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1. Introduction

In this paper, we study the following nonlinear impulsive differential problem:







−u′′(t) + a(t)u′(t) + b(t)u(t) = λg(t, u(t)), t ∈ [0, T ], t 6= tj ,

u(0) = u(T ) = 0,

∆u′(tj) = λIj(u(tj)), j = 1, 2, . . . , n,

(1.1)

where λ ≥ 0, g : [0, T ] × R → R, a, b ∈ L∞([0, T ]) with ess inft∈[0,T ] a(t) ≥ 0 and ess inft∈[0,T ] b(t) ≥
0, 0 = t0 < t1 < t2 < · · · < tn < tn+1 = T, ∆u′(tj) = u′(t+

j ) − u′(t−
j ) = limt→t

+

j

u′(t) − limt→t
−

j

u′(t) and

Ij : R → R are continuous for every j = 1, 2, . . . , n.
Impulsive differential equations are considered by many authors and one of the reasons of getting

this attention can be the main role they play in many real world phenomena such as medicine, biology,
mechanics, engineering, etc. One of the most important application of the impulsive differential equation
is that it is the main tool to study the dynamics of that process which are subject to sudden changes
in their state. The existence and multiplicity of solutions for impulsive differential equations have been
examined in many works, and for an overview on this subject, we refer the reader to the papers [2,4,
5,6,7,8,10,11,12,16,18,19,20,21,22,23,25,26,27,28,29]. For instance, in paper [6] the authors studied the
existence of n distinct pairs of nontrivial solutions for the following impulsive differential equations with
Dirichlet boundary conditions by using variational methods and critical point theory,

u′′(t) + λh(t, u(t)) = 0, t 6= tj a.e.t ∈ [0, T ]

−∆u′(tj) = Ij(u(tj)), j = 1, 2, . . . p,

u(0) = u(T ) = 0,

where 0 = t0 < t1 < · · · < tp < tp+1 = T, λ > 0, h ∈ C([0, T ] × R,R), Ij ∈ C(R,R), j = 1, 2, . . . , p,

∆(u′(tj)) = u′(t+
j ) − u′(t−

j ), u′(t+
j ) and u′(t−

j ) denote the right and the left limits, respectively, of u′(tj)
at t = tj , j = 1, 2, . . . , p. In [28], Zhang and Yuan dealt with the existence and multiplicity of solutions
for the nonlinear Dirichlet value problem with impulses. Using the variational methods and critical points
theory, they gave some new criteria to guarantee that the impulsive problem has at least one nontrivial
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solution, assuming that the nonlinearity is superquadratic at infinity, subquadratic at the origin, and the
impulsive functions have sublinear growth. Moreover, if the nonlinearity and the impulsive functions are
odd, then the impulsive problem has infinitely many distinct solutions. More precisely in [19] the authors
studied the existence of solutions for following second-order impulsive differential equation by using the
critical point theorem of Y.Jabri and an even functional theorem.







−u′′(t) + g(t)u(t) = f(t, u(t)), a.e.t ∈ [0, T ],
∆u′(tj) = Iju(tj), j = 1, 2, . . . , p

u(0) = u(T ) = 0,

where g ∈ L∞[0, T ], T is a real positive number, ∆(u′(tj)) = u′(t+
j ) − u′(t−

j ) = lims→t
+

j

u′(s) −
lims→t

−

j

u′(s), f : [0, T ] × R → R is continuous, tj , j = 1, 2, . . . , p are the instants where the impulses

occur and 0 = t0 < t1 < t2 < · · · < tp < tp+1 = T, Ij : R → R(j = 1, 2, . . . , p) are continuous. Also they
gave some criteria to guarantee that the impulsive differential equation has at least one solution, infinitely
many solutions under the assumption that a nonlinear term satisfies sublinear, superlinear, asymptoti-
cally linear, respectively. Some results are extended and conditions of assumptions are simplified. In [27]
the authors considered the existence of solutions for following nonlinear impulsive problem with periodic
boundary conditions, by using critical point theory,







−u′′(t) + cu(t) = λf(t, u(t)), t 6= tj a.e.t ∈ [0, T ],
∆u′(tj) = Iju(tj), j = 1, 2, . . . , p − 1
u(0) = u(T ), u′(0+) = u′(T −),

where c ∈ R, λ ∈ R \ {0} are two parameters, T > 0, f : [0, T ] × R → R is continuous, 0 = t0 < t1 <

t2 < · · · < tp = T, ∆u′(tj) = u′(t+
j ) − u′(t−

j ) = limt→t
+

j
u′(t) − limt→t

−

j

u′(t), u′(0+) = limt→0+ u′(t)

and u′(T −) = limt→T − u′(t), Ij : R → R, j = 1, 2, ..., p − 1 are continuous. Also they obtained some
existence theorems of infinitely many solutions for the problem when the impulsive functions are super
linear then extend and improve some results. In [7] the authors obtained some new existence results of
solutions for some Dirichlet impulsive differential problems using critical point theory, they gave some
new criteria to guarantee that the impulsive problem has at least one nontrivial solution or infinitely
many solutions, assuming that the nonlinearity is superquadratic and has a sublinear growth. In the
paper [4] the authors using variational methods studied second-order impulsive differential equations with
Dirichlet boundary conditions, depending on two real parameters, and showed that an appropriate growth
condition of the nonlinear term, under small perturbations of impulsive terms, ensures the existence of
three solutions, while in the paper [5] they established multiplicity results for the same equations, and
the have ensured the existence of infinitely many solutions using variational methods. Recently Graef
et al. in [11] investigated the existence of infinitely many periodic solutions to a class of perturbed
second-order impulsive Hamiltonian systems while the existence of nontrivial classical solutions for a
class of Dirichlet boundary value problems with impulsive effects via variational methods and critical
point theory is established in [10].

In the present paper, we are interested in ensuring the existence of at least one non-trivial solution
for the nonlinear Dirichlet boundary value problem (1.1).

2. Preliminaries

A classical solution of (1.1) is a function u such that:

u ∈ {w ∈ C([0, T ]) : w|[tj ,tj+1] ∈ H2([tj , tj+1])},

that satisfies the equation in (1.1) a.e. on [0, T ] \ {t1, . . . , tn}, the limits u′(t+
j ), u′(t−

j ), j = 1, 2, . . . , n,

exist, that satisfies the impulsive conditions ∆u′(tj) = λIju(tj)and the boundary conditions u(0) =
u(T ) = 0. If a, b and g are continuous, then a classical solution satisfies the equation in (1.1) for all
t ∈ [0, T ] \ {t1, t2, . . . , tn}. We consider the following slightly different form of problem (1.1):







−(p(t)u′(t))′ + q(t)u(t) = λf(t, u(t)), t ∈ [0, T ], t 6= tj ,

u(0) = u(T ) = 0,

∆u′(tj) = λIju(tj), j = 1, 2, . . . , n,

(2.1)
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where p ∈ C1([0, T ], ]0, +∞[) and q ∈ L∞([0, T ]) with ess inft∈[0,T ] q(t) ≥ 0. By choosing p(t), q(t) and
f(t, u) as follows, it is easy to see that the solutions of (2.1) are solutions of (1.1).

p(t) = e
−

∫

t

0
a(τ)dτ

, q(t) = b(t)e
−

∫

t

0
a(τ)dτ

, f(t, u) = g(t, u)e
−

∫

t

0
a(τ)dτ

.

Let E = H1
0 (0, T ), and consider the inner product

≺ u, v ≻=

∫ T

0

p(t)u′(t)v′(t)dt +

∫ T

0

q(t)u(t)v(t)dt

which its corresponding norm is

‖u‖ =
(

∫ T

0

p(t)(u′(t))2dt +

∫ T

0

q(t)(u(t))2dt
)

1
2

.

These following Lemmas will be helpful in the proving main results.

Lemma 2.1. ( [4, Proposition 2.1]) Let u ∈ E. Then

‖u‖∞ ≤ 1

2

√

T

p∗
‖u‖, (2.2)

where p∗ := mint∈[0,T ] p(t)

Let f : [0, T ] × R → R be an L1-Carathéodory function.

Definition 2.2. A function u ∈ E is said to be a weak solution of (2.1) if u satisfies

∫ T

0

p(t)u′(t)v′(t)dt +

∫ T

0

q(t)u(t)v(t)dt − λ

∫ T

0

f(t, u(t))v(t)dt + µ

n
∑

j=1

p(tj)Ij(u(tj))v(tj) = 0

for any v ∈ E.

Lemma 2.3. ( [4, Lemma 2.1]) u ∈ E is a weak solution of (1.1) if and only if u is a classical solution
of (2.1).

We establish our main results by applying the following version of Ricceri’s variational principle [24,
Theorem 2.1].

Theorem 2.4. Let X be a reflexive real Banach space, let Φ, Ψ : X → R be two Gâteaux differentiable
functionals such that Φ is sequentially weakly lower semicontinuous, strongly continuous, and coercive
and Ψ is sequentially weakly upper semicontinuous. For every r > infX Φ, let us put

ϕ(r) := inf
u∈Φ−1(]−∞,r[)

supv∈Φ−1(]−∞,r]) Ψ(v) − Ψ(u)

r − Φ(u)

Then, for any r > infX Φ and every λ ∈]0, 1
ϕ(r) [, the restriction of the functional Iλ = Φ − λΨ to

Φ−1(] − ∞, r[) admits a global minimum, which is a critical point (local minimum) of Iλ in X.

We refer the interested reader to the papers [1,9,13,14,15,17] in which Theorem 2.4 has been success-
fully employed to the existence of at least one non-trivial solution for boundary value problems.
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3. Main results

In this section we illustrate our main result to prove existence of solution for the problem.

Put F (t, ζ) =
∫ ζ

0
f(t, x)dx for each (t, ζ) ∈ [0, T ] × R.

Theorem 3.1. Assume that

sup
γ>0

γ2

∫ T

0
max|ξ|≤γ F (t, ξ)dt

>
T

2p∗
, (3.1)

lim sup
γ→+∞

Σn
j=1 max|ξ|≤γ −Ij(ξ)

γ2
< +∞ (3.2)

whose potential Ij(ξ) :=
∫ ξ

0
Ij(x)dx, ξ ∈ R, and there are non-empty open sets D ⊆ (0, T ) and B ⊂ D of

positive Lebesgue measures such that

lim sup
ξ→0+

ess inft∈B F (t, ξ) − ∑n

j=1,tj ∈B p(tj)Ij(ξ)

ξ2 = +∞

and

lim inf
ξ→0+

ess inft∈D F (t, ξ) − ∑n
j=1,tj ∈D p(tj)Ij(ξ)

ξ2 > −∞.

Then, for each

λ ∈ Λ = (0,
2p∗

T
sup
γ>0

γ2

∫ T

0
max|ξ|≤γ F (t, ξ)dt

),

the problem (1.1) admits at least one non-trivial weak solution uλ ∈ E. Moreover, we have

lim
λ→0+

‖uλ‖ = 0

and the real function

λ → 1

2

(

∫ T

0

p(t)(u′(t))2dt +

∫ T

0

q(t)(u(t))2dt
)

−λ(

∫ T

0

F (t, u(t))dt −
n

∑

j=1

p(tj)

∫ u(tj )

0

Ij(x)dx)

is negative and strictly decreasing in the open interval Λ.

Proof. We apply Theorem 2.4 to the problem (2.1). To this end, for each u ∈ E, set

Φ(u) =
1

2
‖u‖2, Ψ(u) =

∫ T

0

F (t, u(t))dt −
n

∑

j=1

p(tj)

∫ u(tj )

0

Ij(x)dx,

and
Iλ(u) = Φ(u) − λΨ(u).

Clearly, the functionals Φ and Ψ satisfy the required conditions in Theorem 2.4. The functional Ψ is
Gâteaux differentiable and sequentially weakly upper semicontinuous whose Gâteaux derivative at the
point u ∈ E is the functional Ψ′(u) ∈ E∗, given by

Ψ′(u)(v) =

∫ t

0

F (t, u(t))v(t)dt −
n

∑

j=1

p(tj)Ij(u(tj))v(tj)dx

for every v ∈ E. Moreover, we observe that the functional Φ is Gâteaux differentiable whose Gâteaux
derivative at the point u ∈ E is the functional Φ′(u) ∈ E∗, given by

Φ′(u)(v) =

∫ T

0

p(t)u′(t)v′(t)dt +

∫ T

0

q(t)u(t)v(t)dt
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for every v ∈ E. From the condition (3.1), there exists γ̄ > 0 such that

γ̄2

∫ T

0
max|ξ|≤γ̄ F (t, ξ)dt

>
T

2p∗

Put

r =
2p∗

T
γ̄2.

Also, we have Φ−1(−∞, r) = {u : Φ(u) < r} ⊆ {u : |u(t)| ≤ γ̄, ∀ t ∈ [0, T ]}. Hence

Ψ(u) =

∫ T

0

F (t, u(t))dt −
n

∑

j=1

p(tj)

∫ u(tj)

0

Ij(x)dx ≤
∫ T

0

max
|ξ|≤γ̄

F (t, ξ)dt

for every u ∈ E such that Φ(u) < r. Then

sup
Φ(u)<r

Ψ(u) ≤
∫ T

0

max
|ξ|≤γ̄

F (t, ξ)dt +

n
∑

j=1

p(tj)

∫ u(tj )

0

Ij(x)dx.

By considering the above computations and the definition of ϕ(r), since 0 ∈ Φ−1(−∞, r) and Φ(0) =
Ψ(0) = 0, one has

ϕ(r) = inf
u∈Φ−1(−∞,r)

supv∈Φ−1(−∞,r) Ψ(v) − Ψ(u)

r − Φ(u)

≤
supv∈Φ−1(−∞,r) Ψ(v)

r

≤ T

2p∗

∫ T

0 max|ξ|≤γ̄ F (t, ξ)dt

γ̄2 +
T ‖p‖∞

2p∗

n
∑

j=1

max|ξ|≤γ̄(−Ij)(ξ)

γ̄2

so we have

ϕ(r) ≤ T

2p∗

∫ T

0
max|ξ|≤γ̄ F (t, ξ)dt

γ̄2 +
T ‖p‖∞

2p∗

n
∑

j=1

max|ξ|≤γ̄(−Ij)(ξ)

γ̄2 (3.3)

Hence, putting λ∗ =
1

T

2p∗

∫ T

0 max|ξ|≤γ̄ F (t, ξ)dt

γ̄2 +
T ‖p‖∞

2p∗

∑n

j=1

max|ξ|≤γ̄(−Ij)(ξ)

γ̄2

Theorem 2.4 ensures

that for every λ ∈ (0, λ∗) ⊆ (0,
1

ϕ(r)
) the functional Iλ admits at least one critical point (local minima)

uλ ∈ Φ−1(−∞, r). For every fixed λ ∈ (0, λ∗) we show that uλ 6= 0 and the map

(0, λ∗) ∋ λ 7→ Iλ(uλ)

is negative. Let us verify that

lim sup
‖u‖→0+

Ψ(u)

Φ(u)
= +∞

Due to our assumptions at zero, we can fix a sequence {ξn} ⊂ R
+ converging to zero and two constants

σ, κ (with σ > 0) such that

lim
n→∞

ess inft∈B F (t, ξn) −
∑n

j=1,tj ∈B p(tj)
∫ u(tj)

0 Ij(x)dx

ξ2
n

= +∞

and

ess inf
t∈D

F (t, ξn) −
n

∑

j=1,tj∈D

p(tj)

∫ ξn

0

Ij(x)dx ≥ κξ2
n
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for every ξ ∈ [0, σ]. Now, fix a set C ⊂ B of positive measure and a function ν ∈ E such that:
(i) v(t) ∈ [0, T ], for every t ∈ [0, T ]
(ii) v(t) = 1, for every t ∈ C

(iii) v(t) = 0, for every t ∈ [0, T ]\D

Hence, fix M > 0 and consider a real positive number η with

M <
η meas(C) + κ

∫

D\C
|v(t)|2dt

‖v‖2

2

.

Then, there is ν ∈ N such that ξn < σ and

ess inf
t∈B

F (t, ξn) −
n

∑

j=1,tj∈B

p(tj)

∫ ξn

0

Ij(x)dx ≥ ηξ2
n

for every n > ν. Now, for every n > ν, bearing in mind the properties of the function v (that is
0 ≤ ξnv(t) < σ for n sufficiently large), one has

Ψ(ξnv)

Φ(ξnv)
=

∫

C
F (t, ξn)dt +

∫

D\C
F (t, ξnv(t))dt

Φ(ξnv)

−
∑n

j=1,tj∈C p(tj)
∫ ξn

0 Ij(x)dx +
∑n

j=1,tj ∈D\C p(tj)
∫ ξnv(tj)

0 Ij(x)dx

Φ(ξnv)

≥
η meas(C) + κ

∫

D\C
|v(t)|2dt

‖v‖2

2

> M.

Since M could be arbitrarily large it concludes that

lim sup
‖u‖→0+

Ψ(u)

Φ(u)
= +∞

Hence, there exists a sequence ωn ⊂ E strongly converging to zero such that, for n sufficiently large,
ωn ∈ Φ−1(−∞, r) and Iλ(ωn) := Φ(ωn) − λΨ(ωn) < 0, since uλ is a global minimum of the restriction of
Iλ to Φ−1(−∞, r), we conclude that

Iλ(uλ) < 0 (3.4)

so that uλ is not trivial. From (3.4) we easily see that the map

(0, λ∗) ∋ λ 7→ Iλ(uλ) (3.5)

is negative. Now we show that
lim

λ→0+
‖uλ‖ = 0.

By considering that Φ is coercive and that for λ ∈ (0, λ∗) the solution uλ ∈ Φ−1(−∞, r), one has that
there exists a positive constant L such that ‖uλ‖ ≤ L for every λ ∈ (0, λ∗). Clearly, there exists a positive
constant M such that

∣

∣

∣

∣

∫ T

0

F (t, uλ(t))uλ(t)dt +

n
∑

j=1

p(tj)

∫ u(tj)

0

Ij(x)dx

∣

∣

∣

∣

≤ M‖uλ‖ ≤ ML. (3.6)

for every λ ∈ (0, λ∗). Since uλ is a critical point of Iλ, we have I ′
λ(uλ)(v) = 0 for any v ∈ E and every

λ ∈ (0, λ∗). In particular I ′
λ(uλ)(uλ) = 0, that is,

Φ′(uλ)(uλ) = λ

∫ T

0

f(t, uλ(t))uλ(t)dt (3.7)
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for every λ ∈ (0, λ∗). By (3.7) it follows that

0 ≤ ‖uλ‖2 ≤ Φ′(uλ)(uλ) = λ

∫ T

0

f(t, uλ(t))dt

for any λ ∈ (0, λ∗).. Letting λ → 0+, by (3.6) we get

lim
λ→0+

‖uλ‖ = 0,

as claimed. Finally, we show that the map

λ 7→ Iλ(uλ)

is strictly decreasing in (0, λ∗). For our goal we see that for any u ∈ E, one has

Iλ(u) = λ
(Φ(u)

λ
− Ψ(u)

)

. (3.8)

Now, let us fix 0 < λ1 < λ2 < λ∗ and let uλi
be the global minimum of the functional Iλi

restricted to
Φ(−∞, r) for i = 1, 2. Also, let

mλi
=

Φ(uλi
)

λi

− Ψ(uλi
) = inf

ν∈Φ−1(−∞,r)

(Φ(ν)

λi

− Ψ(ν)
)

,

for every i = 1, 2. Clearly, (3.5) together with (3.8) and the positivity of λ imply that

mλi
< 0, for i = 1, 2. (3.9)

Moreover, since 0 < λ1 < λ2, we have
mλ2

< mλ1
. (3.10)

Then, by (3.8)-(3.10) and the fact 0 < λ1 < λ2, we obtain

Iλ2
(uλ2

) = λ2mλ2
≤ λ2mλ1

< λ1mλ1
= Iλ1

(uλ1
),

so that the map λ 7→ Iλ(uλ) is strictly decreasing in λ ∈ (0, λ∗). Since λ < λ∗ is arbitrary, we see that
λ 7→ Iλ(uλ) is strictly decreasing in (0, λ∗). The proof is complete. �

We here present the following example in which the hypotheses of Theorem 3.1 are fulfilled.

Example 3.2. Consider the following problem










































−(

√
t + 2

t + 1
u′(t))′ + u′(t) + u(t) = λf(t, u(t)), t ∈ [0, 1], t 6= 1

4 , 1
5

u(0) = u(1) = 0,

∆u′(
1

4
) = λ(−e

u(
1

4
)
(u2(

1

4
) + 2u(

1

4
))),

∆u′(
1

5
) = λ(−e

u(
1

5
)
(u2(

1

5
) + 2u(

1

5
))),

(3.11)

where f(t, x) = 2+t sin x for all (t, x) ∈ [0, 1]×R. By the expression of f we have F (t, x) = 2x−t cos x+t

for all (t, x) ∈ [0, 1] × R. Then, for each

λ ∈ Λ = (0, +∞),

the problem (3.11) admits at least one non-trivial weak solution uλ ∈ E. Moreover, we have

lim
λ→0+

‖uλ‖ = 0
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and the real function

λ → 1

2

(

∫ 1

0

√
t + 2

t + 1
(u′(t))2dt +

∫ 1

0

(u(t))2dt
)

− λ(

∫ 1

0

(2u(t) − t cos(u(t)) + t)dt

−
n

∑

j=1

(

√

tj + 2

tj + 1
)

∫ u(tj)

0

Ij(x)dx)

is negative and strictly decreasing in the open interval Λ.

We give some remarks of our results as follows.

Remark 3.3. Here employing Ricceri’s variational principle we are looking for the existence of critical
points of the functional Iλ naturally associated with the problem (2.1). We emphasize that by direct
minimization, we can not argue,in general for finding the critical points of Iλ. Because, in general, Iλ

can be unbounded from the following in E. Indeed, for example, in the case when f(x) = 1 + |x|τ−2x for
every x ∈ R, for any fixed u ∈ E \ {0} and ι ∈ R, we obtain

Iλ(ιu) =Φ(ιu) − λ

∫ t

0

f(ιu(t))dt − λ

n
∑

j=1

p(tj)

∫ ιu(tj )

0

Ij(x)dx

≤1

2
ι2‖u‖2 − λι‖u‖ − λιτ−1‖u‖τ − λp∗ L

2
‖u‖2 → −∞

as ι → +∞.

Remark 3.4. We want to point out that the energy functional Iλ associated with the problem (2.1) is
not coercive. Indeed, when f(x) = 1 + |x|τ−2x we have

Iλ(ιu) =Φ(ιu) − λ

∫ t

0

f(ιu(t))dt − λ

n
∑

j=1

p(tj)

∫ ιu(tj )

0

Ij(x)dx

≤1

2
ι2‖u‖2 − λι‖u‖ − λιτ−1‖u‖τ − λp∗ L

2
‖u‖2 → −∞

as ι → +∞

Remark 3.5. If in Theorem 3.1 the function f(t, x) ≥ 0 for a. e. (t, x) ∈ [0, T ] × R, the condition (3.1)
becomes to the more simple form

sup
γ>0

γ2

∫ T

0 F (t, ξ)dt
>

T

2p∗
. (3.12)

Moreover, if the following assumption is verified

lim sup
γ→+∞

γ2

∫ T

0
F (t, ξ)dt

>
T

2p∗
,

then the condition (3.12) automatically holds.

Remark 3.6. In Theorem 3.1 if f is nonnegative, then the solution uλ is positive. Indeed, arguing by a
contradiction, assume that the set A = {t ∈]0, 1] : uλ(t) < 0} is non-empty and of positive measure. Put
ū(t) = min{0, uλ(t)} for all t ∈ [0, 1]. Clearly, ū ∈ E and one has

Remark 3.7. Now, let us prove that the critical points of the energy functional Iλ are nonnegative.
Arguing by a contradiction, assume that u is a critical point of Iλ and the open set

A :=
{

t ∈ [0, T ] : u(t) < 0
}
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is of positive Lebesgue measure. Put ū := min{0.u}. Clearly, ū ∈ X and, taking into account that u is a
critical point, one has

0 =Φ′(u)(ū) − λΨ′(u)(ū)

=

∫ T

0

p(t)u′(t)ū′(t)dt +

∫ T

0

q(t)u(t)ū(t)dt − λ

∫ T

0

f(t, u(t))ū(t)dtū(tj)

+Σn
j=1p(tj)Ij(u(tj)) = 0

Thus, from our sign assumption on the data we have

0 ≤
(

∫ T

0

p(t)(u′(t))2dt +

∫ T

0

q(t)(u(t))2dt
)

1
2

≤
∫ T

0

p(t)(u′(t))2dt +

∫ T

0

q(t)(u(t))2dt

−λ(

∫ t

0

F (t, u(t))dt −
n

∑

j=1

p(tj)

∫ u(tj)

0

Ij(x)dx) ≤ 0

so it is absurd.

Now, we present a special case of Theorem 3.1 as follows.

Theorem 3.8. Let α ∈ L∞([0, T ]) such that ess inft∈[0,T ] α(t) > 0. Let f : R → R be a continuous

function such that f(0) = 0, and put F (ξ) =
∫ ξ

0
f(t)dt for all ξ ∈ R. Assume that

sup
γ>0

γ2

max|ξ|≤γ F (ξ)
>

T
∫ T

0
α(t)dt

2p∗

and condition (3.2) holds, there are non-empty open sets D ⊆ (0, T ) and B ⊂ D of positive Lebesgue
measures such that

lim sup
ξ→0+

F (ξ)ess inft∈B α(t) −
∑n

j=1,tj ∈B p(tj)Ij(ξ)

ξ2 = +∞

and

lim inf
ξ→0+

F (ξ)ess inft∈D α(t) − ∑n

j=1,tj ∈D p(tj)Ij(ξ)

ξ2 > −∞.

Then, for each λ ∈ Λ =

(

0,
2p∗

T
∫ T

0 α(t)dt
supγ>0

γ2

max|ξ|≤γ F (ξ)

)

, the problem







−(p(t)u′(t))′ + q(t)u(t) = λα(t)f(u), t ∈ [0, T ], t 6= tj ,

u(0) = u(T ) = 0,

∆u′(tj) = λIju(tj), j = 1, 2, . . . , n,

(Sλ,α)

admits at least one non-trivial weak solution uλ ∈ E such that

lim
λ→0+

‖uλ‖=0

and the real function

λ → 1

2

(

∫ T

0

p(t)(u′(t))2dt +

∫ T

0

q(t)(u(t))2dt
)

− λ(

∫ T

0

α(t)F (u(t))dt

−
n

∑

j=1

p(tj)

∫ u(tj)

0

Ij(x)dx)

is negative and strictly decreasing in Λ.
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At the end, we present the following example to illustrate previous theorem.

Example 3.9. Consider the following problem






−(u′(t))′ + u(t) = λα(t)f(u), t ∈ [0, 1], t 6= tj ,

u(0) = u(1) = 0,

∆u′(tj) = λIju(tj), j = 1, 2, . . . , n,

where f(x) = xex, α(t) =
√

t + 1 for all x ∈ R, t ∈ [0, 1] and Ij(ξ) = −ξ2 for all ξ ∈ R, j = 1, 2. By the
expression of f we have F (x) = xex − ex + 1 for all x ∈ R. Obviously are conditions of previous theorem

are fulfilled. So, for each λ ∈ Λ =

(

0, 4
3 (2

√
2 − 1)

)

, the above problem admits at least one non-trivial

weak solution uλ ∈ E such that
lim

λ→0+
‖uλ‖=0

and the real function

λ → 1

2

(

∫ 1

0

(u′(t))2dt +

∫ 1

0

(u(t))2dt
)

− λ(

∫ 1

0

α(t)F (u(t))dt

−
n

∑

j=1

∫ u(tj)

0

Ij(x)dx)

is negative and strictly decreasing in Λ.
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