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Radial Positive Solutions for (p(x),q(x))-Laplacian Systems

Mohamed Zitouni, Ali Djellit and Lahcen Ghannam

ABSTRACT: In this paper, we study the existence of radial positive solutions for nonvariational elliptic systems
involving the p(z)—Laplacian operator, we show the existence of solutions using Leray-Schauder topological
degree theory, sustained by Gidas-Spruck Blow-up technique.
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1. Introduction

In this paper we study the existence of positive radial solutions of asymptotically homogeneous systems
involving p(z)—Laplacian operator defined in RY, of the form

_Ap(fc)u = a11(|z]) f11(u) + a12(|z]) f12(v) in RN’

1.1
—Ag@yv = ani(|z]) for (u) + asa(|z]) for (v)  in RY. -
Here Ap ) is the so-called p(z)—Laplacian operator; namely := A, u = div(|VulP®)=2Vy), with
p and ¢ are continuous real-valued functions such that 1 < p(z),q(z) < N (N > 2) for all z € RY. The
coeflicients a;j5,4,j = 1,2, are positive continuous real-valued functions. The non linearities f;;,%,j = 1,2,
belong to asymptotically homogeneous class of functions.
In recent years, several authors have used different methods to solve equations or quasi-linear systems
defined in bounded or unbounded domains. Usually, we use critical points theory to show existence of
weak solutions. There is a lot of work on this subject (see [8], [11], and therein..). This variational
approach is used in particular to deal with systems derived from a potential, that is, the nonlinearities on
the right-hand side correspond to the gradient of certain functional. Several articles were written about
the homogeneous p—Laplacian operator. The reader can easily refer to the following list of work [6],
[9], [10], [12], To examine system (1.1), we first exhibit a priori estimates using Gidas-Spruck "Blow-up”
technique (see [4]). The main tool stay Leray-Schauder topological degree to establish the existence of
fundamental states. This contribution is an extension to the work Djellit and Tas [7]. These authers
consider the systems of the form

—Apu = Af(z,u,v) in RY,

1.2
—Agv = pg(z,u,v) in RV, (12)

Where the nonlinearities f and g, satisfy polynomial growth conditions. Existence results are proved
using fixed point theorems
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2. Preliminaries

First, we introduce definitions and notation utilized in this note. Let the Banach space

X = {(u,v) € C%([0, +oc[) x CO([0, +00]), THTOOU(T) = TEIJPOOU(T) = 0}

be equipped with the norm

[(w, v)llx = lJulloc + Vlloc;  Nulloo=""sup Ju(r)].
ref0,+o00]

Let K = {(u,v) € X, u > 0,v > 0} a positive cone of X. For h > 0 and A € [0, 1], we define two families
of operators T}, and Sy form X to itself by T} (u,v) = (w, 2) such that (w, z) satisfies the system

— (PN PO (1) = P s () () + " ana(r) [frale(r)]) + 4]

in [0, 400,
— (P EI720) = a0 far ()] + Y () foa (000 21)
in  [0,4o00[,
w'(0) = 2'(0) =0, lim w(r) = lim z(r) =0,

r——+oo r——4oo

and Sy(u,v) = (w, z) such that (w, z) satisfies the system

— (P P20 0) = A () fu () + A ass(r) fia ()

in [0, 400,
= (PO 22 0)) = A () far () + AV aza(r) ez o (r) (2:2)
in  [0,4o00[,
w'(0) = 2'(0) = 0, lim w(r) = lim z(r)=0.

r—4oo r——4o00

Let us recall the notion of "asymptotically homogeneous” functions and some of their properties.
A function ¢ : R — R defined in a neighborhood at the infinity (respect. at the origin) is said asymp-
totically homogeneous at the infinity (respect. at the origin) of order p > 0 if for all ¢ > 0, we have
. plos) £(03) _
s—+o0 ©(s)
As an example, we have the function ¢(s) = |s|* 2s(In(1 + [s]))? with a > 1 and 8 > 1—a, It is
asymptotically homogeneous at infinity of order o — 1 and at the origin of order av + 3 — 1.

= o” (respect. lim
s—0

Proposition 2.1. [1] Let ¢ : R — R be a continuous, odd, asymptotically homogeneous at infinity (re-
spect. at the origin) of order p such that to(t) > 0 for all t # 0 and (t) — o0 as t — oo, then

(i) For all € € ]0,p[, there exists to > 0 such that ¥t > to(respect. 0 < t < tg),c1tP~ < @(t) <
CotPTE; eq, co are positive constants. Moreover Vs € [to,t] : (p+1—¢2)p(s) < (p+ 1+ ¢e)p(t).

(ii) If (wy), (tn) are real sequences such that w, — w and t, — oo (respect. t, — 0) then
P(tnwn)

im = wr.
n——+oo Sp(tn)



RADIAL POSITIVE SOLUTIONS FOR (P(X),Q(X))-LAPLACIAN SYSTEMS 3
We assume that both the coefficients a;; and the functions f;;verify smooth conditions; explicitly:

(H1) For all i,j = 1,2, k = =£, the coefficient a;; : [0, +oo[— [0,+oc0[ is continuous and satisfies
3 011,012 > pF; 3 61,609 > ¢*: there exists R > 0 such that a;;(§) = 0(5_91‘-7) for all £ > R and
i= i >0; 4,7=12;
a Ten[ur}{]aj() i,] = 1% 7.

(H2) For all i, j = 1,2, the function f;; : R — R is continuous, odd such that sf;;(s) > 0 for all s # 0
and lirll fij(s) = +o0.

S—+00

(H3) For all i, j = 1,2 and k = =%, f;; is asymptotically homogeneous at the infinity of order d;; satis-
12021

fying oD =D >1, a1611—ar (pF —1)—pF < 0, aedas —az(¢¥ —1)—¢" < 0 and max (B4, By) >0
k(o k k
p"(¢" — 1) + d12g ¢ (p" — 1) + d21p" N p
where «a; = y Qg = ) = - ) =
P 00 — (PP - D(F =1 T d120m — (pF — 1)(¢F — 1) & e
N —¢F
(D) qk 1 .

(H2) For all i, = 1,2 k = 4, f;; is asymptotically homogeneous at the origin of order §;; with
011,012 > p* — 1,001, 620 > ¢" -1

A nontrivial positive radial solution (u,v) to system (Tp) = (S1) is also a solution to the following
differential system:

_ (rN‘l|u’(r)|p(r)_2ul(r))/ ="y (r) f11 (Ju(r)]) + 7V Lasa(r) fra(jo(r)))

in [0, +o0[,
= (P )20 (1) = PN g () o () + 7 ) (o)) (23)
in  [0,400[,
u'(0) =2'(0) =0, lim u(r) = lim o(r) =0.

r——4o00 r——+oo

To this end, we define the operator L : K — K by L(u,v) = (w, z) such that
+oo n =T
wi) = [ (17 [ an @ w©) + an©hat©)a)
' “+oo n 1
)= [0 [ O w©) + an(€)foa0(€))d) T

3. Existence of solutions

To show the existence result, it is necessary to state some lemmas.

Lemma 3.1. Under hypothesis (H1), we have

S (N € ags (€)dg) T dn

1

< S (Y e ay(€)d) T dp < oo fori=1, j=1,2 and k= +.
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B (™ e ag(€)de) ™

< f0+oo (nl_N fon §N*1a¢j(§)d§) +-1 dn < +o00 fori=2 j=1,2and k= +.

Proof.

b (nl_N foanflaij(ﬁ)df) T

S (nl_N Jo §N’1a¢j(§)d§) g

= (1 5 € g ©) T [ (0 ae) 7

The first integral in the right-hand side is finite since a;; is continuous. The second one is also finite.
Indeed, by virtue of (H1), we have

S (1N €N ais(€)de) T dn
_1 -0,
< [a~ (7717N IS fN_lcij(f)ﬁ_e”dﬁ) "y < e R

fori=1, 7=1,2 and k==

This last term vanishes for sufficiently large R. Similary, we get the same achievement for i = 2, j =
1, 2 and k = +. O

Lemma 3.2. If u € C* ([0, +00[) N C?([0, +c[) 4s a nontrivial positive radial solution of the problem
— (erl|u’(r)|p(r)*2u’(r))/ >0 in [0, +o0|
such that u(0) >0 and u'(0) <0, then
u(r) >0 and u'(r) <0 for all r > 0.
Proof. Let u be a nontrivial positive radial solution of the problem
— (erl|u’(r)|p(r)’2u’(r))l >0 in [0, +o0].
Suppose that 0 < s < r. Integrating from s to r, we obtain
PNl () P20 (1) < 8 () P2 ).
Letting s — 0, we get u/(r) < 0.
If w/(r) =0 then u/(s) = 0 for all 0 < s < r. This means that u is either constant in [0, +oo[ or there
exists ro > 0 such that v/(r) < 0 for r > ro and u/(r) = 0, u(r) = u(0) for 0 < r < rg. So u is non
increasing and u(0) > 0. O
Lemma 3.3. Let u € C'([0,400[) N C%([0,400]) be a positive solution of the problem
— (TN_1|u’(7“)|p_2u’(r))/ >0 in [0, 4o0]

such that u(0) >0 and v'(0) <0, hen
The function M, defined by M (r) = ru/(r) —l— ~—Lu(r), r > 0, is nonnegative and nonincreasing. In

particular, the function r — r = u(r) is nondecreasmg in [0, +oo[.
Proof. Since u is a positive solution of the problem

= (VPR E) 20 in [0, 4ol
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we have —rN=1(p — 1)|u/(r)[P~2u" (r) — (N — 1)rN=2|u/(r)|P~24/(r) > 0. In other words ru”(r) +

%u'(r) <0, or (r(r) + %u’(r) < 0. This yields that M, is nonincreasing. To show that

My(r) >0 for all 7 > 0, we use a contradiction argument. Indeed, assume that there exists r; > 0 such

that M, (r1) < 0. Since M), is nonincreasing, for all r > 1, M, (r) < M,(r1) or u/(r)+ %@ < M
On the other hand wu(r) > 0, % > 0, hence u/(r) < M”T(”) Consequently, u(r) — u(ry) <
My(r1)In(;>), 7 > ri. It follows immediately that lirJP u(r) = —oo. This contradicts u begin pos-
T—+00
itive. In particular
M,
WS s
ru(r)
! N-—-pl
Finally, we obtain w(r) + b > 0. In other words,
u(r)  p—1r
N—p /
<lnr p=1 u(r)) > 0.
This implies that the function r — =t u(r) is nondecreasing. O

The study of the function M, is essential and help us to estimate u(r)
Lemma 3.4. If (H1) is salisfied, then the operator L is compact.

Proof. L is well defined. Indeed
w(r) < en [ (1N €N ann (€)(wl(©) 1 +dg) T di

1

i [ (1N J7 €N ana(©)(wl©) 2 dg) T d

S11+e S12+e
< cxrer (Julloo) = + c126s ([0l]os) Ft < +00.

By Lemma 3.1,

¢ = 7 (1 ) € i (€)d) T dn < o,

fori=1,7=1,2and k ==+
Similarly,

821 +¢
2(r) < earbr (Julloo) =1 + 222 ([|v]|0)

b = fT+OO(171_N fon folaij(ﬁ)df)ﬁdn < 400 fori=2,j=1,2and k = +.
Obviously, sup |w(r)| < 4+ocoand sup |z(r)| < +oc.

ref0,+o00] ref0,+o00]
Morever, we have w >0, z>0 and lim w(r) = lim z(r) =0.
7—~400 7—~400

Now, we show that L is compact. Indeed, let (u,,v,) be a bounded sequence of X. From the relation

L(una Un) = (wm Zn)a
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we can write

— (P PO (1)) = PN e () fua(n (1)) + PV ana () fra (o ()
in  [0,400[,

— (N2, 0)) = PN () for (un(r) + () v (1) (3.1)
in [0,4o00[,
w'(0) = 2'(0) = 0, TEToow(r) = TEIJPDQZ(T) =0,

For fixed R > 0, let = € [0, R] and put ¢(t) = [¢|[P() 1
From the first equation of the above system, we obtain

y N-1

“o(wy, (1)) + [wl, (NPT~ — ay1(r) f11 (un (1) — ar2(r) fr2(va(r)) =0,

r
Therefore

(W () = an(r) fir (un(r)) — ara(r) frz(va(r)) <0,

in view of the part (i) of Proposition 2.1, we have

oWy (1) < an (r) (un ()P4 + ana(r) (v (r) P2+,

Since u, and v, are bounded, we get

d
%go(w;(r)) < cra11(r) + ceaia(r).
Integrating from 0 to R both last inqualities, we obtain

p(w, (R)) <c,

[(w, (R)) PP~ < e (3.2)

This means that at finite distance, w/, is bounded.
In the same way, substuting ¢ to p, we show that again z/,(r) is bounded on [0, +o0].

This yields |w/, (r)] < ¢; |z, (r)] < eV r e [0,R], Vn e N. Consequently, (w,) and (z,) are equicon-
tinuous. According to Arzela-Ascoli theorem, there exist two subsequences, denoted again as (w,) and
(2n), such that w,, — w; 2z, — 2 in C°([0,R]); V R > 0.

Let us prove now that (wy,, z,,) is a cauchy sequence in X. Indeed,

sup  [wn(r) — wm(r)] < sup |wn(r) —wm(r)|+  sup  fwn(r) — wm(r)]
re[0,+o00] rel0,R[ re[R,+o0]

sup  |wn(r) —wm(r)| < sup  |wa ()| +  sup  |wp(r)]
re[R,+oo| r€[R,+oo| re[R,+oo|
511+e¢ d12+e¢
< cner ([Junlloo) 7= + c12¢2 (Jonl|o) P57

811 +e€ d12+¢
+ener ([[umlloo) 71 + 1262 ([[vmlloo) 7
We have ¢1 + ¢z < € as R sufficiently large. On the other hand (w,,) converges in C°([0, R]).

It follows that (w,,) is a cauchy sequence in C°([0,4+oc0c). In a similar manner, (z,) is also a cauchy
sequence in CY([0, +ool). Consequently (u,,v,) is a cauchy sequence in X. Hence L is compact. O
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Theorem 3.5. If hypotheses (H1)-(H3), are satisfies the system

aa(lz)) || Pe  in RV,

an () [u)® u in R,

—Ayu

a (3.3)

has no non-trivial radial positive solutions; in particular (3.3) has no ground state.

Proof. Let us argue by contradiction. Let (u,v) be a radial positive solution of system (3.3). Then (u,v)
satisfies the differential system

— (PN () P2 () )/ “aya(r)(v(r)*? in [0, 400
— (PN ()72 (1) )I = V" Lagy (r) (u(r))2 in [0, +o00] (3.4)
w'(0) = (0) 0.

Hence,
— (PN ()P () > N e (3.5)
— (PN ()92 () > N T et (3.6)
with v% = r[gir]l v(r)du for i # j.

First, consider the case 5; > 0 or 8, > 0. Integrating both (3.5) and (3.6) from 0 to r and taking into
account that u/(r) <0, v'(r) < 0 for all » > 0, we obtain

N — a p—1 . 5 N —
0> —ru(r)— pu(r) > (a1> Py — pu(r),

p—1 N p—1
1
N—g¢q a2\ T e s N-—gq
> —r/ — > | = q—lqya—1 — .
0> —rv'(r) q_lv(r)(N) ro-ty q_lv(r)
This yields
u(r) > CraTurt 3.7
v(r) > Cr Ty (3.8)
Combining these two inequalities, we have
u(r) < Cr=, (3.9)
v(r) < COr=e2. (3.10)
Since r%u(r) and T%U(T’) are nondecreasing, for all r > r9 > 0,
u(r) > Ccr=3=t, (3.11)
v(r) > Cr— . (3.12)

Inequalities (3.9)—(3.12) imply either 7?1 < C or r’2 < C. This yields a contradiction. Suppose with
out loss of generality now that 8; = 0. Integrating with respect to r the first equation of System (3.4)
from o > 0 to r, we obtain
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T
PN/ (r) Pt — rév_1|u’(ro)|p*1 > ElfsN*1v512 (s)ds.
ro

On the other hand, by (3.8)

w2 (s5) > Os 2 R (s),

Consequently,

T
Ny (r) [Pt > CfsN71+%u51<12*5121 (s)ds.
ro

Taking into account inequality (3.11) and the fact that 8, = 0, we have

r _ r
PN/ ()Pt > O [N P - g = Cf[stds=ClnL.
0

To To

p—1
On the other hand, M, (r) > 0 for r > 0 implies (%) uP~(r) > P! (r)|P~ . Hence

—1 —1 —1 -N
w=H(r) = CrP= ()P~ = CrP~ N In =
Then we write
N 1

rﬁu(r) > C(ln=)» 7.

This together with (3.9) yields a contradiction. O

We now show that the eventual radial positive solutions of System (2.1) are bounded.

Theorem 3.6. Assume (H1)-(Hj). If (u,v) is a ground state of (2.1). then there exists a constant
C > 0 (independent of u and v) such that ||(u,v)||x < C.

Proof. Let (u,v) be a ground state of (2.1) for h = 0, then (u,v) satisfies the system

— (PN PO () = () fua () + Y ana () fua(0(7)

in [0, +o0[,
= (P O 20 @) = Y () for () + 1 () fa o(1) (3:.13)
in  [0,400[,
u'(0) ='(0) =0, lim u(r) = lim v(r) =0,

r——+oo r——+o0

Assume now that there exists a sequence (u,,v,) of positive solutions of (3.13) such that ||u,|/cc — 00
1 L

as n — 00 or ||[unllee — 00 as n — oco. Taking v,, = |[un||& + |lvn]|s2, and using (H2), we have a; > 0
and ag > 0. So 7,, = +00 as n — 0o.

Now we introduce the transformations
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Observe that for all y € [0,+o0[, 0 < w,(y) <1, 0 < z,(y) < 1. Furthermore it is easy to see that
for any n the pair (wy,, 2,,) is a solution of the system

a1 (p(2)-D)+p(55) N_ vy
— (T Nl () [Pl ()
_ Y o .
=y 1a11(7)f11(7n1wn(y))+yN 1a12(,y Vfi2(Vn2za(y))  in [0,400],
a2(q(535)—D+ae(55)
— (Yn’ gz ()| G2 () (3.14)
— y « — « .
=y~ 1a21(7_)f21(7n1wn(y))+y1v 1a22(7_)f22(7n22n(y)) in [0, +oo[,
wh, (0) = 21,(0) = 0, im w,(r) = lim z,(r) =0

Let R > 0 be fixed. We claim that (w],) and (z/,) are bounded in C([0, R]). Indeed passing to a
subsequence of (w;,) (denoted again (wy,)) assume that ||w;,||(j0,r]) — +00 as n — +oco. Hence there exists
a sequence (y,,) in [0, R] such that for all A > 0, there exists ng € N such that for all n > ng, |w), (yn)| > A.

Integrating with respect to y the first equation of System (3.14) we obtain

/ p(2)—1 _ 1 oNe Y o N-1
‘wn(yn” - N—1 al(p(g(—:)—l)-‘rp(%)/ov (y all(yn)fll(’}/n wn(y))+y alZ(’Y ).le(rY»n Z'n( )) dy
n Tn

n

k_
2 Yn Otl(ZD 1)+p*

Yn \__ 1 Yn _ n Wn _ n *n
P8 < i | <yN - (Pyyn)flﬁp tun(0) | o 8 O <y>>> "

From the fact that fi;, j = 1,2, are asymptotically homogeneous at the infinity together with part
(i) of Proposition 2.1, we arrive to the statement: for all € € [0,d1,[, there exists ¢1;,¢3; > 0, so > 0
such that for all s > sg

ehysE < fiy(s) < s
Since (wy,) and (zy) are bounded, we conclude that

a1Gu—e)—ar(p*-D-p* _ 1O wny)) o ai@ure—an@F-1-p*

C117n > W > n ’
0%27012(612 g)—ar(pF—1)— < flzl(?;;_zs_(,_p)) < 6%2722(512+6)*a1(17k*U*Pk
Tn

By choosing ¢ sufficiently small, the assumption (H3) yields

Su(yntwa(y)) Jr2(v72 20 (y))
W%O and W_)61 as n — +00,
Tn Yn

where ¢; is positive constant. So there exists n; € N such that for any n > n;, we have

Yn y_ ai12 0 " _ C1 Rcl
|w;z(yn)|p(7") ' < yN(_l) €1 fo yN 1dy = NﬂlQ(O)yn < Tam(o) =c

Setting n > max(ng,n1), we have A < |w/ (yn)| < c. This contradicts the fact that A may be infinitely
large. Similarly we prove that (z/,) is bounded in (C]0, R]). Consequently (w,) and (z,) are equicon-
tinuous in C([0, R]). By Arzela-Ascoli theorem, there exists a subsequence of (w,) denoted again (wy,)
(respect. (zy)) such that w,, — w (respect. z, — z) in C([0, R]).

On the other hand,

lwnllZ + 120132
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this implies that the real-valued sequences (||wn]|oo) and (||zn|/s) are bounded. Hence there exist subbe—
quences denoted again (||wy,||s) and (||zn]leo) such that ||wn|\Oo — wo, Hzn||OO — zp and w§' + zoo‘z =1.

In view of the uniqueness of the limit in C([0, R]), we get [|w]|& + ||z]|53 5 = 1. This implies that (w, z) is
not identically null. Integrating from 0 to y € [0, R], the first and the second equation of System (3.14),
we obtain

Yy
wn (0) — wn(y) = / (9u0) T, (3.15)
0
Yy
2 (0) — za(y) = / (ha(0)) 0 dt, (3.16)
0
Clearly g,(y) and h,(y) are defined by
gn(y) = : , / ’ (tN—lau(i>fuwmw (1) + - 1a12< ) el )dt.
N IR o o n

n

1 YN t fulntwa) | v Jr2(Va2zn(t
gn<y>SF/0 (t T mal - )a1<pk—1>+p d.

_ 1 YN t o N—1
hn(y) - N1 012(11(%)—1)-‘,-(1(%) /0 (t a21(,y_)f21(7n wn( )) +t GQQ(P}/ f22 r)/n Z'n, dt
Y Yn " "
Lo onvo b fa(ntwa(®) | v faa (2 2n (t
ha(y) < yN—l/O (t a21(Tn)W +i a22(7n) az(q’“—l)-s-q dt.
Compiling Proposition 2.1 and (H3), we obtain
Ju (v wa(t)) fa2 (V2 zn (1))
w0 aalgb D+ 0,
f2(7822a(®) _ F120082)  fr2(r32za(t)) 5
gl(pk—l)-‘rpk - zl(pk_l)_,’_p f12( ) — cz12 (t)
(&5} n t (&5} 1 n t
f21(77]z w ( Z) _ fQIIEP)/n ) fQI(PYn w ( )) N C’LU521 (t),
%014201 —1)+q %0142(q —DHdt o (79Y)
as n — 0o. By the Lebesgue theorem on dominated convergence, it follows that
gnly) > =y I3 N ana(0):02 1)t
c
ha(y) — ST foy tN"Lag; (0)w2 (t)dt,
as n — oco. Passing to the limit in (3.15) and (3.16), we arrive to
1
w(0) —w(y) = e fy (e fy ¥ ara(0)2m2 ()dt) ™ d,
1
Z(O _z _Cfo (gN , f tN- 1a21(0)w521( )dt) q(0)—1 d£
In this way, w > 0,2z > 0,w, z € C1([0, R]) N C?([0, R]) and satisfy the system
—(yN T ' ()PP () = carz(0)yN T (=(y)® in [0, R
—(N T W () = cazn (0)yV T (w(y))** in [0, R] (3.17)
w'(0) = ( )=0.

If we use the same arguments on [0, R*] where R* > R, we obtain a solution (w*,z*) of System (3.17)
with R* instead of R, which coincide with (w, z) in [0, R] To this end, we indefinitely extend (w,z) to
[0, +00[. By Lemma 3.2 we have w(y) > 0, z(y) > 0, for all y > 0. The pair (w, z) also satisfies System
(3.17). In other words (w, z) is a radial positive solution of (3.4). This contradicts Theorem 3.5. O
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Lemma 3.7. Under assumptions (H1)-(H/), there exists hg > 0 such that the problem (u,v) = Ty (u,v)
has no solution for h > hg.

Proof. Suppose by contradiction that there is a solution (u,v) € X of the above problem. Then (u,v)
satisfies system

— (PN PO () = N an () fu () + Y ans () [ (o) + ]

in [0, 4o00],
- (rN*1|v'<r)|q<T>*2v’<r>)' — NV Lag, (1) for (Ju(r)]) + ¥ ags(r) faa (|0()]) (3.18)
in [0, 400,
u'(0) = '(0) = 0, lim u(r) = lim v(r) =0,

r——4o00 r——4o00

Assume that there exists a sequence (h,) h, — +00 as n — 400, such that (3.18) admits a pair
of solutions (u,,v,). In accordance with Lemma 3.2, we have u,(r) > 0, v,(r) > 0, u/,(r) <0, and
vy, (r) <0, for all n € N. Integrating the first equation of System (3.18), from R to 2R, R > 0, we obtain

R

2R n P 1
un(R)Z/ (nl—N/ §N1a12(§)hnd§> dn > cRhE" ",
0
Here

1 R . pF—1
c= <W/O fN a12(§)d€> :

1
Consequently u,(R) > cRhE"~'. Passing to the limit we get un(R) — 400. On the other hand,
integrating the second equation of (3.18), from R to 2R, we obtain

R

2R n = 1
w®)> [ (nl‘N / £N_1a21(£)f21(un(£))d£> dn > cR(far (un(R)) T

5
By hypothesis (H3) and Proposition 2.1, we have v, (R) > c(un(R)) = Operating similarly, we
d12—¢
obtain u, (R) > ¢(v,(R)) =1, 1t follows from the last two inequalities, that

(512—5)(521—E)—(pk—l)(qk—l)

(un(R)) P D) <

1
c
This is the desired contradiction since u,,(R) increases to infinitely. O

Lemma 3.8. There exists p > 0 such that for all p €]0,p[ and all (u,v) € X satisfying ||(u,v)|| = p, the
equation (u,v) = Sy (u,v) has no solution.

Proof. Assume that there exist (p,) € Ry, p, — 0; (A,) C [0,1] and (uy,v,) € X such that (un,v,) =
San (Unyvp) with ||(un, v,)|| = p,. Taking (H{) into account,

kl glkl £ EIRQ €
lunlloe < cAi o |l 4+ [|vnldo -,

kl §2kl+s 32134—5
[vnlloo < AR | lunllse ™ +llvnlle ™" |-
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Adding term by term, we obtain

11+ 5

e — 127T¢ Sg1+4¢ Soo+e
[[(un, vn) || < C (||(Umvn)|| PPt [ (s, vn) 751 ([ (s vn) [ o™= [ (u, vn) || 0" ) :

This implies

511 € 5 521 € 322+5_1
pk— gk —

te 1 S12de ¢ te 1 S22t
1< C | [(un,vn)| A (s o) P (s vn)| E (s, on) || et :
The above inequality contradicts the fact that ||(wy,v,)|| = p, = 0 as n — 400 O

Theorem 3.9. Under hypotheses (H1)-(H4), System (1.1) has positive radial solution.

Proof. To show the existence of ground states for (1.1) (or (2.1) with h = 0), it is sufficient to prove that
the compact operator Ty admits a fixed point. In view of Theorem 3.6, the eventual fixed point (u,v) of
Ty are bounded; explicitly there exists C' > 0 such that ||(u,v)||x < C. Let us chose R; > C and let us
designate by Bpr, the ball of X, centered at the origin with radius R;. To this end, the Leray-Schauder
degree deg;g(I — Th, Br,,0) is well defined. It being understood that I denote the identical operator
in X. Moreover, by Lemma 3.7, we have deg; ¢(I — Th, Br,,0) = 0 for all b > hg. It follows from the
homotopy invariance of the Leray-Schauder degree that

degLs(I— TO,BRI,O) - degLs(I— Th,BRl,O) - O

On the other hand, by Lemma 3.8, there exists 0 < p < 7 < R; such that deg;g(I — S, B,,0) is
well defined. Once again, the homotopy invariance of the Leray-Schauder degree yields

1= deg; (I, B,,0)
= deg;s(I —Sx, B,,0)
= deg;q(I — S1,B,,0)
degps(I — Ty, B,,0).

Using the additivity of the Leray-Schauder degree,
deg;s(I — Ty, Br, \ B,,0) = deg¢(I — Ty, Br,,0) — deg; (I — Tp, B,,0) = —1.

This implies that T, has fixed point in Bg, \ B,. Consequently, there exists a nontrivial ground state.
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