Radial Positive Solutions for (p(x),q(x))-Laplacian Systems

Mohamed Zitouni, Ali Djellit and Lahcen Ghannam

ABSTRACT: In this paper, we study the existence of radial positive solutions for nonvariational elliptic systems involving the $p(x)$-Laplacian operator, we show the existence of solutions using Leray-Schauder topological degree theory, sustained by Gidas-Spruck Blow-up technique.

Key Words: $\mathrm{p}(\mathrm{x})$-Laplacian operator, elliptic systems, blow up technique, Leray-Schauder topological degree.

Contents

1 Introduction

2 Preliminaries 2

3 Existence of solutions 3

1. Introduction

In this paper we study the existence of positive radial solutions of asymptotically homogeneous systems involving $p(x)$-Laplacian operator defined in \mathbb{R}^{N}, of the form

$$
\begin{array}{ll}
-\Delta_{p(x)} u=a_{11}(|x|) f_{11}(u)+a_{12}(|x|) f_{12}(v) & \\
\text { in } \mathbb{R}^{N} \tag{1.1}\\
-\Delta_{q(x)} v=a_{21}(|x|) f_{21}(u)+a_{22}(|x|) f_{22}(v) & \\
\text { in } \mathbb{R}^{N}
\end{array}
$$

Here $\Delta_{p(x)}$ is the so-called $p(x)$-Laplacian operator; namely $:=\Delta_{p(x)} u=\operatorname{div}\left(|\nabla u|^{p(x)-2} \nabla u\right)$, with p and q are continuous real-valued functions such that $1<p(x), q(x)<N(N \geq 2)$ for all $x \in \mathbb{R}^{N}$. The coefficients $a_{i j}, i, j=1,2$, are positive continuous real-valued functions. The non linearities $f_{i j}, i, j=1,2$, belong to asymptotically homogeneous class of functions.
In recent years, several authors have used different methods to solve equations or quasi-linear systems defined in bounded or unbounded domains. Usually, we use critical points theory to show existence of weak solutions. There is a lot of work on this subject (see [8], [11], and therein..). This variational approach is used in particular to deal with systems derived from a potential, that is, the nonlinearities on the right-hand side correspond to the gradient of certain functional. Several articles were written about the homogeneous p-Laplacian operator. The reader can easily refer to the following list of work [6], [9], [10], [12], To examine system (1.1), we first exhibit a priori estimates using Gidas-Spruck "Blow-up" technique (see [4]). The main tool stay Leray-Schauder topological degree to establish the existence of fundamental states. This contribution is an extension to the work Djellit and Tas [7]. These authers consider the systems of the form

$$
\begin{array}{ll}
-\Delta_{p} u=\lambda f(x, u, v) & \text { in } \mathbb{R}^{N} \\
-\Delta_{q} v=\mu g(x, u, v) & \text { in } \mathbb{R}^{N} \tag{1.2}
\end{array}
$$

Where the nonlinearities f and g, satisfy polynomial growth conditions. Existence results are proved using fixed point theorems

[^0]
2. Preliminaries

First, we introduce definitions and notation utilized in this note. Let the Banach space

$$
X=\left\{(u , v) \in C ^ { 0 } \left(\left[0,+\infty[) \times C^{0}\left(\left[0,+\infty[), \lim _{r \rightarrow+\infty} u(r)=\lim _{r \rightarrow+\infty} v(r)=0\right\}\right.\right.\right.\right.
$$

be equipped with the norm

$$
\|(u, v)\|_{X}=\|u\|_{\infty}+\|v\|_{\infty}, \quad\|u\|_{\infty}=\sup _{r \in[0,+\infty}|u(r)|
$$

Let $K=\{(u, v) \in X, u \geq 0, v \geq 0\}$ a positive cone of X. For $h \geq 0$ and $\lambda \in[0,1]$, we define two families of operators T_{h} and S_{λ} form X to itself by $T_{h}(u, v)=(w, z)$ such that (w, z) satisfies the system

$$
\begin{align*}
-\left(r^{N-1}\left|w^{\prime}(r)\right|^{p(r)-2} w^{\prime}(r)\right)^{\prime}= & r^{N-1} a_{11}(r) f_{11}(|u(r)|)+r^{N-1} a_{12}(r)\left[f_{12}(|v(r)|)+h\right] \\
\text { in } \quad & {[0,+\infty[} \\
-\left(r^{N-1}\left|z^{\prime}(r)\right|^{q(r)-2} z^{\prime}(r)\right)^{\prime}= & r^{N-1} a_{21}(r) f_{21}(|u(r)|)+r^{N-1} a_{22}(r) f_{22}(|v(r)|) \tag{2.1}\\
\text { in } & {[0,+\infty[,} \\
w^{\prime}(0) & =z^{\prime}(0)=0, \quad \lim _{r \rightarrow+\infty} w(r)=\lim _{r \rightarrow+\infty} z(r)=0,
\end{align*}
$$

and $S_{\lambda}(u, v)=(w, z)$ such that (w, z) satisfies the system

$$
\begin{align*}
-\left(r^{N-1}\left|w^{\prime}(r)\right|^{p(r)-2} w^{\prime}(r)\right)^{\prime}= & \lambda r^{N-1} a_{11}(r) f_{11}(|u(r)|)+\lambda r^{N-1} a_{12}(r) f_{12}(|v(r)|) \\
\text { in } & {[0,+\infty[,} \\
-\left(r^{N-1}\left|z^{\prime}(r)\right|^{q(r)-2} z^{\prime}(r)\right)^{\prime}= & \lambda r^{N-1} a_{21}(r) f_{21}(|u(r)|)+\lambda r^{N-1} a_{22}(r) f_{22}(|v(r)|) \tag{2.2}\\
\text { in } & {[0,+\infty[,} \\
w^{\prime}(0)= & z^{\prime}(0)=0, \quad \lim _{r \rightarrow+\infty} w(r)=\lim _{r \rightarrow+\infty} z(r)=0
\end{align*}
$$

Let us recall the notion of "asymptotically homogeneous" functions and some of their properties.
A function $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ defined in a neighborhood at the infinity (respect. at the origin) is said asymptotically homogeneous at the infinity (respect. at the origin) of order $\rho>0$ if for all $\sigma>0$, we have $\lim _{s \rightarrow+\infty} \frac{\varphi(\sigma s)}{\varphi(s)}=\sigma^{\rho}$ (respect. $\lim _{s \rightarrow 0} \frac{\varphi(\sigma s)}{\varphi(s)}=\sigma^{\rho}$).

As an example, we have the function $\varphi(s)=|s|^{\alpha-2} s(\ln (1+|s|))^{\beta}$ with $\alpha>1$ and $\beta>1-\alpha$, It is asymptotically homogeneous at infinity of order $\alpha-1$ and at the origin of order $\alpha+\beta-1$.

Proposition 2.1. [1] Let $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous, odd, asymptotically homogeneous at infinity (respect. at the origin) of order ρ such that $t \varphi(t)>0$ for all $t \neq 0$ and $\varphi(t) \rightarrow \infty$ as $t \rightarrow \infty$, then
(i) For all $\varepsilon \in] 0, \rho\left[\right.$, there exists $t_{0}>0$ such that $\forall t \geq t_{0}$ (respect. $\left.0 \leq t \leq t_{0}\right), c_{1} t^{\rho-\varepsilon} \leq \varphi(t) \leq$ $c_{2} t^{\rho+\varepsilon} ; c_{1}, c_{2}$ are positive constants. Moreover $\forall s \in\left[t_{0}, t\right]:(\rho+1-\varepsilon) \varphi(s) \leq(\rho+1+\varepsilon) \varphi(t)$.
(ii) If $\left(w_{n}\right),\left(t_{n}\right)$ are real sequences such that $w_{n} \rightarrow w$ and $t_{n} \rightarrow+\infty$ (respect. $t_{n} \rightarrow 0$) then $\lim _{n \rightarrow+\infty} \frac{\varphi\left(t_{n} w_{n}\right)}{\varphi\left(t_{n}\right)}=w^{\rho}$.

We assume that both the coefficients $a_{i j}$ and the functions $f_{i j}$ verify smooth conditions; explicitly:
(H1) For all $i, j=1,2, k= \pm$, the coefficient $a_{i j}:[0,+\infty[\rightarrow[0,+\infty[$ is continuous and satisfies $\exists \theta_{11}, \theta_{12}>p^{k} ; \exists \theta_{21}, \theta_{22}>q^{k}$; there exists $R>0$ such that $a_{i j}(\xi)=O\left(\xi^{-\theta_{i j}}\right)$ for all $\xi>R$ and $\widetilde{a}_{i}=\min _{r \in[0, R]} a_{i j}(r)>0 ; \quad i, j=1,2 ; i \neq j$.
(H2) For all $i, j=1,2$, the function $f_{i j}: \mathbb{R} \rightarrow \mathbb{R}$ is continuous, odd such that $s f_{i j}(s)>0$ for all $s \neq 0$ and $\lim _{s \rightarrow+\infty} f_{i j}(s)=+\infty$.
(H3) For all $i, j=1,2$ and $k= \pm, f_{i j}$ is asymptotically homogeneous at the infinity of order $\delta_{i j}$ satisfying $\frac{\delta_{12} \delta_{21}}{\left(p^{k}-1\right)\left(q^{k}-1\right)}>1, \alpha_{1} \delta_{11}-\alpha_{1}\left(p^{k}-1\right)-p^{k}<0, \alpha_{2} \delta_{22}-\alpha_{2}\left(q^{k}-1\right)-q^{k}<0$ and $\max \left(\beta_{1}, \beta_{2}\right) \geq 0$ where $\quad \alpha_{1}=\frac{p^{k}\left(q^{k}-1\right)+\delta_{12} q^{k}}{\delta_{12} \delta_{21}-\left(p^{k}-1\right)\left(q^{k}-1\right)}, \alpha_{2}=\frac{q^{k}\left(p^{k}-1\right)+\delta_{21} p^{k}}{\delta_{12} \delta_{21}-\left(p^{k}-1\right)\left(q^{k}-1\right)}, \quad \beta_{1}=\alpha_{1}-\frac{N-p^{k}}{p^{k}-1}, \quad \beta_{2}=$ $\alpha_{2}-\frac{N-q^{k}}{q^{k}-1}$.
(H4) For all $i, j=1,2, k= \pm, f_{i j}$ is asymptotically homogeneous at the origin of order $\bar{\delta}_{i j}$ with $\bar{\delta}_{11}, \bar{\delta}_{12}>p^{k}-1, \bar{\delta}_{21}, \bar{\delta}_{22}>q^{k}-1$.

A nontrivial positive radial solution (u, v) to $\operatorname{system}\left(T_{0}\right) \equiv\left(S_{1}\right)$ is also a solution to the following differential system:

$$
\begin{align*}
-\left(r^{N-1}\left|u^{\prime}(r)\right|^{p(r)-2} u^{\prime}(r)\right)^{\prime}= & r^{N-1} a_{11}(r) f_{11}(|u(r)|)+r^{N-1} a_{12}(r) f_{12}(|v(r)|) \\
\text { in } \quad & {[0,+\infty[} \\
-\left(r^{N-1}\left|v^{\prime}(r)\right|^{q(r)-2} v^{\prime}(r)\right)^{\prime}= & r^{N-1} a_{21}(r) f_{21}(|u(r)|)+r^{N-1} a_{22}(r) f_{22}(|v(r)|) \tag{2.3}\\
\text { in } & {[0,+\infty[,} \\
u^{\prime}(0)= & v^{\prime}(0)=0, \quad \lim _{r \rightarrow+\infty} u(r)=\lim _{r \rightarrow+\infty} v(r)=0
\end{align*}
$$

To this end, we define the operator $L: K \rightarrow K$ by $L(u, v)=(w, z)$ such that

$$
\begin{gathered}
w(r)=\int_{r}^{+\infty}\left(\eta^{1-N} \int_{0}^{\eta} \xi^{N-1}\left(a_{11}(\xi) f_{11}(u(\xi))+a_{12}(\xi) f_{12}(v(\xi))\right) d \xi\right)^{\frac{1}{p(\eta)-1}} d \eta \\
z(r)=\int_{r}^{+\infty}\left(\eta^{1-N} \int_{0}^{\eta} \xi^{N-1}\left(a_{21}(\xi) f_{21}(u(\xi))+a_{22}(\xi) f_{22}(v(\xi))\right) d \xi\right)^{\frac{1}{q(\eta)-1}} d \eta
\end{gathered}
$$

3. Existence of solutions

To show the existence result, it is necessary to state some lemmas.

Lemma 3.1. Under hypothesis (H1), we have

$$
\begin{aligned}
& \int_{0}^{+\infty}\left(\eta^{1-N} \int_{0}^{\eta} \xi^{N-1} a_{i j}(\xi) d \xi\right)^{\frac{1}{p(\eta)-1}} d \eta \\
\leq & \int_{0}^{+\infty}\left(\eta^{1-N} \int_{0}^{\eta} \xi^{N-1} a_{i j}(\xi) d \xi\right)^{\frac{1}{p^{k}-1}} d \eta<+\infty \quad \text { for } i=1, j=1,2 \text { and } k= \pm
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{+\infty}\left(\eta^{1-N} \int_{0}^{\eta} \xi^{N-1} a_{i j}(\xi) d \xi\right)^{\frac{1}{q(\eta)-1}} d \eta \\
\leq & \int_{0}^{+\infty}\left(\eta^{1-N} \int_{0}^{\eta} \xi^{N-1} a_{i j}(\xi) d \xi\right)^{\frac{1}{q^{k}-1}} d \eta<+\infty \quad \text { for } i=2, j=1,2 \text { and } k= \pm .
\end{aligned}
$$

Proof.

$\int_{0}^{+\infty}\left(\eta^{1-N} \int_{0}^{\eta} \xi^{N-1} a_{i j}(\xi) d \xi\right)^{\frac{1}{p(\eta)-1}} d \eta$
$\leq \int_{0}^{+\infty}\left(\eta^{1-N} \int_{0}^{\eta} \xi^{N-1} a_{i j}(\xi) d \xi\right)^{\frac{1}{p^{k}-1}} d \eta$
$=\int_{0}^{R}\left(\eta^{1-N} \int_{0}^{\eta} \xi^{N-1} a_{i j}(\xi) d \xi\right)^{\frac{1}{p^{k}-1}} d \eta+\int_{R}^{+\infty}\left(\eta^{1-N} \int_{0}^{\eta} \xi^{N-1} a_{i j}(\xi) d \xi\right)^{\frac{1}{p^{k}-1}} d \eta$.
The first integral in the right-hand side is finite since $a_{i j}$ is continuous. The second one is also finite. Indeed, by virtue of (H1), we have

$$
\begin{aligned}
& \int_{R}^{+\infty}\left(\eta^{1-N} \int_{0}^{\eta} \xi^{N-1} a_{i j}(\xi) d \xi\right)^{\frac{1}{p^{k-1}}} d \eta \\
\leq & \int_{R}^{+\infty}\left(\eta^{1-N} \int_{0}^{\eta} \xi^{N-1} c_{i j}(\xi) \xi^{-\theta_{i j}} d \xi\right)^{\frac{1}{p^{k}-1}} d \eta \leq c_{i j} R^{\frac{p^{k}-\theta_{i j}}{p^{k}-1}}
\end{aligned}
$$

for $i=1, j=1,2$ and $k= \pm$.
This last term vanishes for sufficiently large R. Similary, we get the same achievement for $i=2, j=$ 1,2 and $k= \pm$.

Lemma 3.2. If $u \in C^{1}\left(\left[0,+\infty[) \cap C^{2}([0,+\infty[)\right.\right.$ is a nontrivial positive radial solution of the problem

$$
-\left(r^{N-1}\left|u^{\prime}(r)\right|^{p(r)-2} u^{\prime}(r)\right)^{\prime} \geq 0 \quad \text { in }[0,+\infty[
$$

such that $u(0)>0$ and $u^{\prime}(0) \leq 0$, then

$$
u(r)>0 \text { and } u^{\prime}(r) \leq 0 \text { for all } r>0 .
$$

Proof. Let u be a nontrivial positive radial solution of the problem

$$
-\left(r^{N-1}\left|u^{\prime}(r)\right|^{p(r)-2} u^{\prime}(r)\right)^{\prime} \geq 0 \quad \text { in }[0,+\infty[.
$$

Suppose that $0<s<r$. Integrating from s to r, we obtain

$$
r^{N-1}\left|u^{\prime}(r)\right|^{p(r)-2} u^{\prime}(r) \leq s^{N-1}\left|u^{\prime}(s)\right|^{p(s)-2} u^{\prime}(s) .
$$

Letting $s \rightarrow 0$, we get $u^{\prime}(r) \leq 0$.
If $u^{\prime}(r)=0$ then $u^{\prime}(s)=0$ for all $0 \leq s \leq r$. This means that u is either constant in $[0,+\infty[$ or there exists $r_{0} \geq 0$ such that $u^{\prime}(r)<0$ for $r>r_{0}$ and $u^{\prime}(r)=0, u(r)=u(0)$ for $0 \leq r \leq r_{0}$. So u is non increasing and $u(0)>0$.

Lemma 3.3. Let $u \in C^{1}\left(\left[0,+\infty[) \cap C^{2}([0,+\infty[)\right.\right.$ be a positive solution of the problem

$$
-\left(r^{N-1}\left|u^{\prime}(r)\right|^{p-2} u^{\prime}(r)\right)^{\prime} \geq 0 \quad \text { in }[0,+\infty[
$$

such that $u(0)>0$ and $u^{\prime}(0) \leq 0$, then
The function M_{p} defined by $M_{p}(r)=r u^{\prime}(r)+\frac{N-p}{p-1} u(r), r \geq 0$, is nonnegative and nonincreasing. In particular, the function $r \rightarrow r^{\frac{N-p}{p-1}} u(r)$ is nondecreasing in $[0,+\infty[$.

Proof. Since u is a positive solution of the problem

$$
-\left(r^{N-1}\left|u^{\prime}(r)\right|^{p-2} u^{\prime}(r)\right)^{\prime} \geq 0 \quad \text { in }[0,+\infty[.
$$

we have $-r^{N-1}(p-1)\left|u^{\prime}(r)\right|^{p-2} u^{\prime \prime}(r)-(N-1) r^{N-2}\left|u^{\prime}(r)\right|^{p-2} u^{\prime}(r) \geq 0$. In other words $r u^{\prime \prime}(r)+$ $\frac{N-1}{p-1} u^{\prime}(r) \leq 0$, or $\left(r u^{\prime}(r)\right)^{\prime}+\frac{N-p}{p-1} u^{\prime}(r) \leq 0$. This yields that M_{p} is nonincreasing. To show that $M_{p}(r) \geq 0$ for all $r \geq 0$, we use a contradiction argument. Indeed, assume that there exists $r_{1}>0$ such that $M_{p}\left(r_{1}\right)<0$. Since M_{p} is nonincreasing, for all $r>r_{1}, M_{p}(r) \leq M_{p}\left(r_{1}\right)$ or $u^{\prime}(r)+\frac{N-p}{p-1} \frac{u(r)}{r} \leq \frac{M_{p}\left(r_{1}\right)}{r}$.

On the other hand $u(r)>0, \frac{N-p}{p-1}>0$, hence $u^{\prime}(r) \leq \frac{M_{p}\left(r_{1}\right)}{r}$. Consequently, $u(r)-u\left(r_{1}\right) \leq$ $M_{p}\left(r_{1}\right) \ln \left(\frac{r}{r_{1}}\right), r>r_{1}$. It follows immediately that $\lim _{r \rightarrow+\infty} u(r)=-\infty$. This contradicts u begin positive. In particular

$$
\frac{M_{p}(r)}{r u(r)} \geq 0 \quad \forall r>0
$$

Finally, we obtain $\frac{u^{\prime}(r)}{u(r)}+\frac{N-p}{p-1} \frac{1}{r} \geq 0$. In other words,

$$
\left(\ln r^{\frac{N-p}{p-1}} u(r)\right)^{\prime} \geq 0
$$

This implies that the function $r \rightarrow r^{\frac{N-p}{p-1}} u(r)$ is nondecreasing.

The study of the function M_{p} is essential and help us to estimate $u(r)$
Lemma 3.4. If (H1) is satisfied, then the operator L is compact.
Proof. L is well defined. Indeed

$$
\begin{aligned}
w(r) \leq & c_{11} \int_{r}^{+\infty}\left(\eta^{1-N} \int_{0}^{\eta} \xi^{N-1} a_{11}(\xi)(u(\xi))^{\delta_{11}+\varepsilon} d \xi\right)^{\frac{1}{p^{k}-1}} d \eta \\
& +c_{12} \int_{r}^{+\infty}\left(\eta^{1-N} \int_{0}^{\eta} \xi^{N-1} a_{12}(\xi)(u(\xi))^{\delta_{12}+\varepsilon} d \xi\right)^{\frac{1}{p^{k}-1}} d \eta \\
\leq & c_{11} c_{1}\left(\|u\|_{\infty}\right)^{\frac{\delta_{11}+\varepsilon}{p^{k}-1}}+c_{12} c_{2}\left(\|v\|_{\infty}\right)^{\frac{\delta_{12}+\varepsilon}{p^{k}-1}}<+\infty
\end{aligned}
$$

By Lemma 3.1,

$$
c_{j}=\int_{r}^{+\infty}\left(\eta^{1-N} \int_{0}^{\eta} \xi^{N-1} a_{i j}(\xi) d \xi\right)^{\frac{1}{p^{k}-1}} d \eta<+\infty
$$

for $i=1, j=1,2$ and $k= \pm$
Similarly,

$$
z(r) \leq c_{21} b_{1}\left(\|u\|_{\infty}\right)^{\frac{\delta_{21}+\varepsilon}{q^{k}-1}}+c_{22} b_{2}\left(\|v\|_{\infty}\right)^{\frac{\delta_{22}+\varepsilon}{q^{k}-1}}
$$

$b_{j}=\int_{r}^{+\infty}\left(\eta^{1-N} \int_{0}^{\eta} \xi^{N-1} a_{i j}(\xi) d \xi\right)^{\frac{1}{q^{k}-1}} d \eta<+\infty \quad$ for $i=2, j=1,2$ and $k= \pm$.
Obviously, $\sup _{r \in[0,+\infty}|w(r)|<+\infty$ and $\sup _{r \in[0,+\infty[}|z(r)|<+\infty$.
Morever, we have $w \geq 0, z \geq 0$ and $\lim _{r \rightarrow+\infty} w(r)=\lim _{r \rightarrow+\infty} z(r)=0$.
Now, we show that L is compact. Indeed, let $\left(u_{n}, v_{n}\right)$ be a bounded sequence of X. From the relation

$$
L\left(u_{n}, v_{n}\right)=\left(w_{n}, z_{n}\right)
$$

we can write

$$
\begin{align*}
-\left(r^{N-1}\left|w_{n}^{\prime}(r)\right|^{p(r)-2} w_{n}^{\prime}(r)\right)^{\prime}= & r^{N-1} a_{11}(r) f_{11}\left(u_{n}(r)\right)+r^{N-1} a_{12}(r) f_{12}\left(v_{n}(r)\right) \\
\text { in } \quad & {[0,+\infty[} \\
-\left(r^{N-1}\left|z_{n}^{\prime}(r)\right|^{q(r)-2} z_{n}^{\prime}(r)\right)^{\prime}= & r^{N-1} a_{21}(r) f_{21}\left(u_{n}(r)\right)+r^{N-1} a_{22}(r) f_{22}\left(v_{n}(r)\right) \tag{3.1}\\
\text { in } & {[0,+\infty[,} \\
w^{\prime}(0) & =z^{\prime}(0)=0, \quad \lim _{r \rightarrow+\infty} w(r)=\lim _{r \rightarrow+\infty} z(r)=0,
\end{align*}
$$

For fixed $R>0$, let $r \in[0, R]$ and put $\varphi(t)=|t|^{p(r)-1}$.
From the first equation of the above system, we obtain

$$
\frac{d}{d r} \varphi\left(w_{n}^{\prime}(r)\right)+\frac{N-1}{r}\left|w_{n}^{\prime}(r)\right|^{p(r)-1}-a_{11}(r) f_{11}\left(u_{n}(r)\right)-a_{12}(r) f_{12}\left(v_{n}(r)\right)=0
$$

Therefore

$$
\frac{d}{d r} \varphi\left(w_{n}^{\prime}(r)\right)-a_{11}(r) f_{11}\left(u_{n}(r)\right)-a_{12}(r) f_{12}\left(v_{n}(r)\right) \leq 0
$$

in view of the part (i) of Proposition 2.1, we have

$$
\frac{d}{d r} \varphi\left(w_{n}^{\prime}(r)\right) \leq a_{11}(r)\left(u_{n}(r)\right)^{\delta_{11}+\varepsilon}+a_{12}(r)\left(v_{n}(r)\right)^{\delta_{12}+\varepsilon}
$$

Since u_{n} and v_{n} are bounded, we get

$$
\frac{d}{d r} \varphi\left(w_{n}^{\prime}(r)\right) \leq c_{1} a_{11}(r)+c_{2} a_{12}(r)
$$

Integrating from 0 to R both last inqualities, we obtain

$$
\varphi\left(w_{n}^{\prime}(R)\right) \leq c
$$

or

$$
\begin{equation*}
\left|\left(w_{n}^{\prime}(R)\right)\right|^{p(R)-1} \leq c \tag{3.2}
\end{equation*}
$$

This means that at finite distance, w_{n}^{\prime} is bounded.
In the same way, substuting q to p, we show that again $z_{n}^{\prime}(r)$ is bounded on $[0,+\infty[$.
This yields $\left|w_{n}^{\prime}(r)\right| \leq c ;\left|z_{n}^{\prime}(r)\right| \leq c \forall r \in[0, R], \forall n \in \mathbb{N}$. Consequently, $\left(w_{n}\right)$ and $\left(z_{n}\right)$ are equicontinuous. According to Arzelà-Ascoli theorem, there exist two subsequences, denoted again as $\left(w_{n}\right)$ and $\left(z_{n}\right)$, such that $w_{n} \rightarrow w ; z_{n} \rightarrow z$ in $C^{0}([0, R]) ; \forall R>0$.

Let us prove now that $\left(w_{n}, z_{n}\right)$ is a cauchy sequence in X. Indeed,

$$
\begin{aligned}
\sup _{r \in[0,+\infty}\left|w_{n}(r)-w_{m}(r)\right| \leq & \sup _{r \in[0, R[}\left|w_{n}(r)-w_{m}(r)\right|+\sup _{r \in[R,+\infty}\left|w_{n}(r)-w_{m}(r)\right| \\
\sup _{r \in[R,+\infty}\left|w_{n}(r)-w_{m}(r)\right| \leq & \sup _{r \in[R,+\infty[}\left|w_{n}(r)\right|+\sup _{r \in[R,+\infty[}\left|w_{m}(r)\right| \\
\leq & c_{11} c_{1}\left(\left\|u_{n}\right\|_{\infty}\right)^{\frac{\delta_{11}+\varepsilon}{p^{k}-1}}+c_{12} c_{2}\left(\left\|v_{n}\right\|_{\infty}\right)^{\frac{\delta_{12}+\varepsilon}{p^{k}-1}} \\
& +c_{11} c_{1}\left(\left\|u_{m}\right\|_{\infty}\right)^{\frac{\delta_{11}+\varepsilon}{p^{k}-1}}+c_{12} c_{2}\left(\left\|v_{m}\right\|_{\infty}\right)^{\frac{\delta_{12}+\varepsilon}{p^{k}-1}}
\end{aligned}
$$

We have $c_{1}+c_{2}<\varepsilon$ as R sufficiently large. On the other hand $\left(w_{n}\right)$ converges in $C^{0}([0, R])$.
It follows that $\left(w_{n}\right)$ is a cauchy sequence in $C^{0}\left(\left[0,+\infty[)\right.\right.$. In a similar manner, $\left(z_{n}\right)$ is also a cauchy sequence in $C^{0}\left(\left[0,+\infty[)\right.\right.$. Consequently $\left(u_{n}, v_{n}\right)$ is a cauchy sequence in X. Hence L is compact.

Theorem 3.5. If hypotheses (H1)-(H3), are satisfies the system

$$
\begin{array}{lr}
-\Delta_{p} u=a_{12}(|x|)|v|^{\delta_{12}-1} v & \text { in } \mathbb{R}^{N} \\
-\Delta_{q} v=a_{21}(|x|)|u|^{\delta_{21}-1} u & \text { in } \mathbb{R}^{N} \tag{3.3}
\end{array}
$$

has no non-trivial radial positive solutions; in particular (3.3) has no ground state.
Proof. Let us argue by contradiction. Let (u, v) be a radial positive solution of system (3.3). Then (u,v) satisfies the differential system

$$
\begin{align*}
-\left(r^{N-1}\left|u^{\prime}(r)\right|^{p-2} u^{\prime}(r)\right)^{\prime} & =r^{N-1} a_{12}(r)(v(r))^{\delta_{12}} & & \text { in }[0,+\infty[\\
-\left(r^{N-1}\left|v^{\prime}(r)\right|^{q-2} v^{\prime}(r)\right)^{\prime} & =r^{N-1} a_{21}(r)(u(r))^{\delta_{21}} & & \text { in }[0,+\infty[\tag{3.4}\\
u^{\prime}(0) & =v^{\prime}(0)=0 & &
\end{align*}
$$

Hence,

$$
\begin{align*}
& -\left(r^{N-1}\left|u^{\prime}(r)\right|^{p-2} u^{\prime}(r)\right)^{\prime} \geq r^{N-1} \widetilde{a}_{1} v^{\delta_{12}} \tag{3.5}\\
& -\left(r^{N-1}\left|u^{\prime}(r)\right|^{q-2} u^{\prime}(r)\right)^{\prime} \geq r^{N-1} \widetilde{a}_{2} v^{\delta_{21}} \tag{3.6}
\end{align*}
$$

with $v^{\delta_{i j}}=\min _{[0, r]} v(r)^{\delta_{i j}} \quad$ for $i \neq j$.
First, consider the case $\beta_{1}>0$ or $\beta_{2}>0$. Integrating both (3.5) and (3.6) from 0 to r and taking into account that $u^{\prime}(r)<0, v^{\prime}(r)<0$ for all $r>0$, we obtain

$$
\begin{aligned}
& -u^{\prime}(r) \geq\left(\frac{\widetilde{a}_{1}}{N}\right)^{\frac{1}{p-1}} r^{\frac{1}{p-1}} v^{\frac{\delta_{12}}{p-1}} \\
& -v^{\prime}(r) \geq\left(\frac{\widetilde{a}_{2}}{N}\right)^{\frac{1}{q-1}} r^{\frac{1}{q-1}} u^{\frac{\delta_{21}}{q-1}}
\end{aligned}
$$

By Lemma 3.3, we have $M_{p} \geq 0, M_{q} \geq 0$, thus

$$
\begin{aligned}
& 0 \geq-r u^{\prime}(r)-\frac{N-p}{p-1} u(r) \geq\left(\frac{\widetilde{a}_{1}}{N}\right)^{\frac{1}{p-1}} r^{\frac{p}{p-1}} v^{\frac{\delta_{12}}{p-1}}-\frac{N-p}{p-1} u(r), \\
& 0 \geq-r v^{\prime}(r)-\frac{N-q}{q-1} v(r) \geq\left(\frac{\widetilde{a}_{2}}{N}\right)^{\frac{1}{q-1}} r^{\frac{q}{q-1}} u^{\frac{\delta_{21}}{q-1}}-\frac{N-q}{q-1} v(r) .
\end{aligned}
$$

This yields

$$
\begin{align*}
& u(r) \geq C r^{\frac{p}{p-1}} v^{\frac{\delta_{12}}{p-1}} \tag{3.7}\\
& v(r) \geq C r^{\frac{q}{q-1}} e^{\frac{\delta_{21}}{q-1}} \tag{3.8}
\end{align*}
$$

Combining these two inequalities, we have

$$
\begin{align*}
& u(r) \leq C r^{-\alpha_{1}} \tag{3.9}\\
& v(r) \leq C r^{-\alpha_{2}} \tag{3.10}
\end{align*}
$$

Since $r^{\frac{N-p}{p-1}} u(r)$ and $r^{\frac{N-q}{q-1}} v(r)$ are nondecreasing, for all $r>r_{0}>0$,

$$
\begin{align*}
& u(r) \geq C r^{-\frac{N-p}{p-1}} \tag{3.11}\\
& v(r) \geq C r^{-\frac{N-q}{q-1}} \tag{3.12}
\end{align*}
$$

Inequalities (3.9)-(3.12) imply either $r^{\beta_{1}} \leq C$ or $r^{\beta_{2}} \leq C$. This yields a contradiction. Suppose with out loss of generality now that $\beta_{1}=0$. Integrating with respect to r the first equation of System (3.4) from $r_{0}>0$ to r, we obtain

$$
r^{N-1}\left|u^{\prime}(r)\right|^{p-1}-r_{0}^{N-1}\left|u^{\prime}\left(r_{0}\right)\right|^{p-1} \geq \widetilde{a}_{1} \int_{r_{0}}^{r} s^{N-1} v^{\delta_{12}}(s) d s
$$

On the other hand, by (3.8)

$$
v^{\delta_{12}}(s) \geq C s^{\frac{\delta_{12} q}{q-1}} u^{\frac{\delta_{12} \delta_{21}}{q-1}}(s)
$$

Consequently,

$$
r^{N-1}\left|u^{\prime}(r)\right|^{p-1} \geq C \int_{r_{0}}^{r} s^{N-1+\frac{\delta_{12} q}{q-1}} u^{\frac{\delta_{12} \delta_{21}}{q-1}}(s) d s
$$

Taking into account inequality (3.11) and the fact that $\beta_{1}=0$, we have

$$
r^{N-1}\left|u^{\prime}(r)\right|^{p-1} \geq C \int_{r_{0}}^{r} s^{N-1+\frac{\delta_{12} q}{q-1}-\frac{N-p}{p-1} \frac{\delta_{12} \delta_{21}}{q-1}} d s=C \int_{r_{0}}^{r} s^{-1} d s=C \ln \frac{r}{r_{0}}
$$

On the other hand, $M_{p}(r) \geq 0$ for $r>0$ implies $\left(\frac{N-p}{p-1}\right)^{p-1} u^{p-1}(r) \geq r^{p-1}\left|u^{\prime}(r)\right|^{p-1}$. Hence

$$
u^{p-1}(r) \geq C r^{p-1}\left|u^{\prime}(r)\right|^{p-1} \geq C r^{p-N} \ln \frac{r}{r_{0}}
$$

Then we write

$$
r^{\frac{N-p}{p-1}} u(r) \geq C\left(\ln \frac{r}{r_{0}}\right)^{\frac{1}{p-1}} .
$$

This together with (3.9) yields a contradiction.

We now show that the eventual radial positive solutions of System (2.1) are bounded.
Theorem 3.6. Assume (H1)-(H4). If (u, v) is a ground state of (2.1). then there exists a constant $C>0$ (independent of u and v) such that $\|(u, v)\|_{X} \leq C$.

Proof. Let (u, v) be a ground state of (2.1) for $h=0$, then (u, v) satisfies the system

$$
\begin{align*}
-\left(r^{N-1}\left|u^{\prime}(r)\right|^{p(r)-2} u^{\prime}(r)\right)^{\prime}= & r^{N-1} a_{11}(r) f_{11}(u(r))+r^{N-1} a_{12}(r) f_{12}(v(r)) \\
\text { in } & {[0,+\infty[,} \\
-\left(r^{N-1}\left|v^{\prime}(r)\right|^{q(r)-2} v^{\prime}(r)\right)^{\prime}= & r^{N-1} a_{21}(r) f_{21}(u(r))+r^{N-1} a_{22}(r) f_{22}(v(r)) \tag{3.13}\\
\text { in } & {[0,+\infty[,} \\
u^{\prime}(0)= & v^{\prime}(0)=0, \quad \lim _{r \rightarrow+\infty} u(r)=\lim _{r \rightarrow+\infty} v(r)=0,
\end{align*}
$$

Assume now that there exists a sequence $\left(u_{n}, v_{n}\right)$ of positive solutions of (3.13) such that $\left\|u_{n}\right\|_{\infty} \rightarrow \infty$ as $n \rightarrow \infty$ or $\left\|v_{n}\right\|_{\infty} \rightarrow \infty$ as $n \rightarrow \infty$. Taking $\gamma_{n}=\left\|u_{n}\right\|_{\infty}^{\frac{1}{\alpha_{1}}}+\left\|v_{n}\right\|_{\infty}^{\frac{1}{\alpha_{2}}}$, and using (H3), we have $\alpha_{1}>0$ and $\alpha_{2}>0$. So $\gamma_{n} \rightarrow+\infty$ as $n \rightarrow \infty$.

Now we introduce the transformations

$$
y=\gamma_{n} r, \quad w_{n}(y)=\frac{u_{n}(r)}{\gamma_{n}^{\alpha_{1}}}, \quad z_{n}(y)=\frac{v_{n}(r)}{\gamma_{n}^{\alpha_{2}}}
$$

Observe that for all $y \in\left[0,+\infty\left[, 0 \leq w_{n}(y) \leq 1,0 \leq z_{n}(y) \leq 1\right.\right.$. Furthermore it is easy to see that for any n the pair $\left(w_{n}, z_{n}\right)$ is a solution of the system

$$
\begin{align*}
& -\left(\gamma_{n}^{\alpha_{1}\left(p\left(\frac{y}{\gamma_{n}}\right)-1\right)+p\left(\frac{y}{\gamma_{n}}\right)} y^{N-1}\left|w_{n}^{\prime}(y)\right|^{p\left(\frac{y}{\gamma_{n}}\right)-2} w_{n}^{\prime}(y)\right)^{\prime} \\
& =y^{N-1} a_{11}\left(\frac{y}{\gamma_{n}}\right) f_{11}\left(\gamma_{n}^{\alpha_{1}} w_{n}(y)\right)+y^{N-1} a_{12}\left(\frac{y}{\gamma_{n}}\right) f_{12}\left(\gamma_{n}^{\alpha_{2}} z_{n}(y)\right) \quad \text { in } \quad[0,+\infty[, \\
& -\left(\gamma_{n}^{\alpha_{2}\left(q\left(\frac{y}{\gamma_{n}}\right)-1\right)+q\left(\frac{y}{\gamma_{n}}\right)} y^{N-1}\left|z_{n}^{\prime}(y)\right|^{q\left(\frac{y}{\gamma_{n}}\right)-2} z_{n}^{\prime}(y)\right)^{\prime} \tag{3.14}\\
& =y^{N-1} a_{21}\left(\frac{y}{\gamma_{n}}\right) f_{21}\left(\gamma_{n}^{\alpha_{1}} w_{n}(y)\right)+y^{N-1} a_{22}\left(\frac{y}{\gamma_{n}}\right) f_{22}\left(\gamma_{n}^{\alpha_{2}} z_{n}(y)\right) \quad \text { in } \quad[0,+\infty[, \\
& \quad w_{n}^{\prime}(0)=z_{n}^{\prime}(0)=0, \quad \lim _{r \rightarrow+\infty} w_{n}(r)=\lim _{r \rightarrow+\infty} z_{n}(r)=0
\end{align*}
$$

Let $R>0$ be fixed. We claim that $\left(w_{n}^{\prime}\right)$ and $\left(z_{n}^{\prime}\right)$ are bounded in $C([0, R])$. Indeed passing to a subsequence of $\left(w_{n}^{\prime}\right)$ (denoted again $\left.\left(w_{n}^{\prime}\right)\right)$ assume that $\left\|w_{n}^{\prime}\right\|_{([0, R])} \rightarrow+\infty$ as $n \rightarrow+\infty$. Hence there exists a sequence $\left(y_{n}\right)$ in $[0, R]$ such that for all $A>0$, there exists $n_{0} \in \mathbb{N}$ such that for all $n \geq n_{0},\left|w_{n}^{\prime}\left(y_{n}\right)\right|>A$.

Integrating with respect to y the first equation of System (3.14) we obtain

$$
\begin{aligned}
& \left|w_{n}^{\prime}\left(y_{n}\right)\right|^{p\left(\frac{y_{n}}{\gamma_{n}}\right)-1}=\frac{1}{y_{n}^{N-1} \gamma_{n}^{\alpha_{1}\left(p\left(\frac{y_{n}}{\gamma_{n}}\right)-1\right)+p\left(\frac{y_{n}}{\gamma_{n}}\right)} \int_{0}^{y_{n}}\left(y^{N-1} a_{11}\left(\frac{y}{\gamma_{n}}\right) f_{11}\left(\gamma_{n}^{\alpha_{1}} w_{n}(y)\right)+y^{N-1} a_{12}\left(\frac{y}{\gamma_{n}}\right) f_{12}\left(\gamma_{n}^{\alpha_{2}} z_{n}(y)\right)\right) d y .} \begin{array}{l}
\left|w_{n}^{\prime}\left(y_{n}\right)\right|^{p\left(\frac{y_{n}}{\gamma_{n}}\right)-1} \leq \frac{1}{y_{n}^{N-1}} \int_{0}^{y_{n}}\left(y^{N-1} a_{11}\left(\frac{y}{\gamma_{n}}\right) \frac{f_{11}\left(\gamma_{n}^{\alpha_{1}} w_{n}(y)\right)}{\gamma_{n}^{\alpha_{1}\left(p^{k}-1\right)+p^{k}}}+y^{N-1} a_{12}\left(\frac{y}{\gamma_{n}}\right) \frac{f_{12}\left(\gamma_{n}^{\alpha_{2}} z_{n}(y)\right)}{\gamma_{n}^{\alpha_{1}\left(p^{k}-1\right)+p^{k}}}\right) d y
\end{array} . . l
\end{aligned}
$$

From the fact that $f_{1 j}, j=1,2$, are asymptotically homogeneous at the infinity together with part (i) of Proposition 2.1, we arrive to the statement: for all $\varepsilon \in\left[0, \delta_{1 j}\left[\right.\right.$, there exists $c_{1 j}^{1}, c_{1 j}^{2}>0, s_{0}>0$ such that for all $s \geq s_{0}$

$$
c_{1 j}^{1} s^{\delta_{1 j}-\varepsilon} \leq f_{1 j}(s) \leq c_{1 j}^{2} s^{\delta_{1 j}+\varepsilon} .
$$

Since $\left(w_{n}\right)$ and $\left(z_{n}\right)$ are bounded, we conclude that

$$
\begin{aligned}
& c_{11}^{1} \gamma_{n}^{\alpha_{1}\left(\delta_{11}-\varepsilon\right)-\alpha_{1}\left(p^{k}-1\right)-p^{k}} \leq \frac{f_{11}\left(\gamma_{n}^{\alpha_{1}} w_{n}(y)\right)}{\gamma_{n}^{\alpha_{1}\left(p^{k}-1\right)+p^{k}} \leq c_{11}^{2} \gamma_{n}^{\alpha_{1}\left(\delta_{11}+\varepsilon\right)-\alpha_{1}\left(p^{k}-1\right)-p^{k}}} \\
& c_{12}^{1} \gamma_{n}^{\alpha_{2}\left(\delta_{12}-\varepsilon\right)-\alpha_{1}\left(p^{k}-1\right)-p^{k}} \leq \frac{f_{12}\left(\gamma_{n}^{\alpha_{2}} z_{n}(y)\right)}{\gamma_{n}^{\alpha_{1}\left(p^{k}-1\right)+p^{k}} \leq c_{12}^{2} \gamma_{n}^{\alpha_{2}\left(\delta_{12}+\varepsilon\right)-\alpha_{1}\left(p^{k}-1\right)-p^{k}} .} .
\end{aligned}
$$

By choosing ε sufficiently small, the assumption (H3) yields

$$
\frac{f_{11}\left(\gamma_{n}^{\alpha_{1}} w_{n}(y)\right)}{\gamma_{n}^{\alpha_{1}\left(p^{k}-1\right)+p^{k}}} \rightarrow 0 \quad \text { and } \quad \frac{f_{12}\left(\gamma_{n}^{\alpha_{2}} z_{n}(y)\right)}{\gamma_{n}^{\alpha_{1}\left(p^{k}-1\right)+p^{k}}} \rightarrow c_{1} \quad \text { as } n \rightarrow+\infty
$$

where c_{1} is positive constant. So there exists $n_{1} \in \mathbb{N}$ such that for any $n \geq n_{1}$, we have

$$
\left|w_{n}^{\prime}\left(y_{n}\right)\right|^{p\left(\frac{y_{n}}{\gamma_{n}}\right)-1} \leq \frac{a_{12}(0)}{y_{n}^{N-1}} c_{1} \int_{0}^{y_{n}} y^{N-1} d y=\frac{c_{1}}{N} a_{12}(0) y_{n} \leq \frac{R c_{1}}{N} a_{12}(0) \equiv c
$$

Setting $n \geq \max \left(n_{0}, n_{1}\right)$, we have $A<\left|w_{n}^{\prime}\left(y_{n}\right)\right| \leq c$. This contradicts the fact that A may be infinitely large. Similarly we prove that $\left(z_{n}^{\prime}\right)$ is bounded in $(C[0, R])$. Consequently $\left(w_{n}\right)$ and $\left(z_{n}\right)$ are equicontinuous in $C([0, R])$. By Arzelà-Ascoli theorem, there exists a subsequence of $\left(w_{n}\right)$ denoted again $\left(w_{n}\right)$ (respect. $\left.\left(z_{n}\right)\right)$ such that $w_{n} \rightarrow w$ (respect. $z_{n} \rightarrow z$) in $C([0, R])$.

On the other hand,

$$
\left\|w_{n}\right\|_{\infty}^{\frac{1}{\alpha_{1}}}+\left\|z_{n}\right\|_{\infty}^{\frac{1}{\alpha_{2}}}=1
$$

this implies that the real-valued sequences $\left(\left\|w_{n}\right\|_{\infty}\right)$ and $\left(\left\|z_{n}\right\|_{\infty}\right)$ are bounded. Hence there exist subsequences denoted again $\left(\left\|w_{n}\right\|_{\infty}\right)$ and $\left(\left\|z_{n}\right\|_{\infty}\right)$ such that $\left\|w_{n}\right\|_{\infty} \rightarrow w_{0},\left\|z_{n}\right\|_{\infty} \rightarrow z_{0}$ and $w_{0}^{\frac{1}{\alpha_{1}}}+z_{0}^{\frac{1}{\alpha_{2}}}=1$. In view of the uniqueness of the limit in $C([0, R])$, we get $\|w\|_{\infty}^{\frac{1}{\alpha_{1}}}+\|z\|_{\infty}^{\frac{1}{\alpha_{2}}}=1$. This implies that (w, z) is not identically null. Integrating from 0 to $y \in[0, R]$, the first and the second equation of System (3.14), we obtain

$$
\begin{align*}
& w_{n}(0)-w_{n}(y)=\int_{0}^{y}\left(g_{n}(t)\right)^{\frac{1}{p\left(\frac{t}{\gamma_{n}}\right)-1}} d t \tag{3.15}\\
& z_{n}(0)-z_{n}(y)=\int_{0}^{y}\left(h_{n}(t)\right)^{\frac{1}{q\left(\frac{t}{\gamma_{n}}\right)-1}} d t \tag{3.16}
\end{align*}
$$

Clearly $g_{n}(y)$ and $h_{n}(y)$ are defined by

$$
\begin{array}{r}
g_{n}(y)=\frac{1}{y^{N-1} \gamma_{n}^{\alpha_{1}\left(p\left(\frac{y}{\gamma_{n}}\right)-1\right)+p\left(\frac{y}{\gamma_{n}}\right)}} \int_{0}^{y}\left(t^{N-1} a_{11}\left(\frac{t}{\gamma_{n}}\right) f_{11}\left(\gamma_{n}^{\alpha_{1}} w_{n}(t)\right)+t^{N-1} a_{12}\left(\frac{t}{\gamma_{n}}\right) f_{12}\left(\gamma_{n}^{\alpha_{2}} z_{n}(t)\right)\right) d t . \\
g_{n}(y) \leq \frac{1}{y^{N-1}} \int_{0}^{y}\left(t^{N-1} a_{11}\left(\frac{t}{\gamma_{n}}\right) \frac{f_{11}\left(\gamma_{n}^{\alpha_{1}} w_{n}(t)\right)}{\left.\gamma_{n}^{\alpha_{1}\left(p^{k}-1\right)+p^{k}}+t^{N-1} a_{12}\left(\frac{t}{\gamma_{n}}\right) \frac{f_{12}\left(\gamma_{n}^{\alpha_{2}} z_{n}(t)\right)}{\gamma_{n}^{\alpha_{1}\left(p^{k}-1\right)+p^{k}}}\right) d t .}\right. \\
h_{n}(y)=\frac{1}{y^{N-1} \gamma_{n}^{\alpha_{2}\left(q\left(\frac{y}{\gamma_{n}}\right)-1\right)+q\left(\frac{y}{\gamma_{n}}\right)}} \int_{0}^{y}\left(t^{N-1} a_{21}\left(\frac{t}{\gamma_{n}}\right) f_{21}\left(\gamma_{n}^{\alpha_{1}} w_{n}(t)\right)+t^{N-1} a_{22}\left(\frac{t}{\gamma_{n}}\right) f_{22}\left(\gamma_{n}^{\alpha_{2}} z_{n}(t)\right)\right) d t . \\
h_{n}(y) \leq \frac{1}{y^{N-1}} \int_{0}^{y}\left(t^{N-1} a_{21}\left(\frac{t}{\gamma_{n}}\right) \frac{f_{21}\left(\gamma_{n}^{\alpha_{1}} w_{n}(t)\right)}{\left.\gamma_{n}^{\alpha_{2}\left(q^{k}-1\right)+q^{k}}+t^{N-1} a_{22}\left(\frac{t}{\gamma_{n}}\right) \frac{f_{22}\left(\gamma_{n}^{\alpha_{2}} z_{n}(t)\right)}{\gamma_{n}^{\alpha_{2}\left(q^{k}-1\right)+q^{k}}}\right) d t .}\right.
\end{array}
$$

Compiling Proposition 2.1 and (H3), we obtain

$$
\begin{gathered}
\frac{f_{11}\left(\gamma_{n}^{\alpha_{1}} w_{n}(t)\right)}{\gamma_{n}^{\alpha_{1}\left(p^{k}-1\right)+p^{k}} \rightarrow 0, \quad \frac{f_{22}\left(\gamma_{n}^{\alpha_{2}} z_{n}(t)\right)}{\gamma_{n}^{\alpha_{2}\left(q^{k}-1\right)+q^{k}}} \rightarrow 0} \\
\frac{f_{12}\left(\gamma_{n}^{\alpha_{2}} z_{n}(t)\right)}{\gamma_{n}^{\alpha_{1}\left(p^{k}-1\right)+p^{k}}}=\frac{f_{12}\left(\gamma_{n}^{\alpha_{2}}\right)}{\gamma_{n}^{\alpha_{1}\left(p^{k}-1\right)+p^{k}}} \frac{f_{12}\left(\gamma_{n}^{\alpha_{2}} z_{n}(t)\right)}{f_{12}\left(\gamma_{n}^{\alpha_{2}}\right)} \rightarrow c z^{\delta_{12}}(t), \\
\frac{f_{21}\left(\gamma_{n}^{\alpha_{1}} w_{n}(t)\right)}{\gamma_{n}^{\alpha_{2}\left(q^{k}-1\right)+q^{k}}}=\frac{f_{21}\left(\gamma_{n}^{\alpha_{1}}\right)}{\gamma_{n}^{\alpha_{2}\left(q^{k}-1\right)+q^{k}}} \frac{f_{21}\left(\gamma_{n}^{\alpha_{1}} w_{n}(t)\right)}{f_{21}\left(\gamma_{n}^{\alpha_{1}}\right)} \rightarrow c w^{\delta_{21}}(t),
\end{gathered}
$$

as $n \rightarrow \infty$. By the Lebesgue theorem on dominated convergence, it follows that

$$
\begin{aligned}
g_{n}(y) & \rightarrow \frac{c}{y^{N-1}} \int_{0}^{y} t^{N-1} a_{12}(0) z^{\delta_{12}}(t) d t \\
h_{n}(y) & \rightarrow \frac{c}{y^{N-1}} \int_{0}^{y} t^{N-1} a_{21}(0) w^{\delta_{21}}(t) d t
\end{aligned}
$$

as $n \rightarrow \infty$. Passing to the limit in (3.15) and (3.16), we arrive to

$$
\begin{aligned}
& w(0)-w(y)=c \int_{0}^{y}\left(\frac{1}{\xi^{N-1}} \int_{0}^{\xi} t^{N-1} a_{12}(0) z^{\delta_{12}}(t) d t\right)^{\frac{1}{p(0)-1}} d \xi \\
& z(0)-z(y)=c \int_{0}^{y}\left(\frac{1}{\xi^{N-1}} \int_{0}^{\xi} t^{N-1} a_{21}(0) w^{\delta_{21}}(t) d t\right)^{\frac{1}{q(0)-1}} d \xi
\end{aligned}
$$

In this way, $w \geq 0, z \geq 0, w, z \in C^{1}([0, R]) \cap C^{2}([0, R])$ and satisfy the system

$$
\begin{align*}
-\left(y^{N-1}\left|w^{\prime}(y)\right|^{p-2} w^{\prime}(y)\right)^{\prime} & =c a_{12}(0) y^{N-1}(z(y))^{\delta_{12}} & & \text { in }[0, R] \\
-\left(y^{N-1}\left|z^{\prime}(y)\right|^{q-2} z^{\prime}(y)\right)^{\prime} & =c a_{21}(0) y^{N-1}(w(y))^{\delta_{21}} & & \text { in }[0, R] \tag{3.17}\\
w^{\prime}(0) & =z^{\prime}(0)=0 & &
\end{align*}
$$

If we use the same arguments on $\left[0, R^{*}\right]$ where $R^{*}>R$, we obtain a solution $\left(w^{*}, z^{*}\right)$ of System (3.17) with R^{*} instead of R, which coincide with (w, z) in $[0, R]$ To this end, we indefinitely extend (w, z) to $[0,+\infty[$. By Lemma 3.2 we have $w(y)>0, z(y)>0$, for all $y \geq 0$. The pair (w, z) also satisfies System (3.17). In other words (w, z) is a radial positive solution of (3.4). This contradicts Theorem 3.5.

Lemma 3.7. Under assumptions (H1)-(H4), there exists $h_{0}>0$ such that the problem $(u, v)=T_{h}(u, v)$ has no solution for $h \geq h_{0}$.

Proof. Suppose by contradiction that there is a solution $(u, v) \in X$ of the above problem. Then (u, v) satisfies system

$$
\begin{align*}
-\left(r^{N-1}\left|u^{\prime}(r)\right|^{p(r)-2} u^{\prime}(r)\right)^{\prime}= & r^{N-1} a_{11}(r) f_{11}(|u(r)|)+r^{N-1} a_{12}(r)\left[f_{12}(|v(r)|)+h\right] \\
\text { in } & {[0,+\infty[} \\
-\left(r^{N-1}\left|v^{\prime}(r)\right|^{q(r)-2} v^{\prime}(r)\right)^{\prime}= & r^{N-1} a_{21}(r) f_{21}(|u(r)|)+r^{N-1} a_{22}(r) f_{22}(|v(r)|) \tag{3.18}\\
\text { in } & {[0,+\infty[,} \\
u^{\prime}(0) & =v^{\prime}(0)=0, \quad \lim _{r \rightarrow+\infty} u(r)=\lim _{r \rightarrow+\infty} v(r)=0
\end{align*}
$$

Assume that there exists a sequence $\left(h_{n}\right) h_{n} \rightarrow+\infty$ as $n \rightarrow+\infty$, such that (3.18) admits a pair of solutions $\left(u_{n}, v_{n}\right)$. In accordance with Lemma 3.2, we have $u_{n}(r)>0, v_{n}(r)>0, u_{n}^{\prime}(r) \leq 0$, and $v_{n}^{\prime}(r) \leq 0$, for all $n \in \mathbb{N}$. Integrating the first equation of System (3.18), from R to $2 R, R>0$, we obtain

$$
u_{n}(R) \geq \int_{R}^{2 R}\left(\eta^{1-N} \int_{0}^{\eta} \xi^{N-1} a_{12}(\xi) h_{n} d \xi\right)^{\frac{1}{p^{k}-1}} d \eta \geq c R h_{n}^{\frac{1}{p^{k}-1}}
$$

Here

$$
c=\left(\frac{1}{(2 R)^{N-1}} \int_{0}^{R} \xi^{N-1} a_{12}(\xi) d \xi\right)^{\frac{1}{p^{k}-1}}
$$

Consequently $u_{n}(R) \geq c R h_{n}^{\frac{1}{p^{k}-1}}$. Passing to the limit we get $u_{n}(R) \rightarrow+\infty$. On the other hand, integrating the second equation of (3.18), from R to $2 R$, we obtain

$$
v_{n}(R) \geq \int_{R}^{2 R}\left(\eta^{1-N} \int_{0}^{\eta} \xi^{N-1} a_{21}(\xi) f_{21}\left(u_{n}(\xi)\right) d \xi\right)^{\frac{1}{q^{k}-1}} d \eta \geq c R\left(f_{21}\left(u_{n}(R)\right)\right)^{\frac{1}{q^{k}-1}}
$$

By hypothesis (H3) and Proposition 2.1, we have $v_{n}(R) \geq c\left(u_{n}(R)\right)^{\frac{\delta_{21}-\varepsilon}{q^{k}-1}}$. Operating similarly, we obtain $u_{n}(R) \geq c\left(v_{n}(R)\right)^{\frac{\delta_{12}-\varepsilon}{p^{k}-1}}$. It follows from the last two inequalities, that

$$
\left(u_{n}(R)\right)^{\frac{\left(\delta_{12}-\varepsilon\right)\left(\delta_{21}-\varepsilon\right)-\left(p^{k}-1\right)\left(q^{k}-1\right)}{\left(p^{k}-1\right)\left(q^{k}-1\right)}} \leq \frac{1}{c}
$$

This is the desired contradiction since $u_{n}(R)$ increases to infinitely.

Lemma 3.8. There exists $\bar{\rho}>0$ such that for all $\rho \in] 0, \bar{\rho}[$ and all $(u, v) \in X$ satisfying $\|(u, v)\|=\rho$, the equation $(u, v)=S_{\lambda}(u, v)$ has no solution.

Proof. Assume that there exist $\left(\rho_{n}\right) \in \mathbb{R}_{+}, \rho_{n} \rightarrow 0 ;\left(\lambda_{n}\right) \subset[0,1]$ and $\left(u_{n}, v_{n}\right) \in X$ such that $\left(u_{n}, v_{n}\right)=$ $S_{\lambda_{n}}\left(u_{n}, v_{n}\right)$ with $\left\|\left(u_{n}, v_{n}\right)\right\|=\rho_{n}$. Taking (H4) into account,

$$
\begin{aligned}
& \left\|u_{n}\right\|_{\infty} \leq c \lambda_{n}^{\frac{1}{p^{k}-1}}\left(\left\|u_{n}\right\|_{\infty}^{\frac{\bar{\delta}_{11}+\varepsilon}{p^{k}-1}}+\left\|v_{n}\right\|_{\infty}^{\frac{\bar{\delta}_{12}+\varepsilon}{p^{k}-1}}\right) \\
& \left\|v_{n}\right\|_{\infty} \leq c \lambda_{n}^{\frac{1}{q^{k}-1}}\left(\left\|u_{n}\right\|_{\infty}^{\frac{\bar{\delta}_{21}+\varepsilon}{q^{k}-1}}+\left\|v_{n}\right\|_{\infty}^{\frac{\bar{\delta}_{22}+\varepsilon}{q^{k}-1}}\right)
\end{aligned}
$$

Adding term by term, we obtain

$$
\left\|\left(u_{n}, v_{n}\right)\right\| \leq C\left(\left\|\left(u_{n}, v_{n}\right)\right\|^{\frac{\bar{\delta}_{11}+\varepsilon}{p^{k}-1}}+\left\|\left(u_{n}, v_{n}\right)\right\|^{\frac{\bar{\delta}_{12}+\varepsilon}{p^{k}-1}}+\left\|\left(u_{n}, v_{n}\right)\right\|^{\frac{\bar{\delta}_{21}+\varepsilon}{q^{k}-1}}+\left\|\left(u_{n}, v_{n}\right)\right\|^{\frac{\bar{\delta}_{22}+\varepsilon}{q^{k}-1}}\right) .
$$

This implies

$$
1 \leq C\left(\left\|\left(u_{n}, v_{n}\right)\right\|^{\frac{\bar{\delta}_{11}+\varepsilon}{p^{k}-1}-1}+\left\|\left(u_{n}, v_{n}\right)\right\|^{\frac{\bar{\delta}_{12}+\varepsilon}{p^{k}-1}-1}+\left\|\left(u_{n}, v_{n}\right)\right\|^{\frac{\bar{\delta}_{21}+\varepsilon}{q^{k}-1}-1}+\left\|\left(u_{n}, v_{n}\right)\right\|^{\frac{\bar{\delta}_{22}+\varepsilon}{q^{k}-1}-1}\right) .
$$

The above inequality contradicts the fact that $\left\|\left(u_{n}, v_{n}\right)\right\|=\rho_{n} \rightarrow 0$ as $n \rightarrow+\infty$
Theorem 3.9. Under hypotheses (H1)-(H4), System (1.1) has positive radial solution.
Proof. To show the existence of ground states for (1.1) (or (2.1) with $h=0$), it is sufficient to prove that the compact operator T_{0} admits a fixed point. In view of Theorem 3.6, the eventual fixed point (u, v) of T_{0} are bounded; explicitly there exists $C>0$ such that $\|(u, v)\|_{X} \leq C$. Let us chose $R_{1}>C$ and let us designate by $B_{R_{1}}$ the ball of X, centered at the origin with radius R_{1}. To this end, the Leray-Schauder degree $\operatorname{deg}_{L S}\left(I-T_{h}, B_{R_{1}}, 0\right)$ is well defined. It being understood that I denote the identical operator in X. Moreover, by Lemma 3.7, we have $\operatorname{deg}_{L S}\left(I-T_{h}, B_{R_{1}}, 0\right)=0$ for all $h \geq h_{0}$. It follows from the homotopy invariance of the Leray-Schauder degree that

$$
\operatorname{deg}_{L S}\left(I-T_{0}, B_{R_{1}}, 0\right)=\operatorname{deg}_{L S}\left(I-T_{h}, B_{R_{1}}, 0\right)=0
$$

On the other hand, by Lemma 3.8, there exists $0<\rho<\bar{\rho}<R_{1}$ such that $\operatorname{deg}_{L S}\left(I-S_{\lambda}, B_{\rho}, 0\right)$ is well defined. Once again, the homotopy invariance of the Leray-Schauder degree yields

$$
\begin{aligned}
1 & =\operatorname{deg}_{L S}\left(I, B_{\rho}, 0\right) \\
& =\operatorname{deg}_{L S}\left(I-S_{\lambda}, B_{\rho}, 0\right) \\
& =\operatorname{deg}_{L S}\left(I-S_{1}, B_{\rho}, 0\right) \\
& =\operatorname{deg}_{L S}\left(I-T_{0}, B_{\rho}, 0\right) .
\end{aligned}
$$

Using the additivity of the Leray-Schauder degree,

$$
\operatorname{deg}_{L S}\left(I-T_{0}, B_{R_{1}} \backslash B_{\rho}, 0\right)=\operatorname{deg}_{L S}\left(I-T_{0}, B_{R_{1}}, 0\right)-\operatorname{deg}_{L S}\left(I-T_{0}, B_{\rho}, 0\right)=-1
$$

This implies that T_{0} has fixed point in $B_{R_{1}} \backslash B_{\rho}$. Consequently, there exists a nontrivial ground state.

References

1. Garcia-Huidobro, M., Guerra, I., Manasevich, R.: Existence of positive radial solutions for a weakly coupled system via Blow up, Abstract Appl. Anal. 3, 105-131, (1998).
2. Garcia-Huidobro, M., Manasevich, R.,Schmitt, K.; Some bifurcation results for a class of p-Laplacian like operators, Differential and Integral Equations 10, 51-66, (1997).
3. Garcia-Huidobro, M., Manasevich, R., Ubilla, P.; Existence of positive solutions for some Dirichlet problems with an asymptotically homogeneous operator, Electron. J. Diff. Equ.10, 1-22, (1995).
4. Gidas, B., Spruck, J.; A priori Bounds for Positive Solutions of Nonlinear Elliptic Equations, Comm. in PDE, 6(8), 883-901, (1981).
5. Clément, Ph., Manasevich, R., Mitidieri, E., Positive solutions for a quasilinear system via Blow up, Comm. Partial Differential Equations 18 (12), 2071-2106, (1993).
6. Djellit, A., Moussaoui, M., Tas, S., Existence of radial positive solutions vanishing at infinity for asymptotically homogeneous systems, Electronic J. Diff. Eqns. 54, 1-10, (2010).
7. Djellit, A., Tas, S.; On some nonlinear elliptic systems, Nonlinear Analysis, 59, 695-706, (2004).
8. do O, J.M.B., Solutions to perturbed eigenvalue problems of the $p-$ Laplacian in \mathbb{R}^{N}, Eur. J. Differential Equations 11, 1-15, (1997).
9. Marcos do Ó, J., Lorca S., Ubilla P.: Three positive solutions for elliptic equations in a ball. Appl. Math. Lett. 18, 1163-1169, (2005).
10. Souto, M.A.S.: A priori estimates and existence of positive solutions of nonlinear cooperative elliptic systems. Diff Int. Equ. 8(5), 1245-1258, (1995).
11. Yu, L.S., Nonlinear p-Laplacian problems on unbounded domains, Proc. Amer. Math. Soc. 115 (4), 1037-1045, (1992).
12. Wei, L., Feng, Z.: Existence and nonexistence of solutions for quasilinear elliptic systems. Dyn. PDE. 10(1), 25-42, (2013).
13. Ahammou, A., Iskafi, K.: Singular radial positive solutions for nonlinear elliptic systems. Adv. Dyn. Syst. Appl. 4(1), 1-17, (2009).

Zitouni Mohamed,
Department of Mathematics,
Mathematics Dynamics and Modilization Laboratory, (LMDM),
Annaba, 23000 Algeria.
E-mail address: mohamedzitounimath@gmail.com
and
Djellit Ali,
Department of Mathematics,
Mathematics Dynamics and Modilization Laboratory, (LMDM),
Annaba, 23000 Algeria.
E-mail address: a_djellit@hotmail.com
and
Ghannam Lahcen,
University of paul sabatie Toulouse III, Instutit of Mathematics of Toulouse, France.
E-mail address: Lahcen. Ghannam@univ-tlse3.fr

[^0]: 2010 Mathematics Subject Classification: 35B40, 35L70.
 Submitted December 26, 2019. Published December 13, 2020

