and (x̄, ȳ), which (x, y) 6= (x̄, ȳ), be in T . If (x̄, −ȳ) ≤ (x, −y), we say
(x̄, ȳ) dominates (x, y).

Definition 2.2. (x, y) ∈ T is called a weak efficient point of T if there is no other (x̄, ȳ)∈ T such that:

(x̄, −ȳ)< (x, −y).

If a point is not weak efficient, then it is called an inefficient point. ∂W (T ) (the weak efficient frontier
of T ) shows the set of all weak efficient points of T . This means that:

∂W(T ) = {(x, y) ∈ T | ∄(x̄, ȳ) ∈ T ; (x̄, −ȳ) < (x, −y)}.
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Definition 2.3. (x, y) ∈ T is called a strong efficient point (a nondominated point) in T if there is no
other (x̄, ȳ)∈T such that dominates (x, y). In the other words, there is no other (x̄, ȳ)∈T such that:

(x̄, −ȳ)≤(x, −y)

and strict inequality holds in at least one component.

The set of all strong efficient points of T is called the strong efficient frontier and denoted by ∂S(T ).
That is:

∂S(T ) = {(x, y) ∈ T | ∄(x̄, ȳ) ∈ T ; (x̄, −ȳ) ≤ (x, −y), (x̄, ȳ) 6= (x, y)}.

Also, it is worth to mention that the strong efficient frontier is a part of the weak efficient frontier of
T , i.e., ∂S(T ) ⊆ ∂W(T ).

3. Existing Methods

Having mentioned previously, there is a few papers which discuss about the distances of units to the
efficient frontier of nonconvex PPSs. Along this line of researches, the paper of Silva et al. [14] analyses
the issue of finding the closest efficient targets for both non-convex and convex technologies. Then, using
the BRZW efficiency measure (Brockett et al. [5]), it explains the approach developed to find the closer
targets in the TF DH−V RS technology. To find this unit, they consider a set of points consisting the
units dominating the unit being assessed. Then, for each inefficient unit, its closest peer in that set is
determined through the BRWZ efficiency measure. However, the exact distances of units to the efficient
frontier by any norm have not been discussed in this method. To obtain the minimum distance from
DMUs to the weak efficient frontier for the FDH nonconvex PPS, Vakili [16] solve the following problem

min
(x,y,s)

(‖ (x, y) − (xo, yo) ‖ +Ms)

s.t. (x, y) ∈ TFDH-VRS

max
s

s

s.t.

n
∑

j=1

xjλj ≤ x − s1m,

n
∑

j=1

yjλj ≥ y + s1s,

y + s1s ≥ 0,

x − s1m ≥ 0,
n

∑

j=1

λj = 1,

λj ∈ {0, 1}, j = 1, 2, ..., n,

s ≥ 0.

This method can be applied to the strong efficient frontier by changing the lower level problem to
Additive model. No matter of the kind of PPSs and norms, the model is a linear mixed-integer bi-level
programming problem which is very expensive to solve. Ebrahimnejad et al. [9] proposed a new approach
for TF DH−V RS to find the least distance from the strong efficient frontier. Additive model is solved first to
determine the strong efficient units and then the assessed DMUo = (xo, yo) is projected on frontier. By
assumption that (xc, yc) ∈ E is the reference point of DMUo, the method finds all defining hyperplanes
of PPS binding at (xc, yc) as follows:

{

xi = xic, i = 1, 2, . . . , m,

yr = yrc, r = 1, 2, . . . , s.

Then, they try to find the distance between DMUo and each of these defining hyperplanes. Depending
on the definition of hyperplanes, if the hyperplane is as xk = xkc, then this entry is kept fixed and the
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other entries are changed such that it remains on the frontier giving the least distance to the frontier in
Euclidean norm. Thus it is enough to solve the problem

min
m

∑

i=1,i6=k

(xio − (xi + d1i))
2 +

s
∑

r=1

(yro − (yr − d2r))2 + (xk − xko)2

s.t.
∑

j∈E

λjxij + λL+1(xi + d1i) = (xi + d1i), i = 1, . . . , m, i 6= k,

∑

j∈E

λjyrj + λL+1(yr − d2r) = (yr − d2r), r = 1, . . . , s,

∑

j∈E

λjxkj + λL+1xk = xk,

xk = xkc,

xi + d1i ≥ xic, i = 1, 2, . . . , m, i 6= k,

yr − d2r ≤ yrc, r = 1, 2, . . . , s

xi + d1i ≤ xit, i = 1, 2, . . . , m, i 6= k,

yr − d2r ≥ yrt, r = 1, 2, . . . , s,

λj ∈ {0, 1}, j = 1, 2, . . . , n,

xij ≥ 0, yrj ≥ 0, j = 1, . . . , n, i = 1, 2, . . . , m, r = 1, . . . , s,

where
xit ∈ {xij |xij > xic, j = 1, . . . , n}, yrt ∈ {yrj|yrj < yrc, j = 1, . . . , n}

and
|E| = L.

The same process is done for yk = ykc. It is worth to note that some mixed-integer quadratic programming
problems should be solved to determine the closest efficient target. Also, Mehdiloozad et al. [13] proposed
a numeration method based on directional FDH measures of efficiency to find the closest efficient target
in TF DH−V RS . In fact, they consider the weights g− and g+ and try to solve the problem

β∗ = max β

s.t.

n
∑

j=1

λjxij + s−
i = xio − βg−

i , i = 1, 2, . . . , m,

n
∑

j=1

λjyrj − s+
i = yro + βg+

r , r = 1, 2, . . . , s,

n
∑

j=1

λj = 1,

λj ∈ {0, 1}, j = 1, 2, . . . , n,

s−
i ≥ 0, s+

i ≥ 0, i = 1, 2, . . . , m, r = 1, 2, . . . , s.

In general, β∗ cannot be interpreted as an efficiency index for any arbitrary direction vector. Thus, to
overcome this problem, they restricted (g−, g+) ∈ Rm

+ × Rs
+ as follows.

max
j=1,2,...,n

{xio

g−
i

}

≤ 1

max
j=1,2,...,n

{xi − xi

g−
i

}

≤ 1, xi = max
j=1,2,...,n

{xij}, xi = max
j=1,2,...,n

{xij}.

They considered Eo as the set of all efficient DMUs dominating assessed DMUo and then they proposed
the numeration method

min
j∈Eo

{

1

m

m
∑

i=1

1

g−
i

(xio − xij) +
1

s

s
∑

r=1

1

g+
r

(yrj − yro)

}

,
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or

max
j∈Eo

{1 −
1

m

m
∑

i=1

1

g−
i

(xio − xij)

1 +
1

s

s
∑

r=1

1

g+
r

(yrj − yro)

}

to calculate the closest efficient observed DMU. This method leads to the closest efficient target along
with the direction (−g−, g+) which may not be the closest distance to the efficient frontier by a norm
generally. Actually, obtaining a direction leading to the least distance to the efficient frontier by an ar-
bitrary norm is not easy. Moreover, it is possible to attain to the furthest efficient unit when a direction
is not suitable. Also, the obtained point may be a weak efficient point which is not desirable.
A common drawback of models proposed in the literature is achieving at the closest weak efficient targets
or the closest strong efficient targets among DMUs dominating assessed DMU. However, it is shown in
Section 3 that the closest strong efficient may not dominate assessed DMU. Moreover, as far as the author
know, there is no numeration method in the literature to find the closest strong efficient target on both
TF DH−V RS and TF DH−CRS . So, to overcome to this problems, this paper develops a numeration method
to find the closest strong efficient targets in the FDH nonconvex PPSs which are associated with the least
distance to the strong efficient frontier.

4. Numeration method for obtaining the closest efficient targets in the FDH PPSs

In this section, in order to obtain the minimum distance of DMUs to the efficient frontier of the
FDH nonconvex PPSs and therefore find the closest efficient targets of the inefficient DMUs, a distance
minimization numeration method is going to be presented. Now, consider DMUo = (xo, yo) ∈ T as the
unit under assessment. The distance of DMUo to the strong efficient frontier of T by norm ‖ . ‖ is shown
by d‖.‖((xo, yo), ∂S(T )) and defined as below:

d‖.‖((xo, yo), ∂S(T )) = min
(x,y)

‖(x, y) − (xo, yo)‖

s.t. (x, y) ∈ ∂S(T ).
(4.1)

Regarding the paper of Jahanshahloo et al. [11], Problem (4.1) can be converted to the following bi-level
programming problem:

d‖.‖((xo, yo), ∂S(T )) = min
(x,y,s−,s+)

‖(x, y) − (xo, yo)‖ + M(1t
ms− + 1t

ss+)

s.t. (x, y) ∈ T

max
(s−,s+)

1t
ms− + 1t

ss+

s.t. (x − s−, y + s+) ∈ T

s− ≥ 0, s+ ≥ 0,

(4.2)

where M ≫ 0 is a sufficiently large positive real number and 1k is a column vector in Rk with all
components equal to 1. Note that in the bi-level programming problem (4.2), the set of all variables
is partitioned between the vectors (s−, s+) and (x, y), while (s−, s+) is to be chosen as an optimal
solution to the second optimization problem parameterized in (x, y). In other words, (x, y, s−, s+) is a
feasible solution to the bi-level problem (4.2) if (s−, s+) is an optimal solution to the lower-level problem
corresponding to the parameter (x, y) ∈ T . Note that in the objective function of the upper level problem,
1t

ms− + 1t
ss+ is the objective value of the lower level problem for parameter (x, y). Additionally, it has

been proved by Jahanshahloo et al. [11] that if (x∗, y∗, s−∗
, s+∗

) is an optimal solution to the Problem
(4.2), then (s−∗

, s+∗
) = (0, 0). In other words, the optimal value of the lower level problem is zero in

optimality.
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4.1. Distance to the strong efficient frontier of TFDH-VRS

This subsection tries to simplify Problem (4.1) by considering TFDH-VRS instead of T i.e., the following
problem:

d‖.‖((xo, yo), ∂S(TFDH-VRS)) = min
(x,y)

‖(x, y) − (xo, yo)‖

s.t. (x, y) ∈ ∂S(TFDH-VRS).
(4.3)

At first, to simplify Problem (4.3), the following theorem is presented.

Theorem 4.1. If (x∗, y∗) is an optimal solution to the Problem (4.3), then (x∗, y∗) is an observed DMU.

Proof: To prove this theorem, assume that (x∗, y∗) is an optimal solution to the Problem (4.3). Now,
by contradiction, assume that (x∗, y∗) is not an observed DMU. At first, since (x∗, y∗) ∈ TF DH−V RS ,
there exists an index j ∈ J such that:

(x∗, y∗) ∈ {(x, y)|x ≥ xj , y ≤ yj}.

Since (x∗, y∗) is not an observed DMU, so there exists (s̃−, s̃+) 	 (0, 0) such that x∗−s̃− = xj , y∗+s̃+ =
yj , which is a contradiction with the efficiency of (x∗, y∗). Therefore, (x∗, y∗) is one of the observed
DMUs. ✷

Now, if TFDH-VRS is considered in problem (4.2) as PPS as well, we have the following problem
(d = d‖.‖((xo, yo), ∂S(TFDH-VRS))).

d = min
(x,y,s−,s+)

‖ (x, y) − (xo, yo) ‖ +M(1t
ms− + 1t

ss+)

s.t. (x, y) ∈ TFDH-VRS

max
(s−,s+)

1t
ms− + 1t

ss+

s.t. (x − s−, y + s+) ∈ ∪n
j=1{(x, y)|x ≥ xj , y ≤ yj}

s− ≥ 0, s+ ≥ 0.

(4.4)

In what follows it is clear that Problem (4.4) is equivalent to the bi-level Problem (4.5):

d = min
(x,y,sj −,sj +)

‖ (x, y) − (xo, yo) ‖ +M(max
j∈J

{ max
(sj −,sj +)

1t
msj−

+ 1t
ssj+

})

s.t. (x, y) ∈ TFDH-VRS

max
j∈J

max
(sj −,sj +)

1t
msj−

+ 1t
ssj+

s.t. (x − sj−
, y + sj+

) ∈ {(x, y)|x ≥ xj , y ≤ yj}

sj−
≥ 0, sj+

≥ 0.

(4.5)

Since (x, y) is a parameter for the lower level problem of the Problem (4.5), therefore, Problem (4.6):

max
(sj −,sj +)

1t
msj−

+ 1t
ssj+

s.t. x − sj−
≥ xj

y + sj+
≤ yj

sj−
≥ 0, sj+

≥ 0,

(4.6)

for some j ∈ J has the following optimal solution:

s
j−
i = xi − xij , i = 1, 2, . . . , m

sj+
r = yrj − yr, r = 1, 2, . . . , s,
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where xi ≥ xij and yrj ≥ yr for each i, r. Therefore, for i = 1, 2, . . . , m and r = 1, 2, . . . , s, Problem
(4.5) can be written as:

min
(x,y)

‖ (x, y) − (xo, yo) ‖ +M(max
j∈J

{
m

∑

i=1

(xi − xij) +
s

∑

r=1

(yrj − yr)|xi ≥ xij , yr ≤ yrj})

s.t. (x, y) ∈ TFDH-VRS.

(4.7)

Moreover, by attention to Theorem 4.1, since the optimal solution of Problem (4.3) (problem(4.7)) occurs
in one observed DMU and the coefficient of M must be zero in the optimality of problem(4.7); therefore,
Problem (4.7) can be written as:

min
(xk,yk)

‖ (xk, yk) − (xo, yo) ‖

s.t.

max
j∈J

{

m
∑

i=1

(xik − xij) +

s
∑

r=1

(yrj − yrk)|xik ≥ xij , yrk ≤ yrj, i = 1, ..., m, r = 1, ..., s} = 0

k = 1, 2, . . . , n.

(4.8)

Problem (4.8) presents a numeration method for obtaining the minimum distance of (xo, yo) from the
strong efficient frontier of TFDH-VRS by norm ‖.‖, which can be summarized as the below algorithm.

Algorithm 1.

1. Set k = 1 and go to Step 2.

2. If k ≤ n, compute:

ωk = max
j∈J

{

m
∑

i=1

(xik − xij) +

s
∑

r=1

(yrj − yrk)|xik ≥ xij , yrk ≤ yrj, i = 1, 2, . . . , m, r = 1, 2, . . . , s},

and go to Step 3. Otherwise, go to Step 6.

3. If ωk = 0, then (xk, yk) is a strong efficient DMU and go to Step 4. Otherwise, go to Step 5.

4. Compute dk =‖ (xk, yk) − (xo, yo) ‖ and set k := k + 1, and return to Step 2.

5. Set dk = +∞ and k := k + 1 and return to Step 2.

6. Compute d‖.‖((xo, yo), ∂S(TFDH-VRS)) = min
k=1,2,...,n

{dk} and stop.
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set n number of DMUs and k = 1

k ≤ n d = min
1≤k≤n

{dk}

compute ωk

ωk = 0

set dk =‖ (xk, yk) − (xo, yo) ‖
and k := k + 1

set dk = ∞, k := k + 1

No

Yes

No

Yes

Yes

Yes

4.2. Distance to the strong efficient frontier of TFDH-CRS

This subsection discusses the distance of the input-output points to the strong efficient frontier of the
production possibility set TFDH-CRS. In order to do this, if TFDH-CRS is considered as the PPS in Problem
(4.2), we have the following problem.

d‖.‖((xo, yo), ∂S(TFDH-CRS)) = min
(x,y)

‖(x, y) − (xo, yo)‖

s.t. (x, y) ∈ ∂S(TFDH-CRS).
(4.9)

Now to simplify Problem (4.9), first, the following theorem which presents a characterization for the
strong efficient points of TF DH−CRS is expressed.

Theorem 4.2. (x, y) ∈ TF DH−CRS is a strong efficient point if and only if there exist j ∈ J and λ ≥ 0
such that (x, y) = λ(xj, yj), where (xj , yj) is an observed efficient DMU.
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Proof: Suppose that (x, y) ∈ TF DH−CRS is a strong efficient point. Therefore, there exists j ∈ J

and λj ≥ 0 such that x ≥ λjxj , y ≤ λjyj . Since (x, y) is a strong efficient point, so it is clear that
x = λjxj , y = λjyj . That is (x, y) locates on the halfline {λ(xj , yj)|λ ≥ 0}. Furthermore, owing to the
efficiency of (x, y), it is clear that the observed DMU (xj , yj) is a strong efficient DMU too.
Conversely, suppose that (x, y) = λ(xj , yj) for some λ ≥ 0, where (xj , yj) is a strong efficient DMU.
Now, to prove the strong efficiency of (x, y), by contradiction assume that (x, y) is not a strong efficient
point. Then there exists (x, y) ∈ TF DH−CRS such that (x, −y) � (x, −y) = λ(xj , −yj). This is a
contradiction with the strong efficiency of (xj , yj). Therefore, (x, y) is a strong efficient DMU and the
proof is completed. ✷

Theorem 4.2 implies that:

∂S(TF DH−CRS) = {λ(xj , yj)|λ ≥ 0, (xj , yj) is a strong efficient DMU}.

Now, let’s consider the bilevel form (4.10) for obtaining the minimum distance of (xo, yo) from the strong
efficient frontier of TF DH−CRS .

d‖.‖((xo, yo), ∂S(TFDH-CRS)) = min
(x,y,s−,s+)

‖ (x, y) − (xo, yo) ‖ +M(1t
ms− + 1t

ss+)

s.t.(x, y) ∈ TFDH-CRS

max
(s−,s+)

1t
ms− + 1t

ss+

s.t. (x − s−, y + s+) ∈ ∪n
j=1{(x, y)|x ≥ λjxj , y ≤ λjyj , λj ≥ 0}

s− ≥ 0, s+ ≥ 0.

(4.10)

Similar to the discussion of the VRS case (subsection 2.1), problem (4.10) is equivalent to:

min
(x,y)

‖ (x, y) − (xo, yo) ‖ +M(max
j∈J

{

m
∑

i=1

(xi − λjxij) +

s
∑

r=1

(λjyrj − yr)})

s.t. (x, y) ∈ TF DH−CRS

max
j∈J

(

m
∑

i=1

(xi − λjxij) +

s
∑

r=1

(λjyrj − yr))

s.t. xi ≥ λjxij , yr ≤ λjyrj, λj ≥ 0, ∀i, r.

(4.11)

Since the optimal value of the lower level problem must be zero in optimality, therefore, Problem (4.11)
is equivalent to the following problem:

min
(x,y)

‖ (x, y) − (xo, yo) ‖

s.t. (x, y) ∈ TF DH−CRS

max
j∈J

{

m
∑

i=1

(xi − λjxij) +

s
∑

r=1

(λjyrj − yr)|xi ≥ λjxij , yr ≤ λjyrj , λj ≥ 0, ∀i, r} = 0.

(4.12)

Theorem 4.3. (x, y) ∈ TF DH−CRS is not strong efficient unit if and only if for some j ∈ J

r = 1, 2, ..., s, {
yr

yrj

} ≤ {
xi

xij

}, i = 1, 2, ..., m

and {
yr

yrj

} < {
xi

xij

}, at least for one i, r.

Proof: By attention to that

max
j

{

m
∑

i=1

(xi − λjxij) +

s
∑

r=1

(λjyrj − yr)|xi ≥ λjxij , yr ≤ λjyrj , λj ≥ 0, ∀i, r} > 0
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if and only if for some j ∈ J

r = 1, 2, ..., s, {
yr

yrj

} ≤ {
xi

xij

}, i = 1, 2, ..., m,

and {
yr

yrj

} < {
xi

xij

}, at least for one i, r, the proof is clear. ✷

Algorithm 2.

1. Set k = 1 and go to Step 2.

2. If k ≤ n, go to Step 3; Otherwise go to Step 6.

3. If

{
yrk

yrj

} ≤ {
xik

xij

}, ∀i, r

and at least one inequality is strict, then (xk, yk) is not strong efficient and go to Step 5; Otherwise,
go to Step 4.

4. Compute dk = min
λ≥0

‖ λ(xk, yk) − (xo, yo) ‖ and set k := k + 1 and return to Step 2.

5. Set dk = +∞ and k := k + 1 and return to Step 2.

6. Calculate d‖.‖((xo, yo), ∂S(TFDH-CRS)) = min
k=1,2,...,n

{dk} and stop.
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set n number of DMUs and k = 1

k ≤ n d = min
1≤k≤n

{dk}

∀i, r

{
yrk

yrj

} ≤ {
xik

xij

}

and at
least one
inequality
is strict

dk = min
λ≥0

‖ (xk, yk) − (xo, yo) ‖

and k := k + 1

set dk = ∞, k := k + 1

No

Yes

No
Yes

Yes

Yes

Now, we explain two processes through a simple example.

Example 4.1. Consider a simple case with six observed DMUs: a, b, c, d, e and f producing single-
output y by single-input x. The data are listed in Table 1. Dashed line shows TF DH−CRS frontier and
straight line shows TF DH−V RS frontier.

For point M we use alghorithm1 to find closest strong efficient point. First we specify strong efficient
points. In step2, for k = 1, 2, 3 and 4 we have ωk = 0. So the points a, b, c and d are strong efficient. For
k = 5 we have ω5 = max{(2−1)+(2−.5)} = 2.5 and for k = 6 we have ω6 = max{(5.5−4)+(3.5−4)} = 2.
So, e and f are inefficient. In step4 we use norm2 to calculate the distance from strong efficient frontier.
Results are d1 =‖ (5, 1) − (1, 2) ‖= 4.12, d2 =‖ (5, 1) − (3, 3) ‖= 2.83, d3 =‖ (5, 1) − (4, 4) ‖= 3.16 and
d4 =‖ (5, 1) − (8, 6) ‖= 5.83. We have min{d1, d2, d3, d4} = d2. So, b is the closest strong efficient point
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DMUs x y
a = (x1, y1) 1 2
b = (x2, y2) 3 3
c = (x3, y3) 4 4
d = (x4, y4) 8 6
e = (x5, y5) 2 0.5
f = (x6, y6) 5.5 3.5

Table 1: Data of observed DMUs.

x

y

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

1.0

2.0

3.0

4.0

5.0

6.0

a

b

c

d

e

f

M

PPS

o

♣

♣

♣

♣

♣

♣

♣

Figure 1: The production possibility set

to M .
Now, we use alghorithm2 to find closest strong efficient point to M . In step3 we see that only a is strong

efficient point. For example for k = 2 and j = 1 we have
y2

y1
<

x2

x1
. For k = 3, ..., 6 same result holds.

Now, according to step4 we have

d1 = min
λ≥0

‖ λ(1, 2) − (5, 1) ‖= 4.0249

The closest strong efficient point is on line λ(1, 2) that point is (
7

5
,

14

5
).

5. Illustrative Application to Bank Branches

In this section, the proposed approach is applied to a data set that has been analysed by Silva portela
et al. [14]. The data correspond to 24 bank branches with two inputs (staff costs and other operating
costs) and three outputs (value of current accounts, value of credit and interest revenues).
For an inefficient DMU, common methods (as much as possible) by reducing inputs and increasing outputs
perform efficiently and with this method in mind, by less demanding levels of operation for the inputs
and outputs define closest efficient target. Sometimes, it is reasonable that, instead of reducing input,
by a small increase in input get significant increase in outputs or by a small decreasing in output get
significant saving in inputs. While, this is in contrast with traditional DEA methods, we show that, this
leads to a better results.
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For instance, consider ���B19 in TF DH−V RS . As it is shown, the closest strong efficient target for
unit B19, obtained by our method, is B58. This point do not dominate B19 and is closer than B20
that Silva portela et al. [14] suggested. Also, in TF DH−CRS the closest efficient target for B19 is
[8.482814.5313503.91015847.138]. As we see this point do not dominate B19, too.

The data and results are shown in Tables 1 and 2, respectively. The closest target of each unit has
been recalculated by the proposed method. Tables 3 and 4 contents the results for the VRS and CRS,
respectively.

6. Conclusion

In the context of data envelopment analysis, many efficiency improving projection models have been
proposed; however, their drawbacks deemed researchers seek recent better models. In this article, we have
proposed a numeration method to compute the minimum distance of units from the strong efficient frontier
of the FDH non-convex production possibility set without using LP or MILP regular solving methods.
Moreover, for an inefficient DMU, common methods consider the dominant efficient DMU. then, define
closest efficient target. But, this method leads a closest efficient point that not necessarily dominate
assessed inefficient DMU. This is the remarkable advantage of our proposed method. The applicability of
the method is illustrated through analysing a real-world problem regarding 24 Portuguese bank branches.

7. Figures and Tables

Staff Other operating Current Interest FDH FDH
Unit Costs Costs Accounts Credit Revenue BCC-Eff. CCR-Eff.
B3 16.819 24.471 4892.629 10238.760 52.234
B5 11.243 23.558 4777.107 8756.227 52.449
B9 18.441 35.090 6450.385 12479.115 64.644
B10 10.106 23.104 5223.611 12572.231 61.332 %100 %100
B11 15.129 32.781 7666.449 10221.426 67.682 %100 %100
B13 12.979 23.658 4991.984 10194.377 48.583
B15 11.717 29314 4070.630 6418.995 40.328
B16 18.306 31.359 7561.477 21922.138 101.725 %100 %100
B17 16.505 31.574 6322.393 1323.595 81.404 %100
B19 12.211 24.411 3663.067 10103.516 49.062
B20 11.981 17.857 3899.831 10658.024 51.052 %100
B21 12.689 25.489 4797.797 10281.063 48.822
B22 16.166 26.062 3946.813 7358.401 46.214
B26 12.041 19.688 5524.905 7393.716 48.912 %100 %100
B27 10.021 16.780 3394.509 8269.236 39.565 %100
B29 12.739 18.505 5635.758 6667.397 63.048 %100 %100
B50 12.505 17.508 4745.698 9603.156 48.199 %100 %100
B51 15.178 21.418 5758.861 6007.936 64.210 %100
B52 14.146 22.291 4391.541 8259.170 50.503 %100
B53 12.959 20.117 5372.053 7323.490 64.076 %100 %100
B56 9.073 19.259 2888.434 8694.691 39.974 %100
B57 9.747 13.004 2107.062 5012.420 24.202 %100
B58 10.639 22.566 3344.774 10293.887 43.311 %100
B59 13.338 24.820 4354.301 10889.840 57.033

Table 2: Data of bank branches.

Closest Target FDH Procedure
Assessed DMU Distance Closest Efficient Point

Unit B19 602.98 B20
Unit B22 1004.59 B52

Table 3: Results from Silva Portela
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Closest Target (VRS)
Assessed DMU Distance Closest Efficient Point

Unit B19 370.93 B58
Unit B22 1004.59 B52

Table 4: Results for VRS.

Closest Target (CRS)
Assessed DMU Reference DMU Lambda Distance Closest Efficient Point

B19 B16 0.46339 168.73 [8.4828 14.531 3503.9 10158 47.138]
B22 B50 0.77906 278.79 [9.7421 13.64 3697.2 7481.4 37.55]

Table 5: Results for CRS.
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