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Radial Positive Solutions for (p(x),q(x))-Laplacian Systems

Mohamed Zitouni, Ali Djellit and Lahcen Ghannam

abstract: In this paper, we study the existence of radial positive solutions for nonvariational elliptic systems
involving the p(x)−Laplacian operator, we show the existence of solutions using Leray-Schauder topological
degree theory, sustained by Gidas-Spruck Blow-up technique.

Key Words: p(x)-Laplacian operator, elliptic systems, blow up technique, Leray-Schauder topolog-
ical degree.

Contents

1 Introduction 1

2 Preliminaries 2

3 Existence of solutions 3

1. Introduction

In this paper we study the existence of positive radial solutions of asymptotically homogeneous systems
involving p(x)−Laplacian operator defined in R

N , of the form

−∆p(x)u = a11(|x|)f11(u) + a12(|x|)f12(v) in R
N ,

−∆q(x)v = a21(|x|)f21(u) + a22(|x|)f22(v) in R
N .

(1.1)

Here ∆p(x) is the so-called p(x)−Laplacian operator; namely := ∆p(x)u = div(|∇u|p(x)−2∇u), with
p and q are continuous real-valued functions such that 1 < p(x), q(x) < N (N ≥ 2) for all x ∈ R

N . The
coefficients aij , i, j = 1, 2, are positive continuous real-valued functions. The non linearities fij , i, j = 1, 2,

belong to asymptotically homogeneous class of functions.
In recent years, several authors have used different methods to solve equations or quasi-linear systems
defined in bounded or unbounded domains. Usually, we use critical points theory to show existence of
weak solutions. There is a lot of work on this subject (see [8], [11], and therein..). This variational
approach is used in particular to deal with systems derived from a potential, that is, the nonlinearities on
the right-hand side correspond to the gradient of certain functional. Several articles were written about
the homogeneous p−Laplacian operator. The reader can easily refer to the following list of work [6],
[9], [10], [12], To examine system (1.1), we first exhibit a priori estimates using Gidas-Spruck ”Blow-up”
technique (see [4]). The main tool stay Leray-Schauder topological degree to establish the existence of
fundamental states. This contribution is an extension to the work Djellit and Tas [7]. These authers
consider the systems of the form

−∆pu = λf(x, u, v) in R
N ,

−∆qv = µg(x, u, v) in R
N .

(1.2)

Where the nonlinearities f and g, satisfy polynomial growth conditions. Existence results are proved
using fixed point theorems
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2. Preliminaries

First, we introduce definitions and notation utilized in this note. Let the Banach space

X =

{
(u, v) ∈ C0([0, +∞[) × C0([0, +∞[), lim

r→+∞

u(r) = lim
r→+∞

v(r) = 0

}

be equipped with the norm

‖(u, v)‖X = ‖u‖∞ + ‖v‖∞, ‖u‖∞ = sup
r∈[0,+∞[

|u(r)|.

Let K = {(u, v) ∈ X, u ≥ 0, v ≥ 0} a positive cone of X . For h ≥ 0 and λ ∈ [0, 1], we define two families
of operators Th and Sλ form X to itself by Th(u, v) = (w, z) such that (w, z) satisfies the system

−
(

rN−1|w′(r)|p(r)−2w′(r)
)′

= rN−1a11(r)f11(|u(r)|) + rN−1a12(r) [f12(|v(r)|) + h]

in [0, +∞[ ,

−
(

rN−1|z′(r)|q(r)−2z′(r)
)′

= rN−1a21(r)f21(|u(r)|) + rN−1a22(r)f22(|v(r)|)

in [0, +∞[ ,

w′(0) = z′(0) = 0, lim
r→+∞

w(r) = lim
r→+∞

z(r) = 0,

(2.1)

and Sλ(u, v) = (w, z) such that (w, z) satisfies the system

−
(

rN−1|w′(r)|p(r)−2w′(r)
)′

= λrN−1a11(r)f11(|u(r)|) + λrN−1a12(r)f12(|v(r)|)

in [0, +∞[ ,

−
(

rN−1|z′(r)|q(r)−2z′(r)
)′

= λrN−1a21(r)f21(|u(r)|) + λrN−1a22(r)f22(|v(r)|)

in [0, +∞[ ,

w′(0) = z′(0) = 0, lim
r→+∞

w(r) = lim
r→+∞

z(r) = 0.

(2.2)

Let us recall the notion of ”asymptotically homogeneous” functions and some of their properties.
A function ϕ : R → R defined in a neighborhood at the infinity (respect. at the origin) is said asymp-
totically homogeneous at the infinity (respect. at the origin) of order ρ > 0 if for all σ > 0, we have

lim
s→+∞

ϕ(σs)

ϕ(s)
= σρ (respect. lim

s→0

ϕ(σs)

ϕ(s)
= σρ).

As an example, we have the function ϕ(s) = |s|α−2s(ln(1 + |s|))β with α > 1 and β > 1 − α, It is
asymptotically homogeneous at infinity of order α − 1 and at the origin of order α + β − 1.

Proposition 2.1. [1] Let ϕ : R → R be a continuous, odd, asymptotically homogeneous at infinity (re-
spect. at the origin) of order ρ such that tϕ(t) > 0 for all t 6= 0 and ϕ(t) → ∞ as t → ∞, then

(i) For all ε ∈ ]0, ρ[ , there exists t0 > 0 such that ∀t ≥ t0(respect. 0 ≤ t ≤ t0), c1tρ−ε ≤ ϕ(t) ≤
c2tρ+ε; c1, c2 are positive constants. Moreover ∀s ∈ [t0, t] : (ρ + 1 − ε)ϕ(s) ≤ (ρ + 1 + ε)ϕ(t).

(ii) If (wn), (tn) are real sequences such that wn → w and tn → +∞ (respect. tn → 0) then

lim
n→+∞

ϕ(tnwn)

ϕ(tn)
= wρ.
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We assume that both the coefficients aij and the functions fijverify smooth conditions; explicitly:

(H1) For all i, j = 1, 2, k = ±, the coefficient aij : [0, +∞[→ [0, +∞[ is continuous and satisfies

∃ θ11, θ12 > pk; ∃ θ21, θ22 > qk; there exists R > 0 such that aij(ξ) = O(ξ−θij ) for all ξ > R and
ãi = min

r∈[0,R]
aij(r) > 0; i, j = 1, 2; i 6= j.

(H2) For all i, j = 1, 2, the function fij : R → R is continuous, odd such that sfij(s) > 0 for all s 6= 0
and lim

s→+∞

fij(s) = +∞.

(H3) For all i, j = 1, 2 and k = ±, fij is asymptotically homogeneous at the infinity of order δij satis-

fying
δ12δ21

(pk − 1)(qk − 1)
> 1, α1δ11 −α1(pk −1)−pk < 0, α2δ22 −α2(qk −1)−qk < 0 and max(β1, β2) ≥ 0

where α1 =
pk(qk − 1) + δ12qk

δ12δ21 − (pk − 1)(qk − 1)
, α2 =

qk(pk − 1) + δ21pk

δ12δ21 − (pk − 1)(qk − 1)
, β1 = α1 −

N − pk

pk − 1
, β2 =

α2 −
N − qk

qk − 1
.

(H4) For all i, j = 1, 2, k = ±, fij is asymptotically homogeneous at the origin of order δij with
δ11, δ12 > pk − 1, δ21, δ22 > qk − 1.

A nontrivial positive radial solution (u, v) to system (T0) ≡ (S1) is also a solution to the following
differential system:

−
(

rN−1|u′(r)|p(r)−2u′(r)
)′

= rN−1a11(r)f11(|u(r)|) + rN−1a12(r)f12(|v(r)|)

in [0, +∞[ ,

−
(

rN−1|v′(r)|q(r)−2v′(r)
)′

= rN−1a21(r)f21(|u(r)|) + rN−1a22(r)f22(|v(r)|)

in [0, +∞[ ,

u′(0) = v′(0) = 0, lim
r→+∞

u(r) = lim
r→+∞

v(r) = 0.

(2.3)

To this end, we define the operator L : K → K by L(u, v) = (w, z) such that

w(r) =

∫ +∞

r

(
η1−N

∫ η

0

ξN−1(a11(ξ)f11(u(ξ)) + a12(ξ)f12(v(ξ)))dξ

) 1
p(η)−1

dη,

z(r) =

∫ +∞

r

(η1−N

∫ η

0

ξN−1(a21(ξ)f21(u(ξ)) + a22(ξ)f22(v(ξ)))dξ)
1

q(η)−1 dη.

3. Existence of solutions

To show the existence result, it is necessary to state some lemmas.

Lemma 3.1. Under hypothesis (H1), we have

∫ +∞

0

(
η1−N

∫ η

0
ξN−1aij(ξ)dξ

) 1
p(η)−1

dη

≤
∫ +∞

0

(
η1−N

∫ η

0
ξN−1aij(ξ)dξ

) 1

pk
−1

dη < +∞ for i = 1, j = 1, 2 and k = ±.



4 M. Zitouni, A. Djellit and L. Ghannam

∫ +∞

0

(
η1−N

∫ η

0
ξN−1aij(ξ)dξ

) 1
q(η)−1

dη

≤
∫ +∞

0

(
η1−N

∫ η

0 ξN−1aij(ξ)dξ
) 1

qk
−1

dη < +∞ for i = 2, j = 1, 2 and k = ±.

Proof.
∫ +∞

0

(
η1−N

∫ η

0 ξN−1aij(ξ)dξ
) 1

p(η)−1

dη

≤
∫ +∞

0

(
η1−N

∫ η

0
ξN−1aij(ξ)dξ

) 1

pk
−1

dη

=
∫ R

0

(
η1−N

∫ η

0 ξN−1aij(ξ)dξ
) 1

pk
−1

dη +
∫ +∞

R

(
η1−N

∫ η

0 ξN−1aij(ξ)dξ
) 1

pk
−1

dη.

The first integral in the right-hand side is finite since aij is continuous. The second one is also finite.
Indeed, by virtue of (H1), we have
∫ +∞

R

(
η1−N

∫ η

0
ξN−1aij(ξ)dξ

) 1

pk
−1

dη

≤
∫ +∞

R

(
η1−N

∫ η

0
ξN−1cij(ξ)ξ−θij dξ

) 1

pk
−1

dη ≤ cijR
pk

−θij

pk
−1

for i = 1, j = 1, 2 and k = ±.

This last term vanishes for sufficiently large R. Similary, we get the same achievement for i = 2, j =
1, 2 and k = ±. �

Lemma 3.2. If u ∈ C1([0, +∞[) ∩ C2([0, +∞[) is a nontrivial positive radial solution of the problem

−
(
rN−1|u′(r)|p(r)−2u′(r)

)′

≥ 0 in [0, +∞[

such that u(0) > 0 and u′(0) ≤ 0, then

u(r) > 0 and u′(r) ≤ 0 for all r > 0.

Proof. Let u be a nontrivial positive radial solution of the problem

−
(
rN−1|u′(r)|p(r)−2u′(r)

)′

≥ 0 in [0, +∞[.

Suppose that 0 < s < r. Integrating from s to r, we obtain

rN−1|u′(r)|p(r)−2u′(r) ≤ sN−1|u′(s)|p(s)−2u′(s).

Letting s → 0, we get u′(r) ≤ 0.

If u′(r) = 0 then u′(s) = 0 for all 0 ≤ s ≤ r. This means that u is either constant in [0, +∞[ or there
exists r0 ≥ 0 such that u′(r) < 0 for r > r0 and u′(r) = 0, u(r) = u(0) for 0 ≤ r ≤ r0. So u is non
increasing and u(0) > 0. �

Lemma 3.3. Let u ∈ C1([0, +∞[) ∩ C2([0, +∞[) be a positive solution of the problem

−
(
rN−1|u′(r)|p−2u′(r)

)′

≥ 0 in [0, +∞[

such that u(0) > 0 and u′(0) ≤ 0, then
The function Mp defined by Mp(r) = ru′(r) + N−p

p−1 u(r), r ≥ 0, is nonnegative and nonincreasing. In

particular, the function r → r
N−p
p−1 u(r) is nondecreasing in [0, +∞[.

Proof. Since u is a positive solution of the problem

−
(
rN−1|u′(r)|p−2u′(r)

)′

≥ 0 in [0, +∞[ .
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we have −rN−1(p − 1)|u′(r)|p−2u′′(r) − (N − 1)rN−2|u′(r)|p−2u′(r) ≥ 0. In other words ru′′(r) +
N−1
p−1 u′(r) ≤ 0, or (ru′(r))′ + N−p

p−1 u′(r) ≤ 0. This yields that Mp is nonincreasing. To show that

Mp(r) ≥ 0 for all r ≥ 0, we use a contradiction argument. Indeed, assume that there exists r1 > 0 such

that Mp(r1) < 0. Since Mp is nonincreasing, for all r > r1, Mp(r) ≤ Mp(r1) or u′(r) + N−p
p−1

u(r)
r

≤
Mp(r1)

r
.

On the other hand u(r) > 0, N−p
p−1 > 0, hence u′(r) ≤

Mp(r1)
r

. Consequently, u(r) − u(r1) ≤

Mp(r1) ln( r
r1

), r > r1. It follows immediately that lim
r→+∞

u(r) = −∞. This contradicts u begin pos-

itive. In particular

Mp(r)

ru(r)
≥ 0 ∀r > 0.

Finally, we obtain
u′(r)

u(r)
+

N − p

p − 1

1

r
≥ 0. In other words,

(
ln r

N−p
p−1 u(r)

)′

≥ 0.

This implies that the function r → r
N−p
p−1 u(r) is nondecreasing. �

The study of the function Mp is essential and help us to estimate u(r)

Lemma 3.4. If (H1) is satisfied, then the operator L is compact.

Proof. L is well defined. Indeed

w(r) ≤ c11

∫ +∞

r

(
η1−N

∫ η

0
ξN−1a11(ξ)(u(ξ))δ11+εdξ

) 1

pk
−1

dη

+c12

∫ +∞

r

(
η1−N

∫ η

0 ξN−1a12(ξ)(u(ξ))δ12+εdξ
) 1

pk
−1

dη

≤ c11c1 (‖u‖∞)
δ11+ε

pk
−1 + c12c2 (‖v‖∞)

δ12+ε

pk
−1 < +∞.

By Lemma 3.1,

cj =
∫ +∞

r

(
η1−N

∫ η

0 ξN−1aij(ξ)dξ
) 1

pk
−1

dη < +∞,

for i = 1, j = 1, 2 and k = ±
Similarly,

z(r) ≤ c21b1 (‖u‖∞)
δ21+ε

qk
−1 + c22b2 (‖v‖∞)

δ22+ε

qk
−1

bj =
∫ +∞

r
(η1−N

∫ η

0 ξN−1aij(ξ)dξ)
1

qk
−1 dη < +∞ for i = 2, j = 1, 2 and k = ±.

Obviously, sup
r∈[0,+∞[

|w(r)| < +∞ and sup
r∈[0,+∞[

|z(r)| < +∞.

Morever, we have w ≥ 0 , z ≥ 0 and lim
r→+∞

w(r) = lim
r→+∞

z(r) = 0.

Now, we show that L is compact. Indeed, let (un, vn) be a bounded sequence of X. From the relation

L(un, vn) = (wn, zn),
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we can write

−
(

rN−1|w′

n(r)|p(r)−2w′

n(r)
)′

= rN−1a11(r)f11(un(r)) + rN−1a12(r)f12(vn(r))

in [0, +∞[ ,

−
(

rN−1|z′

n(r)|q(r)−2z′

n(r)
)′

= rN−1a21(r)f21(un(r)) + rN−1a22(r)f22(vn(r))

in [0, +∞[ ,

w′(0) = z′(0) = 0, lim
r→+∞

w(r) = lim
r→+∞

z(r) = 0,

(3.1)

For fixed R > 0, let r ∈ [0, R] and put ϕ(t) = |t|p(r)−1 .
From the first equation of the above system, we obtain

d
dr

ϕ(w′

n(r)) +
N − 1

r
|w′

n(r)|p(r)−1 − a11(r)f11(un(r)) − a12(r)f12(vn(r)) = 0,

Therefore

d
dr

ϕ(w′

n(r)) − a11(r)f11(un(r)) − a12(r)f12(vn(r)) ≤ 0,

in view of the part (i) of Proposition 2.1, we have

d
dr

ϕ(w′

n(r)) ≤ a11(r)(un(r))δ11+ε + a12(r)(vn(r))δ12+ε.

Since un and vn are bounded, we get

d

dr
ϕ(w′

n(r)) ≤ c1a11(r) + c2a12(r).

Integrating from 0 to R both last inqualities, we obtain

ϕ(w′

n(R)) ≤ c,

or

|(w′

n(R))|p(R)−1 ≤ c. (3.2)

This means that at finite distance, w′

n is bounded.
In the same way, substuting q to p, we show that again z′

n(r) is bounded on [0, +∞[.
This yields |w′

n(r)| ≤ c; |z′

n(r)| ≤ c ∀ r ∈ [0, R] , ∀ n ∈ N. Consequently, (wn) and (zn) are equicon-
tinuous. According to Arzelà-Ascoli theorem, there exist two subsequences, denoted again as (wn) and
(zn), such that wn → w; zn → z in C0([0, R]); ∀ R > 0.

Let us prove now that (wn, zn) is a cauchy sequence in X. Indeed,

sup
r∈[0,+∞[

|wn(r) − wm(r)| ≤ sup
r∈[0,R[

|wn(r) − wm(r)| + sup
r∈[R,+∞[

|wn(r) − wm(r)|

sup
r∈[R,+∞[

|wn(r) − wm(r)| ≤ sup
r∈[R,+∞[

|wn(r)| + sup
r∈[R,+∞[

|wm(r)|

≤ c11c1 (‖un‖∞)
δ11+ε

pk
−1 + c12c2 (‖vn‖∞)

δ12+ε

pk
−1

+ c11c1 (‖um‖∞)
δ11+ε

pk
−1 + c12c2 (‖vm‖∞)

δ12+ε

pk
−1

We have c1 + c2 < ε as R sufficiently large. On the other hand (wn) converges in C0([0, R]).

It follows that (wn) is a cauchy sequence in C0([0, +∞[). In a similar manner, (zn) is also a cauchy
sequence in C0([0, +∞[). Consequently (un, vn) is a cauchy sequence in X . Hence L is compact. �
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Theorem 3.5. If hypotheses (H1)-(H3), are satisfies the system

−∆pu = a12(|x|) |v|
δ12−1

v in R
N ,

−∆qv = a21(|x|) |u|
δ21−1

u in R
N ,

(3.3)

has no non-trivial radial positive solutions; in particular (3.3) has no ground state.

Proof. Let us argue by contradiction. Let (u, v) be a radial positive solution of system (3.3). Then (u, v)
satisfies the differential system

−
(
rN−1|u′(r)|p−2u′(r)

)′

= rN−1a12(r)(v(r))δ12 in [0, +∞[

−
(
rN−1|v′(r)|q−2v′(r)

)′

= rN−1a21(r)(u(r))δ21 in [0, +∞[

u′(0) = v′(0) = 0.

(3.4)

Hence,

−
(
rN−1|u′(r)|p−2u′(r)

)′

≥ rN−1ã1vδ12 (3.5)

−
(
rN−1|u′(r)|q−2u′(r)

)′

≥ rN−1ã2vδ21 (3.6)

with vδij = min
[0,r]

v(r)δij for i 6= j.

First, consider the case β1 > 0 or β2 > 0. Integrating both (3.5) and (3.6) from 0 to r and taking into
account that u′(r) < 0, v′(r) < 0 for all r > 0, we obtain

−u′(r) ≥

(
ã1

N

) 1
p−1

r
1

p−1 v
δ12
p−1 ,

−v′(r) ≥

(
ã2

N

) 1
q−1

r
1

q−1 u
δ21
q−1 .

By Lemma 3.3, we have Mp ≥ 0, Mq ≥ 0, thus

0 ≥ −ru′(r) −
N − p

p − 1
u(r) ≥

(
ã1

N

) 1
p−1

r
p

p−1 v
δ12
p−1 −

N − p

p − 1
u(r),

0 ≥ −rv′(r) −
N − q

q − 1
v(r) ≥

(
ã2

N

) 1
q−1

r
q

q−1 u
δ21
q−1 −

N − q

q − 1
v(r).

This yields

u(r) ≥ Cr
p

p−1 v
δ12
p−1 , (3.7)

v(r) ≥ Cr
q

q−1 u
δ21
q−1 . (3.8)

Combining these two inequalities, we have

u(r) ≤ Cr−α1 , (3.9)

v(r) ≤ Cr−α2 . (3.10)

Since r
N−p
p−1 u(r) and r

N−q
q−1 v(r) are nondecreasing, for all r > r0 > 0,

u(r) ≥ Cr−
N−p
p−1 , (3.11)

v(r) ≥ Cr−
N−q
q−1 . (3.12)

Inequalities (3.9)−(3.12) imply either rβ1 ≤ C or rβ2 ≤ C. This yields a contradiction. Suppose with
out loss of generality now that β1 = 0. Integrating with respect to r the first equation of System (3.4)
from r0 > 0 to r, we obtain
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rN−1|u′(r)|p−1 − rN−1
0 |u′(r0)|p−1 ≥ ã1

r∫
r0

sN−1vδ12(s)ds.

On the other hand, by (3.8)

vδ12(s) ≥ Cs
δ12q

q−1 u
δ12δ21

q−1 (s).

Consequently,

rN−1|u′(r)|p−1 ≥ C
r∫
r0

sN−1+
δ12q

q−1 u
δ12δ21

q−1 (s)ds.

Taking into account inequality (3.11) and the fact that β1 = 0, we have

rN−1|u′(r)|p−1 ≥ C
r∫
r0

sN−1+
δ12q

q−1 −
N−p
p−1

δ12δ21
q−1 ds = C

r∫
r0

s−1ds = C ln r
r0

.

On the other hand, Mp(r) ≥ 0 for r > 0 implies
(

N−p
p−1

)p−1

up−1(r) ≥ rp−1|u′(r)|p−1. Hence

up−1(r) ≥ Crp−1|u′(r)|p−1 ≥ Crp−N ln r
r0

.

Then we write

r
N−p
p−1 u(r) ≥ C(ln r

r0
)

1
p−1 .

This together with (3.9) yields a contradiction. �

We now show that the eventual radial positive solutions of System (2.1) are bounded.

Theorem 3.6. Assume (H1)-(H4). If (u, v) is a ground state of (2.1). then there exists a constant
C > 0 (independent of u and v) such that ‖(u, v)‖X ≤ C.

Proof. Let (u, v) be a ground state of (2.1) for h = 0, then (u, v) satisfies the system

−
(

rN−1|u′(r)|p(r)−2u′(r)
)′

= rN−1a11(r)f11(u(r)) + rN−1a12(r)f12(v(r))

in [0, +∞[ ,

−
(

rN−1|v′(r)|q(r)−2v′(r)
)′

= rN−1a21(r)f21(u(r)) + rN−1a22(r)f22(v(r))

in [0, +∞[ ,

u′(0) = v′(0) = 0, lim
r→+∞

u(r) = lim
r→+∞

v(r) = 0,

(3.13)

Assume now that there exists a sequence (un, vn) of positive solutions of (3.13) such that ‖un‖∞ → ∞

as n → ∞ or ‖vn‖∞ → ∞ as n → ∞. Taking γn = ‖un‖
1

α1
∞ + ‖vn‖

1
α2
∞ , and using (H3), we have α1 > 0

and α2 > 0. So γn → +∞ as n → ∞.

Now we introduce the transformations

y = γnr, wn(y) =
un(r)

γα1
n

, zn(y) =
vn(r)

γα2
n

.
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Observe that for all y ∈ [0, +∞[ , 0 ≤ wn(y) ≤ 1, 0 ≤ zn(y) ≤ 1. Furthermore it is easy to see that
for any n the pair (wn, zn) is a solution of the system

− (γ
α1(p( y

γn
)−1)+p( y

γn
)

n yN−1|w′

n(y)|
p( y

γn
)−2

w′

n(y))′

= yN−1a11(
y

γn

)f11(γα1
n wn(y)) + yN−1a12(

y

γn

)f12(γα2
n zn(y)) in [0, +∞[ ,

− (γ
α2(q( y

γn
)−1)+q( y

γn
)

n yN−1|z′

n(y)|q( y
γn

)−2
z′

n(y))′

= yN−1a21(
y

γn

)f21(γα1
n wn(y)) + yN−1a22(

y

γn

)f22(γα2
n zn(y)) in [0, +∞[ ,

w′

n(0) = z′

n(0) = 0, lim
r→+∞

wn(r) = lim
r→+∞

zn(r) = 0

(3.14)

Let R > 0 be fixed. We claim that (w′

n) and (z′

n) are bounded in C([0, R]). Indeed passing to a
subsequence of (w′

n) (denoted again (w′

n)) assume that ‖w′

n‖([0,R]) → +∞ as n → +∞. Hence there exists
a sequence (yn) in [0, R] such that for all A > 0, there exists n0 ∈ N such that for all n ≥ n0, |w′

n(yn)| > A.

Integrating with respect to y the first equation of System (3.14) we obtain

|w′

n(yn)|p( yn
γn

)−1 =
1

yN−1
n γ

α1(p( yn
γn

)−1)+p( yn
γn

)
n

∫ yn

0

(
yN−1a11(

y

γn

)f11(γα1
n wn(y)) + yN−1a12(

y

γn

)f12(γα2
n zn(y))

)
dy.

|w′

n(yn)|p( yn
γn

)−1 ≤
1

yN−1
n

∫ yn

0

(
yN−1a11(

y

γn

)
f11(γα1

n wn(y))

γ
α1(pk−1)+pk

n

+ yN−1a12(
y

γn

)
f12(γα2

n zn(y))

γ
α1(pk−1)+pk

n

)
dy.

From the fact that f1j , j = 1, 2, are asymptotically homogeneous at the infinity together with part
(i) of Proposition 2.1, we arrive to the statement: for all ε ∈ [0, δ1j [ , there exists c1

1j , c2
1j > 0, s0 > 0

such that for all s ≥ s0

c1
1jsδ1j−ε ≤ f1j(s) ≤ c2

1jsδ1j +ε.

Since (wn) and (zn) are bounded, we conclude that

c1
11γ

α1(δ11−ε)−α1(pk
−1)−pk

n ≤
f11(γα1

n wn(y))

γ
α1(pk−1)+pk

n

≤ c2
11γ

α1(δ11+ε)−α1(pk
−1)−pk

n ,

c1
12γ

α2(δ12−ε)−α1(pk
−1)−pk

n ≤
f12(γα2

n zn(y))

γ
α1(pk−1)+pk

n

≤ c2
12γ

α2(δ12+ε)−α1(pk
−1)−pk

n .

By choosing ε sufficiently small, the assumption (H3) yields

f11(γα1
n wn(y))

γ
α1(pk−1)+pk

n

→ 0 and
f12(γα2

n zn(y))

γ
α1(pk−1)+pk

n

→ c1 as n → +∞,

where c1 is positive constant. So there exists n1 ∈ N such that for any n ≥ n1, we have

|w′

n(yn)|p( yn
γn

)−1 ≤
a12(0)

yN−1
n

c1

∫ yn

0
yN−1dy =

c1

N
a12(0)yn ≤

Rc1

N
a12(0) ≡ c.

Setting n ≥ max(n0, n1), we have A < |w′

n(yn)| ≤ c. This contradicts the fact that A may be infinitely
large. Similarly we prove that (z′

n) is bounded in (C[0, R]). Consequently (wn) and (zn) are equicon-
tinuous in C([0, R]). By Arzelà-Ascoli theorem, there exists a subsequence of (wn) denoted again (wn)
(respect. (zn)) such that wn → w (respect. zn → z) in C([0, R]).

On the other hand,

‖wn‖
1

α1
∞ + ‖zn‖

1
α2
∞ = 1,
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this implies that the real-valued sequences (‖wn‖∞) and (‖zn‖∞) are bounded. Hence there exist subse-

quences denoted again (‖wn‖∞) and (‖zn‖∞) such that ‖wn‖∞ → w0, ‖zn‖∞ → z0 and w
1

α1
0 + z

1
α2
0 = 1.

In view of the uniqueness of the limit in C([0, R]), we get ‖w‖
1

α1
∞ + ‖z‖

1
α2
∞ = 1. This implies that (w, z) is

not identically null. Integrating from 0 to y ∈ [0, R] , the first and the second equation of System (3.14),
we obtain

wn(0) − wn(y) =

∫ y

0

(gn(t))
1

p( t
γn

)−1
dt, (3.15)

zn(0) − zn(y) =

∫ y

0

(hn(t))
1

q( t
γn

)−1
dt, (3.16)

Clearly gn(y) and hn(y) are defined by

gn(y) =
1

yN−1γ
α1(p( y

γn
)−1)+p( y

γn
)

n

∫ y

0

(
tN−1a11(

t

γn

)f11(γα1
n wn(t)) + tN−1a12(

t

γn

)f12(γα2
n zn(t))

)
dt.

gn(y) ≤
1

yN−1

∫ y

0

(
tN−1a11(

t

γn

)
f11(γα1

n wn(t))

γ
α1(pk−1)+pk

n

+ tN−1a12(
t

γn

)
f12(γα2

n zn(t))

γ
α1(pk−1)+pk

n

)
dt.

hn(y) =
1

yN−1γ
α2(q( y

γn
)−1)+q( y

γn
)

n

∫ y

0

(
tN−1a21(

t

γn

)f21(γα1
n wn(t)) + tN−1a22(

t

γn

)f22(γα2
n zn(t))

)
dt.

hn(y) ≤
1

yN−1

∫ y

0

(
tN−1a21(

t

γn

)
f21(γα1

n wn(t))

γ
α2(qk−1)+qk

n

+ tN−1a22(
t

γn

)
f22(γα2

n zn(t))

γ
α2(qk−1)+qk

n

)
dt.

Compiling Proposition 2.1 and (H3), we obtain

f11(γα1
n wn(t))

γ
α1(pk−1)+pk

n

→ 0,
f22(γα2

n zn(t))

γ
α2(qk−1)+qk

n

→ 0,

f12(γα2
n zn(t))

γ
α1(pk−1)+pk

n

=
f12(γα2

n )

γ
α1(pk−1)+pk

n

f12(γα2
n zn(t))

f12(γα2
n )

→ czδ12(t),

f21(γα1
n wn(t))

γ
α2(qk−1)+qk

n

=
f21(γα1

n )

γ
α2(qk−1)+qk

n

f21(γα1
n wn(t))

f21(γα1
n )

→ cwδ21(t),

as n → ∞. By the Lebesgue theorem on dominated convergence, it follows that

gn(y) →
c

yN−1

∫ y

0
tN−1a12(0)zδ12(t)dt,

hn(y) →
c

yN−1

∫ y

0
tN−1a21(0)wδ21(t)dt,

as n → ∞. Passing to the limit in (3.15) and (3.16), we arrive to

w(0) − w(y) = c
∫ y

0

(
1

ξN−1

∫ ξ

0
tN−1a12(0)zδ12(t)dt

) 1
p(0)−1

dξ,

z(0) − z(y) = c
∫ y

0

(
1

ξN−1

∫ ξ

0
tN−1a21(0)wδ21(t)dt

) 1
q(0)−1

dξ.

In this way, w ≥ 0, z ≥ 0, w, z ∈ C1([0, R]) ∩ C2([0, R]) and satisfy the system

−(yN−1|w′(y)|p−2w′(y))′ = ca12(0)yN−1(z(y))δ12 in [0, R]

−(yN−1|z′(y)|q−2z′(y))′ = ca21(0)yN−1(w(y))δ21 in [0, R]

w′(0) = z′(0) = 0.

(3.17)

If we use the same arguments on [0, R∗] where R∗ > R, we obtain a solution (w∗, z∗) of System (3.17)
with R∗ instead of R, which coincide with (w, z) in [0, R] To this end, we indefinitely extend (w, z) to
[0, +∞[. By Lemma 3.2 we have w(y) > 0, z(y) > 0, for all y ≥ 0. The pair (w, z) also satisfies System
(3.17). In other words (w, z) is a radial positive solution of (3.4). This contradicts Theorem 3.5. �
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Lemma 3.7. Under assumptions (H1)-(H4), there exists h0 > 0 such that the problem (u, v) = Th(u, v)
has no solution for h ≥ h0.

Proof. Suppose by contradiction that there is a solution (u, v) ∈ X of the above problem. Then (u, v)
satisfies system

−
(

rN−1|u′(r)|p(r)−2u′(r)
)′

= rN−1a11(r)f11(|u(r)|) + rN−1a12(r) [f12(|v(r)|) + h]

in [0, +∞[,

−
(

rN−1|v′(r)|q(r)−2v′(r)
)′

= rN−1a21(r)f21(|u(r)|) + rN−1a22(r)f22(|v(r)|)

in [0, +∞[,

u′(0) = v′(0) = 0, lim
r→+∞

u(r) = lim
r→+∞

v(r) = 0,

(3.18)

Assume that there exists a sequence (hn) hn → +∞ as n → +∞, such that (3.18) admits a pair
of solutions (un, vn) . In accordance with Lemma 3.2, we have un(r) > 0, vn(r) > 0, u′

n(r) ≤ 0, and
v′

n(r) ≤ 0, for all n ∈ N. Integrating the first equation of System (3.18), from R to 2R, R > 0, we obtain

un(R) ≥

∫ 2R

R

(
η1−N

∫ η

0

ξN−1a12 (ξ) hndξ

) 1

pk
−1

dη ≥ cRh
1

pk
−1

n .

Here

c =

(
1

(2R)N−1

∫ R

0

ξN−1a12(ξ)dξ

) 1

pk
−1

.

Consequently un(R) ≥ cRh
1

pk
−1

n . Passing to the limit we get un(R) → +∞. On the other hand,
integrating the second equation of (3.18), from R to 2R, we obtain

vn(R) ≥

∫ 2R

R

(
η1−N

∫ η

0

ξN−1a21(ξ)f21(un(ξ))dξ

) 1

qk
−1

dη ≥ cR(f21(un(R)))
1

qk
−1 .

By hypothesis (H3) and Proposition 2.1, we have vn(R) ≥ c(un(R))
δ21−ε

qk
−1 . Operating similarly, we

obtain un(R) ≥ c(vn(R))
δ12−ε

pk
−1 . It follows from the last two inequalities, that

(un(R))
(δ12−ε)(δ21−ε)−(pk

−1)(qk
−1)

(pk
−1)(qk

−1) ≤
1

c
.

This is the desired contradiction since un(R) increases to infinitely. �

Lemma 3.8. There exists ρ > 0 such that for all ρ ∈]0, ρ[ and all (u, v) ∈ X satisfying ‖(u, v)‖ = ρ, the
equation (u, v) = Sλ (u, v) has no solution.

Proof. Assume that there exist (ρn) ∈ R+, ρn → 0; (λn) ⊂ [0, 1] and (un, vn) ∈ X such that (un, vn) =
Sλn

(un, vn) with ‖(un, vn)‖ = ρn. Taking (H4) into account,

‖un‖∞ ≤ cλ
1

pk
−1

n

(
‖un‖

δ11+ε

pk
−1

∞ + ‖vn‖
δ12+ε

pk
−1

∞

)
,

‖vn‖∞ ≤ cλ
1

qk
−1

n

(
‖un‖

δ21+ε

qk
−1

∞ + ‖vn‖
δ22+ε

qk
−1

∞

)
.
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Adding term by term, we obtain

‖(un, vn)‖ ≤ C

(
‖(un, vn)‖

δ11+ε

pk
−1 + ‖(un, vn)‖

δ12+ε

pk
−1 + ‖(un, vn)‖

δ21+ε

qk
−1 + ‖(un, vn)‖

δ22+ε

qk
−1

)
.

This implies

1 ≤ C

(
‖(un, vn)‖

δ11+ε

pk
−1

−1
+ ‖(un, vn)‖

δ12+ε

pk
−1

−1
+ ‖(un, vn)‖

δ21+ε

qk
−1

−1
+ ‖(un, vn)‖

δ22+ε

qk
−1

−1
)

.

The above inequality contradicts the fact that ‖(un, vn)‖ = ρn → 0 as n → +∞ �

Theorem 3.9. Under hypotheses (H1)-(H4), System (1.1) has positive radial solution.

Proof. To show the existence of ground states for (1.1) (or (2.1) with h = 0), it is sufficient to prove that
the compact operator T0 admits a fixed point. In view of Theorem 3.6, the eventual fixed point (u, v) of
T0 are bounded; explicitly there exists C > 0 such that ‖(u, v)‖X ≤ C. Let us chose R1 > C and let us
designate by BR1 the ball of X , centered at the origin with radius R1. To this end, the Leray-Schauder
degree degLS(I − Th, BR1 , 0) is well defined. It being understood that I denote the identical operator
in X . Moreover, by Lemma 3.7, we have degLS(I − Th, BR1 , 0) = 0 for all h ≥ h0. It follows from the
homotopy invariance of the Leray-Schauder degree that

degLS(I − T0, BR1 , 0) = degLS(I − Th, BR1 , 0) = 0

On the other hand, by Lemma 3.8, there exists 0 < ρ < ρ < R1 such that degLS(I − Sλ, Bρ, 0) is
well defined. Once again, the homotopy invariance of the Leray-Schauder degree yields

1 = degLS(I, Bρ, 0)

= degLS(I − Sλ, Bρ, 0)

= degLS(I − S1, Bρ, 0)

= degLS(I − T0, Bρ, 0).

Using the additivity of the Leray-Schauder degree,

degLS(I − T0, BR1 \ Bρ, 0) = degLS(I − T0, BR1 , 0) − degLS(I − T0, Bρ, 0) = −1.

This implies that T0 has fixed point in BR1 \ Bρ. Consequently, there exists a nontrivial ground state.
�
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