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A Generalization of Lucas Sequence and Associated Identities ∗

Neeraj Kumar Paul and Helen K. Saikia

abstract: In this paper, we attempt to generalize Lucas sequence by generating certain number of sequences
whose terms are obtained by adding the last two generated terms of the preceding sequence. Lucas sequence
is obtained as a particular case of generating only one sequence. Moreover we prove some of the results which
can be seen as generalized form of the results which hold for Lucas sequence. We obtain Cassini-like identity
for these generalized Lucas sequences.
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1. Introduction

Fibonacci sequence (Fk) is generated in [2,6] by the recursive formula Fk = Fk−1 + Fk−2 for k ≥ 3
with F1 = 1, F2 = 1. That is, each term in the sequence (third term onwards) is the sum of the two that
immediately precede it. The Fibonacci sequence is the first known recursive sequence in mathematical
work. First few terms of the sequence are 1,1,2,3,5,8,13,21,. . . . Many generalizations of the sequence and
hence its properties are available in the literature. Some of these can be found in [3,4,8,9,12].

Younseok Choo [3] derived identities for a generalized Fibonacci sequence defined by the recurrence
relation Fk = aFk−1 + bFk−2, n ≥ 2 with initial conditions F0 and F1. F0 = 0, F1 = 1, a = 1, b = 1
generate the classical Fibonacci sequence whereas F0 = 2, F1 = 1, a = 1, b = 1 generate the classical
Lucas sequence.

Miles [9] defined k-generalized Fibonacci numbers (k ≥ 2) in such a way that for k = 2, ordinary
Fibonacci numbers are generated. The k-generalized Fibonacci numbers fj,k are defined as

fj,k = 0, 0 ≤ j ≤ k − 2, fk−1,k = 1, fj,k =

k
∑

n=1

fj−n,k, j ≥ k.

When k = 2, the numbers fj,2 or simply fj are the ordinary Fibonacci numbers.
Stakhov [12] mentioned so-called Fibonacci p-numbers which are given by the recurrence relation

Fp(n) = Fp(n − 1) + Fp(n − p − 1) for p = 0, 1, 2, 3, . . . with n > p + 1

with the initial terms

Fp(1) = Fp(2) = . . . = Fp(p) = Fp(p + 1) = 1.

For p = 1, the recurrence relation generates the classical Fibonacci numbers F1(n) or simply Fn.
In 2016, Kwon [8] introduced a new sequence, called the modified k-Fibonacci-like sequence (Mk,n),

defined by the recurrence relation
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Mk,n = kMk,n−1 + Mk,n−2 for n ≥ 2

with Mk,0 = 2 and Mk,1 = 2 where k is any positive real number.
The above generalizations available in the literature give us a single sequence. Akbulak et al. [1] men-

tioned some generalizations of Fibonacci sequence along with a generalization which generates multiple
sequences. k sequences of the generalized order-k Fibonacci numbers are generated [5] by the recurrence
relation

gi
n = c1gi

n−1 + c2gi
n−2 + . . . + ckgi

n−k for n > 0 and 1 ≤ i ≤ k

with initial conditions

gi
n =

{

1 if i = 1 − n,

0 otherwise,
for 1 − k ≤ n ≤ 0

where c1, c2, . . . , ck are constant coefficients and gi
n is the nth term of the ith sequence.

Akbulak et al. [1] defined m sequences of the generalized order-m Fibonacci k-numbers for n > 0, k, t ≥
1 and 1 ≤ i ≤ m

F i
k,n = kF i

k,n−1 + tF i
k,n−2 + F i

k,n−3 + . . . + F i
k,n−m

with initial conditions

F i
k,n =

{

1 if n + i = 1,

0 otherwise,
for 1 − m ≤ n ≤ 0

where F i
k,n is the nth term of the ith generalized Fibonacci k-sequence.

In [10], m number of sequences are generated following certain recursive rules as follows. When the
number of sequence is one, i.e. m = 1, these rules coincide with those generating Fibonacci numbers and
we get the Fibonacci sequence.

We consider m interconnected sequences

(S1,k) , (S2,k) , (S3,k) , . . . , (Sm,k)

which can be generated according to the following rule

S1,1 = S2,1 = S3,1 = . . . = Sm,1 = 1, S1,2 = 1,
Si,k = Si−1,k−1 + Si−1,k, 1 < i ≤ m, k ≥ 2
S1,k = Sm,k−1 + Sm,k−2, k ≥ 3

Table 1: Columns show the terms in six sequences (i.e. m = 6).

k S1,k S2,k S3,k S4,k S5,k S6,k

1 1 1 1 1 1 1
2 1 2 3 4 5 6
3 7 8 10 13 17 22
4 28 35 43 53 66 83
5 105 133 168 211 264 330
6 413 518 651 819 1030 1294
7 1624 2037 2555 3206 4025 5055
8 6349 7973 10010 12565 15771 19796
. . . . . . . . . . . . . . . . . . . . .

To illustrate the rule, we consider m = 6 and generate six sequences. We start with 1 as the first
term of all the sequences and 1 as the second term of the first sequence. Hereafter the terms (rowwise)
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are obtained by adding two latest terms of the sequence immediately preceding the sequence where the
former term belongs. When the term in the first sequence is to be obtained two latest terms of the last
sequence are added.

For m = 1, we identify the only sequence (S1,k) as the Fibonacci sequence (Fk). We obtain it
by starting with 1 as the first term in the only sequence and 1 as the second term of the first sequence
(which is the only sequence). Hereafter the terms are obtained by adding two latest terms of the sequence
immediately preceding the sequence (that is the same sequence) where the former term belongs.

Notation: Sp,q denotes the qth term of the pth sequence.
With this definition, the following results for Fibonacci sequence are generalized in [10], along with

others.

• Fk + Fk+1 = Fk+2

Generalization: Sum of kth terms in all the sequences and (k+1)th term in the first sequence equals
the (k + 2)th term in the first sequence.

•

n
∑

k=1

Fk = Fn+2 − 1

Generalization: Sum of first n terms of all the sequences is one less than the (n + 2)th term of the
first sequence.

•

n−1
∑

k=0

F2k+1 = F2n

Generalization: Sum of all the terms in odd positions (upto (2n+1)th position) in all the sequences
equals the (2n)th term of the last sequence.

•
n

∑

k=1

F2k = F2n+1 − 1

Generalization: Sum of all the terms in even positions (upto (2n)th position) in all the sequences
is one less than the (2n + 1)th term of the last sequence.

• lim
k→∞

Si,k+1

Si,k

is a root of the equation xm+1 − (x + 1)m = 0 for i = 1, 2, . . . , m, which is the

generalization of the fact that the golden ratio is a root of the equation x2 − x − 1 = 0.

In [11], a recurrence relation is obtained to generate one of the m sequences without using the terms
of the remaining sequences. Consecutive pair of Fibonacci numbers are relatively prime is generalized
as gcd of m + 1 consecutive numbers in any of the generated sequences is one. A generalized Cassini’s
identity was also obtained along with the generalization of the identity Fp+q = Fp+1Fq + FpFq−1 related
to Fibonacci numbers.

In this paper, we generalize Lucas sequence in a similar fashion and generalize some of the identities
related to Lucas numbers. Lucas sequence (Lk) is generated by the recursive formula Lk = Lk−1 + Lk−2

for k ≥ 3 with L1 = 1, L2 = 3. That is, each term in the sequence (third term onwards) is the sum of the
two that immediately precede it. An identity that establishes a relation between Fibonacci and Lucas
numbers is Lk = Fk−1 + Fk+1. Using this identity and extending the Fibonacci sequence backwards to
negative indices, the first few terms of the Lucas sequence for n ≥ 0 are 2,1,3,4,7,11,18,29,. . . .

Using the identity Lk = Fk−1 + Fk+1, we generalize Lucas sequence by generating m sequences

(L1,k) , (L2,k) , (L3,k) , . . . , (Lm,k)

by defining Li,k = Si,k−1 + Si,k+1 ∀ k and 1 ≤ i ≤ m.
For m = 1, we identify the only sequence (L1,k) as the Lucas sequence (Lk).
Notation: Lp,q denotes the qth term of the pth sequence.
With this definition, we generalize some of the identities related to Lucas numbers, as obtained for

generalized Fibonacci numbers including Cassini-like identity. The gcd of m + 1 consecutive terms of any
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Table 2: Columns show the terms in six sequences (i.e. m = 6).

k L1,k L2,k L3,k L4,k L5,k L6,k

1 1 2 3 4 5 6
2 8 9 11 14 18 23
3 29 37 46 57 71 89
4 112 141 178 224 281 352
5 441 553 694 872 1096 1377
6 1729 2170 2723 3417 4289 5385
7 6762 8491 10661 13384 16801 21090
8 26475 33237 41728 52389 65773 82574
. . . . . . . . . . . . . . . . . . . . .

of the m sequences is also found to be 1 as in case of generalized Fibonacci numbers. These sequences
can also be generated by the definition used to generate generalized Fibonacci sequences with a change
in the initial terms of the sequences. That is, terms are obtained by adding the last two generated terms
of the preceding sequence.

2. Preliminary Results

We restate here the definitions for the generalized Fibonacci sequences and Lucas sequences.

Definition 2.1 (Generalized Fibonacci sequences). m generalized Fibonacci sequences (Si,k), viz.
(S1,k) , (S2,k) , (S3,k) , . . . , (Sm,k) are generated by the following rule

For i = 1, S1,k = Sm,k−1 + Sm,k−2, k ≥ 3

For 1 < i ≤ m, Si,k = Si−1,k−1 + Si−1,k, k ≥ 2

with S1,1 = S2,1 = S3,1 = . . . = Sm,1 = 1, S1,2 = 1.

It is shown in [11] that each sequence of the generalized Fibonacci sequences can be generated inde-
pendently by a recurrence relation given by

Si,k = mC0Si,k−1 + mC1Si,k−2 + mC2Si,k−3 + . . . + mCmSi,k−m−1

with initial terms being
for 1 ≤ i ≤ m and −(m + 1) ≤ k ≤ −1

Si,k = (−1)i+k+m+1
(

−k−1Cm−i

)

Also Si,0 = 0 for 1 ≤ i ≤ m. These initial terms and the recurrence relation are used to establish what
follows.

Definition 2.2 (Generalized Lucas sequences). m generalized Lucas sequences (Li,k), viz.
(L1,k) , (L2,k) , (L3,k) , . . . , (Lm,k) are generated by the following rule

For 1 ≤ i ≤ m, Li,k = Si,k−1 + Si,k+1 for k ≥ −m.

Proposition 2.1. First term of ith sequence is i, i.e. for i = 1, 2, 3, . . . , m, Li,1 = i.
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Proof. By definition, S1,2 = 1 and for i = 2, 3, . . . , m,

Si,2 = Si−1,1 + Si−1,2

= Si−1,1 + Si−2,1 + Si−2,2

= . . .

= Si−1,1 + Si−2,1 + Si−3,1 + . . . + S2,1 + S1,1 + S1,2

= 1 + 1 + 1 + . . . + 1 + 1 + 1

= i

Thus Li,1 = Si,0 + Si,2 = 0 + Si,2 = Si,2 = i. �

Proposition 2.2. Second term of first sequence is m + 2, i.e. L1,2 = m + 2.

Proof.

L1,2 = S1,1 + S1,3

= 1 + ( mC0S1,2 + mC1S1,1 + mC2S1,0 + . . . + mCmS1,2−m)

= 1 + (S1,2 + mS1,1 + 0 + . . . + 0)

= 1 + 1 + m.1

= m + 2

�

Theorem 2.3. For 1 ≤ i ≤ m and ∀k ≥ 0,

Li,k = mC0Li,k−1 + mC1Li,k−2 + mC2Li,k−3 + . . . + mCmLi,k−m−1.

Proof.

Li,k =Si,k−1 + Si,k+1

= ( mC0Si,k−2 + mC1Si,k−3 + mC2Si,k−4 + . . . + mCmSi,k−m−2)

+ ( mC0Si,k + mC1Si,k−1 + mC2Si,k−2 + . . . + mCmSi,k−m)

= mC0(Si,k−2 + Si,k) + mC1(Si,k−3 + Si,k−1) + mC2(Si,k−4 + Si,k−2)

+ . . . + mCm(Si,k−m−2 + Si,k−m)

= mC0Li,k−1 + mC1Li,k−2 + mC2Li,k−3 + . . . + mCmLi,k−m−1

�

Theorem 2.4. For 1 < i ≤ m, each term in ith sequence of the generalized Lucas sequences is sum of
four consecutive terms in (i − 1)th sequence of the generalized Fibonacci sequences. That is,

Li,k = Si−1,k−2 + Si−1,k−1 + Si−1,k + Si−1,k+1

Also each term in first sequence of the generalized Lucas sequences is sum of four consecutive terms in
last sequence of the generalized Fibonacci sequences. That is,

L1,k = Sm,k−3 + Sm,k−2 + Sm,k−1 + Sm,k

Proof. For 1 < i ≤ m,

Li,k =Si,k−1 + Si,k+1

=Si−1,k−2 + Si−1,k−1 + Si−1,k + Si−1,k+1
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Also for i = 1,

L1,k =S1,k−1 + S1,k+1

=Sm,k−3 + Sm,k−2 + Sm,k−1 + Sm,k

�

Corollary 2.5. L1,k = Lm,k−2 + Lm,k−1 and for 1 < i ≤ m, Li,k = Li−1,k−1 + Li−1,k.

Proof. For i = 1,

L1,k =(Sm,k−3 + Sm,k−2) + (Sm,k−1 + Sm,k)

=(Sm,k−3 + Sm,k−1) + (Sm,k−2 + Sm,k)

=Lm,k−2 + Lm,k−1

For 1 < i ≤ m,

Li,k =(Si−1,k−2 + Si−1,k−1) + (Si−1,k + Si−1,k+1)

=(Si−1,k−2 + Si−1,k) + (Si−1,k−1 + Si−1,k+1)

=Li−1,k−1 + Li−1,k

�

Corollary 2.5 gives an alternative definition to generate generalized Lucas sequences. Here terms are
obtained by adding the last two generated terms of the preceding sequence. This definition coincides
with the rule to generate generalized Fibonacci sequences.

Proposition 2.6. Lm,0 = 2, Lm,−1 = −1 and for i = 1, 2, 3, . . . , m − 1, Li,0 = 1.

Proof. Lm,0 = Sm,−1 + Sm,1 = 1 + 1 = 2
Lm,−1 = L1,1 − Lm,0 = 1 − 2 = −1
Li,0 = Si,−1 + Si,1 = 0 + 1 = 1 �

Theorem 2.7. For each of the m sequences, gcd of (m + 1) consecutive terms is one.

Proof. We first write m + 1 consecutive terms of a particular sequence as below.

Li,k = mC0Li,k−1 + mC1Li,k−2 + mC2Li,k−3 + . . . + mCmLi,k−m−1

Li,k+1 = mC0Li,k + mC1Li,k−1 + mC2Li,k−2 + . . . + mCmLi,k−m

Li,k+2 = mC0Li,k+1 + mC1Li,k + mC2Li,k−1 + . . . + mCmLi,k−m+1

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

Li,k+m−1 = mC0Li,k+m−2 + mC1Li,k+m−3 + mC2Li,k+m−4 + . . . + mCmLi,k−2

Li,k+m = mC0Li,k+m−1 + mC1Li,k+m−2 + mC2Li,k+m−3 + . . . + mCmLi,k−1

Suppose g divides all the above terms. Then from the last expression, we can write

mCmLi,k−1 = Li,k+m − mC0Li,k+m−1 − mC1Li,k+m−2 − mC2Li,k+m−3 − . . . − mCm−1Li,k

which implies that g divides Li,k−1.
Now considering the fact that g divides the m + 1 consecutive terms Li,k−1, Li,k, Li,k+1, Li,k+2, . . . ,

Li,k+m−1, we proceed as above to get g divides Li,k−2. Continuing in similar fashion, we obtain that g

divides Li,0 = 1 for i = 1, 2, 3, . . . , m − 1 and g divides Lm,−1 = −1. This implies g = 1. �
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Theorem 2.7 is generalization of the fact that pair of consecutive Lucas numbers are relatively prime.

Lemma 2.8. Zeroes of the polynomial x(x + 1)m − 1 are simple.

Proof. Suppose α is a multiple root of f(x) = x(x + 1)m − 1. Then f ′(α) = 0. That is,

(α + 1)m + mα(α + 1)m−1 = 0

or (α + 1)m−1(α + 1 + mα) = 0

so that α + 1 = 0 or 1 + (m + 1)α = 0.

But neither α = −1 nor α = −
1

m + 1
satisfies f(x) = 0. Hence there is no multiple root. �

Consider f(x) = x(x + 1)m − 1 and g(x) = xm+1 − (x + 1)m, then it is easy to see that g
(

1
x

)

= f(x).
Therefore the zeroes of g are also simple.

Theorem 2.9. For i = 1, 2, . . . , m, lim
k→∞

Li,k

Li,k−1
is a root of the equation xm+1 − (x + 1)m = 0.

Proof. The equation can be written as

xm+1 + a1xm + a2xm−1 + . . . + amx − 1 = 0 where aj = − mCj−1.

By Bernoulli’s Iteration in [7], the ratio
µk

µk−1

tends to the largest root in magnitude, where

µk + a1µk−1 + a2µk−2 + . . . + amµk−m − µk−m−1 = 0

or, µk = −a1µk−1 − a2µk−2 − . . . − amµk−m + µk−m−1

or, µk = mC0µk−1 + mC1µk−2 + . . . + mCm−1µk−m + mCmµk−m−1

Identifying µk by Li,k, we get

Li,k = mC0Li,k−1 + mC1Li,k−2 + . . . + mCm−1Li,k−m + mCmLi,k−m−1

which is true by theorem 2.3. Since Li,k are positive for k > 0,
Li,k

Li,k−1
tends to the only positive root

(by Descartes’ rule of signs) of the equation. �

Remark 2.10. For Lucas sequence, m = 1, i = 1 and therefore lim
k→∞

L1,k

L1,k−1
= lim

k→∞

Lk

Lk−1
= Golden

ratio, which is a root of the equation x2 − (x + 1) = 0.

Theorem 2.11. For i = 1, 2, . . . , m, lim
k→∞

Li,k

Li,k+1
is a root of the equation x(x + 1)m − 1 = 0.

Proof. Since lim
k→∞

Li,k

Li,k−1
exists and is nonzero, lim

k→∞

Li,k−1

Li,k

also exists and equals
1

limk→∞

Li,k

Li,k−1

= l,

say.

Now
1

l
is a zero of g(x) = xm+1 − (x + 1)m. Hence l is a zero of g( 1

x
) = f(x) = x(x + 1)m − 1. Also

lim
k→∞

Li,k

Li,k+1
= lim

k→∞

Li,k−1

Li,k

= l. Thus, lim
k→∞

Li,k

Li,k+1
is a root of the equation x(x + 1)m − 1 = 0.

Alternatively,

lim
k→∞

Li+1,k

Li+1,k+1
= lim

k→∞

Li,k−1 + Li,k

Li,k + Li,k+1
= lim

k→∞

Li,k−1

Li,k
+ 1

1 +
Li,k+1

Li,k

=
l + 1

1 + 1
l

= l
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so that lim
k→∞

L1,k

L1,k+1
= lim

k→∞

L2,k

L2,k+1
= . . . = lim

k→∞

Lm,k

Lm,k+1
= l.

Now combining the rules for the interconnected sequences, we get,

L1,k+1 = Lm,k−1 + Lm,k

= (Lm−1,k−2 + Lm−1,k−1) + (Lm−1,k−1 + Lm−1,k)

= Lm−1,k−2 + 2Lm−1,k−1 + Lm−1,k

= . . .

= amL1,k + am−1L1,k−1 + am−2L1,k−2 + . . . + a0L1,k−m

where aj = mCj .
Thus,

lim
k→∞

L1,k−1

L1,k

= lim
k→∞

L1,k

L1,k+1

⇒ lim
k→∞

L1,k−1

L1,k

= lim
k→∞

L1,k

amL1,k + am−1L1,k−1 + am−2L1,k−2 + . . . + a0L1,k−m

⇒ lim
k→∞

L1,k−1

L1,k

= lim
k→∞

1

am
L1,k

L1,k
+ am−1

L1,k−1

L1,k
+ am−2

L1,k−2

L1,k
+ . . . + a0

L1,k−m

L1,k

or,

l =
1

am + am−1l + am−2l2 + . . . + a0lm
⇒ l =

1

(1 + l)
m ⇒ l (1 + l)

m
= 1

Therefore l is a root of the equation x(x + 1)m − 1 = 0. �

Remark 2.12. For Lucas sequence, m = 1, i = 1 and therefore lim
k→∞

L1,k

L1,k+1
= lim

k→∞

Lk

Lk+1
= (Golden

ratio)−1, which is a root of the equation x(x + 1) − 1 = 0.

3. Generalized Identities

Theorem 3.1. Sum of kth terms in all the sequences and the following term, i.e. (k + 1)th term in the
first sequence equals the next i.e. (k + 2)th term in the first sequence.

Symbolically,
m

∑

i=1

Li,k + L1,k+1 = L1,k+2 Lucas equivalent: Lk + Lk+1 = Lk+2

Proof.

m
∑

i=1

Li,k + L1,k+1 = (L1,k + L2,k + L3,k + . . . + Lm−1,k + Lm,k) + L1,k+1

= (Lm,k + Lm−1,k + . . . + L3,k + L2,k + L1,k) + L1,k+1

= (Lm,k + Lm−1,k + . . . + L3,k + L2,k) + (L1,k + L1,k+1)

= (Lm,k + Lm−1,k + . . . + L3,k + L2,k) + L2,k+1

= (Lm,k + Lm−1,k + . . . + L3,k) + (L2,k + L2,k+1)

= . . .

= Lm,k + Lm,k+1

= L1,k+2

Columns in the table below show the terms in six sequences (i.e. m = 6). The result is illustrated for
k = 2 and k = 6, where the summands are bold and the sum is italicized.
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1 2 3 4 5 6
8 9 11 14 18 23

29 37 46 57 71 89
112 141 178 224 281 352
441 553 694 872 1096 1377

1729 2170 2723 3417 4289 5385

6762 8491 10661 13384 16801 21090
26475 33237 41728 52389 65773 82574
103664 130139 163376 205104 257493 323266

. . . . . . . . . . . . . . . . . .

When m = 1, we get,
m

∑

i=1

Li,k + L1,k+1 = L1,k+2 or

1
∑

i=1

Li,k + L1,k+1 = L1,k+2 or L1,k + L1,k+1 = L1,k+2

i.e. Lk + Lk+1 = Lk+2 �

Theorem 3.2. Sum of first n terms of all the sequences is m + 2 less than the (n + 2)th term of the first
sequence.

Symbolically,

m
∑

i=1

n
∑

k=1

Li,k = L1,n+2 − (m + 2) Lucas equivalent:

n
∑

k=1

Lk = Ln+2 − 3

Proof.

L1,n = L2,n+1 − L1,n+1 L1,n−1 = L2,n − L1,n L1,n−2 = L2,n−1 − L1,n−1

L2,n = L3,n+1 − L2,n+1 L2,n−1 = L3,n − L2,n L2,n−2 = L3,n−1 − L2,n−1

L3,n = L4,n+1 − L3,n+1 L3,n−1 = L4,n − L3,n L3,n−2 = L4,n−1 − L3,n−1

. . . . . . . . .

. . . . . . . . .
Lm−2,n = Lm−1,n+1 − Lm−2,n+1 Lm−2,n−1 = Lm−1,n − Lm−2,n Lm−2,n−2 = Lm−1,n−1 − Lm−2,n−1

Lm−1,n = Lm,n+1 − Lm−1,n+1 Lm−1,n−1 = Lm,n − Lm−1,n Lm−1,n−2 = Lm,n−1 − Lm−1,n−1

Lm,n = L1,n+2 − Lm,n+1 Lm,n−1 = L1,n+1 − Lm,n Lm,n−2 = L1,n − Lm,n−1

. . . . . . . . . L1,2 = L2,3 − L1,3 L1,1 = L2,2 − L1,2

. . . . . . . . . L2,2 = L3,3 − L2,3 L2,1 = L3,2 − L2,2

. . . . . . . . . L3,2 = L4,3 − L3,3 L3,1 = L4,2 − L3,2

. . . . . . . . .

. . . . . . . . .

. . . . . . . . . Lm−2,2 = Lm−1,3 − Lm−2,3 Lm−2,1 = Lm−1,2 − Lm−2,2

. . . . . . . . . Lm−1,2 = Lm,3 − Lm−1,3 Lm−1,1 = Lm,2 − Lm−1,2

. . . . . . . . . Lm,2 = L1,4 − Lm,3 Lm,1 = L1,3 − Lm,2

Thus,
m

∑

i=1

Li,n = L1,n+2 −L1,n+1

m
∑

i=1

Li,n−1 = L1,n+1 −L1,n

m
∑

i=1

Li,n−2 = L1,n −L1,n−1

. . . . . . . . .

m
∑

i=1

Li,2 = L1,4 − L1,3

m
∑

i=1

Li,1 = L1,3 − L1,2

Therefore
m

∑

i=1

n
∑

k=1

Li,k = L1,n+2 − L1,2 = L1,n+2 − (m + 2).

The result is illustrated in the table for m = 6, n = 6, where the summands are bold and the sum is
26467, which is (6 + 2 = 8) less than the italicized term.
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1 2 3 4 5 6

8 9 11 14 18 23

29 37 46 57 71 89

112 141 178 224 281 352

441 553 694 872 1096 1377

1729 2170 2723 3417 4289 5385

6762 8491 10661 13384 16801 21090
26475 33237 41728 52389 65773 82574
103664 130139 163376 205104 257493 323266

. . . . . . . . . . . . . . . . . .

When m = 1, we get,
m

∑

i=1

n
∑

k=1

Li,k = L1,n+2 − (m + 2) or
1

∑

i=1

n
∑

k=1

Li,k = L1,n+2 − 3 or
n

∑

k=1

L1,k = L1,n+2 − 3

i.e.

n
∑

k=1

Lk = Ln+2 − 3 �

Theorem 3.3. Sum of all the terms in odd positions (upto (2n − 1)th position) in all the sequences is
two less than the (2n)th term of the last sequence.

Symbolically,

m
∑

i=1

n−1
∑

k=0

Li,2k+1 = Lm,2n − 2 Lucas equivalent:

n−1
∑

k=0

L2k+1 = L2n − 2

Proof.

L1,1 = L2,2 − L1,2 L1,3 = L2,4 − L1,4 L1,5 = L2,6 − L1,6 . . .
. . . L1,2n−1 = L2,2n − L1,2n

L2,1 = L3,2 − L2,2 L2,3 = L3,4 − L2,4 L2,5 = L3,6 − L2,6 . . .
. . . L2,2n−1 = L3,2n − L2,2n

L3,1 = L4,2 − L3,2 L3,3 = L4,4 − L3,4 L3,5 = L4,6 − L3,6 . . .
. . . L3,2n−1 = L4,2n − L3,2n

. . . . . . . . . . . .

. . . . . . . . . . . .

Lm−1,1 = Lm,2 − Lm−1,2 Lm−1,3 = Lm,4 − Lm−1,4 Lm−1,5 = Lm,6 − Lm−1,6 . . .
. . . Lm−1,2n−1 = Lm,2n − Lm−1,2n

Lm,1 = L1,3 − Lm,2 Lm,3 = L1,5 − Lm,4 Lm,5 = L1,7 − Lm,6 . . .
. . . Lm,2n−1 = L1,2n+1 − Lm,2n

Thus,

m
∑

i=1

Li,1 = L1,3 − L1,2 = Lm,1 + Lm,2 − L1,2 = m + Lm,2 − (m + 2)

m
∑

i=1

Li,3 = L1,5 − L1,4 = Lm,3 + Lm,4 − Lm,2 − Lm,3 = Lm,4 − Lm,2

m
∑

i=1

Li,5 = L1,7 − L1,6 = Lm,5 + Lm,6 − Lm,4 − Lm,5 = Lm,6 − Lm,4

. . . . . . . . . . . .
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. . . . . . . . . . . .

m
∑

i=1

Li,2n−1 = L1,2n+1 − L1,2n = Lm,2n−1 + Lm,2n − Lm,2n−2 − Lm,2n−1 = Lm,2n − Lm,2n−2

Therefore

m
∑

i=1

n−1
∑

k=0

Li,2k+1 = Lm,2n − 2.

The result is illustrated in the table for m = 6, n = 4, where the summands are bold and the sum is
82572, which is two less than the italicized term.

1 2 3 4 5 6

8 9 11 14 18 23
29 37 46 57 71 89

112 141 178 224 281 352
441 553 694 872 1096 1377

1729 2170 2723 3417 4289 5385
6762 8491 10661 13384 16801 21090

26475 33237 41728 52389 65773 82574

103664 130139 163376 205104 257493 323266
. . . . . . . . . . . . . . . . . .

When m = 1, we get,
m

∑

i=1

n−1
∑

k=0

Li,2k+1 = Lm,2n or

1
∑

i=1

n−1
∑

k=0

Li,2k+1 = L1,2n or

n−1
∑

k=0

L1,2k+1 = L1,2n

i.e.

n−1
∑

k=0

L2k+1 = L2n �

Theorem 3.4. Sum of all the terms in even positions (upto (2n)th position) in all the sequences is m

less than the (2n + 1)th term of the last sequence.

Symbolically,

m
∑

i=1

n
∑

k=1

Li,2k = Lm,2n+1 − m Lucas equivalent:

n
∑

k=1

L2k = L2n+1 − 1

Proof.

m
∑

i=1

n
∑

k=1

Li,2k =

m
∑

i=1

2n
∑

k=1

Li,k −

m
∑

i=1

n−1
∑

k=0

Li,2k+1 = (L1,2n+2 −(m+2))−(Lm,2n−2) = Lm,2n+1 −m

The result is illustrated in the table for m = 6, n = 3, where the summands are bold and the sum is
21084, which is six less than the italicized term.

1 2 3 4 5 6
8 9 11 14 18 23

29 37 46 57 71 89
112 141 178 224 281 352

441 553 694 872 1096 1377
1729 2170 2723 3417 4289 5385

6762 8491 10661 13384 16801 21090

26475 33237 41728 52389 65773 82574
103664 130139 163376 205104 257493 323266

. . . . . . . . . . . . . . . . . .

When m = 1, we get,
m

∑

i=1

n
∑

k=1

Li,2k = Lm,2n+1 − m or

1
∑

i=1

n
∑

k=1

Li,2k = L1,2n+1 − 1 or

n
∑

k=1

L1,2k = L1,2n+1 − 1
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i.e.

n
∑

k=1

L2k = L2n+1 − 1 �

4. Cassini-like Identity For Generalized Lucas Sequence

Cassini’s identity for Fibonacci numbers is given by Fk+1Fk−1 − F 2
k = (−1)k. Cassini-like identity

for Lucas numbers is given by Lk+1Lk−1 − L2
k = 5(−1)k+1. In determinant notation, this identity can

be put as

∣

∣

∣

∣

Lk+1 Lk

Lk Lk−1

∣

∣

∣

∣

= 5(−1)k+1. Below we establish a theorem which generalizes this identity for

generalized Lucas sequences dealt in this paper.

Theorem 4.1 (Generalized Cassini-like identity for generalized Lucas sequences). For ith sequence,

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Li,k+1 Li,k Li,k−1 . . . Li,k−(m−1)

Li,k Li,k−1 Li,k−2 . . . Li,k−m

Li,k−1 Li,k−2 Li,k−3 . . . Li,k−(m+1)

. . . . . . . . . . . . . . .

Li,k−(m−2) Li,k−(m−1) Li,k−m . . . Li,k−(2m−2)

Li,k−(m−1) Li,k−m Li,k−(m+1) . . . Li,k−(2m−1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (−1)m(i−1)|B|







































(−1)
m
2 when m is even,

(−1)
m−1

2 when m is odd,

and k is even,

(−1)
m+1

2 when both m

and k are odd.

where B =





















mC0
mC1 + 1 mC2

mC3
mC4 . . . mCm−1

mCm

1 0 1 0 0 . . . 0 0
0 1 0 1 0 . . . 0 0
0 0 1 0 1 . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 0 . . . 0 1
1 −mC0 −mC1 −mC2 −mC3 . . . −mCm−2 + 1 −mCm−1





















Proof. We write

Li,k+m = Si,k+m−1 + Si,k+m+1

= Si,k+m−1 + ( mC0Si,k+m + mC1Si,k+m−1 + . . . + mCm−1Si,k+1 + mCmSi,k)

= mC0Si,k+m + ( mC1 + 1)Si,k+m−1 + . . . + mCm−1Si,k+1 + mCmSi,k

Li,k+m−1 = Si,k+m + Si,k+m−2

Li,k+m−2 = Si,k+m−1 + Si,k+m−3

. . . . . .

. . . . . .

Li,k+1 = Si,k+2 + Si,k

Li,k = Si,k+1 + Si,k−1

= Si,k+1 + (Si,k+m − mC0Si,k+m−1 − . . . − mCm−2Si,k+1 − mCm−1Si,k)

= Si,k+m − mC0Si,k+m−1 − . . . − ( mCm−2 − 1)Si,k+1 − mCm−1Si,k

so that
















Li,k+m

Li,k+m−1

. . .

Li,k+2

Li,k+1

Li,k

















=





















mC0
mC1 + 1 mC2

mC3
mC4 . . . mCm−1

mCm

1 0 1 0 0 . . . 0 0
0 1 0 1 0 . . . 0 0
0 0 1 0 1 . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 0 . . . 0 1
1 −mC0 −mC1 −mC2 −mC3 . . . −mCm−2 + 1 −mCm−1





































Si,k+m

Si,k+m−1

. . .

Si,k+2

Si,k+1

Si,k
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or

















Li,k+m

Li,k+m−1

. . .

Li,k+2

Li,k+1

Li,k

















= B

















Si,k+m

Si,k+m−1

. . .

Si,k+2

Si,k+1

Si,k

















= BA

















Si,k+m−1

Si,k+m−2

. . .

Si,k+1

Si,k

Si,k−1

















= BA2

















Si,k+m−2

Si,k+m−3

. . .

Si,k

Si,k−1

Si,k−2

















where A =





















mC0
mC1

mC2 . . . mCm−1
mCm

1 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0

. . . . . . . . . . . . . . . . . .

0 0 0 . . . 0 0
0 0 0 . . . 1 0





















Now

Ak =















































m
∑

j=0

mCjS1,k−j

m
∑

j=1

mCjS1,k+1−j . . .

m
∑

j=m−1

mCjS1,k+(m−1)−j S1,k

m
∑

j=0

mCjS1,k−1−j

m
∑

j=1

mCjS1,k−j . . .

m
∑

j=m−1

mCjS1,(k−1)+(m−1)−j S1,k−1

m
∑

j=0

mCjS1,k−2−j

m
∑

j=1

mCjS1,k−1−j . . .

m
∑

j=m−1

mCjS1,(k−2)+(m−1)−j S1,k−2

. . . . . . . . . . . . . . .
m

∑

j=0

mCjS1,k−(m−1)−j

m
∑

j=1

mCjS1,k−(m−2)−j . . .

m
∑

j=m−1

mCjS1,k−j S1,k−(m−1)

m
∑

j=0

mCjS1,k−m−j

m
∑

j=1

mCjS1,k−(m−1)−j . . .

m
∑

j=m−1

mCjS1,k−(m−1)+m−j S1,k−m















































Therefore

BAk =









































m
∑

j=0

mCjL1,k−j

m
∑

j=1

mCjL1,k+1−j . . .

m
∑

j=m−1

mCjL1,k+(m−1)−j L1,k

m
∑

j=0

mCjL1,k−1−j

m
∑

j=1

mCjL1,k−j . . .

m
∑

j=m−1

mCjL1,(k−1)+(m−1)−j L1,k−1

m
∑

j=0

mCjL1,k−2−j

m
∑

j=1

mCjL1,k−1−j . . .

m
∑

j=m−1

mCjL1,(k−2)+(m−1)−j L1,k−2

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .
m

∑

j=0

mCjL1,k−m−j

m
∑

j=1

mCjL1,k−(m−1)−j . . .

m
∑

j=m−1

mCjL1,k−(m−1)+m−j L1,k−m









































or,
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BAk =















































L1,k+1

m
∑

j=1

mCjL1,k+1−j . . .

m
∑

j=m−1

mCjL1,k+(m−1)−j L1,k

L1,k

m
∑

j=1

mCjL1,k−j . . .

m
∑

j=m−1

mCjL1,(k−1)+(m−1)−j L1,k−1

L1,k−1

m
∑

j=1

mCjL1,k−1−j . . .

m
∑

j=m−1

mCjL1,(k−2)+(m−1)−j L1,k−2

. . . . . . . . . . . . . . .

L1,k−(m−2)

m
∑

j=1

mCjL1,k−(m−2)−j . . .

m
∑

j=m−1

mCjL1,k−j L1,k−(m−1)

L1,k−(m−1)

m
∑

j=1

mCjL1,k−(m−1)−j . . .

m
∑

j=m−1

mCjL1,k−(m−1)+m−j L1,k−m















































[Note: The entries in the matrix are from the first sequence. We verify few entries of the matrix, for the
reader, in a remark to this theorem.]

so that

|BAk| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

L1,k+1

m
∑

j=1

mCjL1,k+1−j . . .

m
∑

j=m−1

mCjL1,k+(m−1)−j L1,k

L1,k

m
∑

j=1

mCjL1,k−j . . .

m
∑

j=m−1

mCjL1,(k−1)+(m−1)−j L1,k−1

L1,k−1

m
∑

j=1

mCjL1,k−1−j . . .

m
∑

j=m−1

mCjL1,(k−2)+(m−1)−j L1,k−2

. . . . . . . . . . . . . . .

L1,k−(m−2)

m
∑

j=1

mCjL1,k−(m−2)−j . . .

m
∑

j=m−1

mCjL1,k−j L1,k−(m−1)

L1,k−(m−1)

m
∑

j=1

mCjL1,k−(m−1)−j . . .

m
∑

j=m−1

mCjL1,k−(m−1)+m−j L1,k−m

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Applying column operations, we get

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

L1,k+1 L1,k−(m−1) L1,k−(m−2) . . . L1,k−1 L1,k

L1,k L1,k−m L1,k−(m−1) . . . L1,k−2 L1,k−1

L1,k−1 L1,k−(m+1) L1,k−m . . . L1,k−3 L1,k−2

. . . . . . . . . . . . . . . . . .

L1,k−(m−2) L1,k−(2m−2) L1,k−(2m−3) . . . L1,k−m L1,k−(m−1)

L1,k−(m−1) L1,k−(2m−1) L1,k−(2m−2) . . . L1,k−(m+1) L1,k−m

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= |B||A|k = (−1)mk|B|

Rearranging the columns, we obtain

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

L1,k+1 L1,k L1,k−1 . . . L1,k−(m−1)

L1,k L1,k−1 L1,k−2 . . . L1,k−m

L1,k−1 L1,k−2 L1,k−3 . . . L1,k−(m+1)

. . . . . . . . . . . . . . .

L1,k−(m−2) L1,k−(m−1) L1,k−m . . . L1,k−(2m−2)

L1,k−(m−1) L1,k−m L1,k−(m+1) . . . L1,k−(2m−1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= |B|

{

(−1)
m
2 (−1)mk when m is even,

(−1)
m−1

2 (−1)mk when m is odd.



A Generalization of Lucas Sequence and Associated Identities 15

Thus,
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

L1,k+1 L1,k L1,k−1 . . . L1,k−(m−1)

L1,k L1,k−1 L1,k−2 . . . L1,k−m

L1,k−1 L1,k−2 L1,k−3 . . . L1,k−(m+1)

. . . . . . . . . . . . . . .

L1,k−(m−2) L1,k−(m−1) L1,k−m . . . L1,k−(2m−2)

L1,k−(m−1) L1,k−m L1,k−(m+1) . . . L1,k−(2m−1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= |B|











(−1)
m
2 when m is even,

(−1)
m−1

2 when m is odd, k is even,

(−1)
m+1

2 when m and k are odd.

Thus far the identity has been established for the first sequence. Now we proceed to establish the identity
for ith sequence.
Suppose

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Li,k+1 Li,k Li,k−1 . . . Li,k−(m−2) Li,k−(m−1)

Li,k Li,k−1 Li,k−2 . . . Li,k−(m−1) Li,k−m

Li,k−1 Li,k−2 Li,k−3 . . . Li,k−m Li,k−(m+1)

. . . . . . . . . . . . . . . . . .

Li,k−(m−2) Li,k−(m−1) Li,k−m . . . Li,k−(2m−3) Li,k−(2m−2)

Li,k−(m−1) Li,k−m Li,k−(m+1) . . . Li,k−(2m−2) Li,k−(2m−1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= ∆

By Cj → Cj + Cj+1, for j = 1, 2, . . . , m

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Li+1,k+1 Li+1,k Li+1,k−1 . . . Li+1,k−(m−2) Li,k−(m−1)

Li+1,k Li+1,k−1 Li+1,k−2 . . . Li+1,k−(m−1) Li,k−m

Li+1,k−1 Li+1,k−2 Li+1,k−3 . . . Li+1,k−m Li,k−(m+1)

. . . . . . . . . . . . . . . . . .

Li+1,k−(m−2) Li+1,k−(m−1) Li+1,k−m . . . Li+1,k−(2m−3) Li,k−(2m−2)

Li+1,k−(m−1) Li+1,k−m Li+1,k−(m+1) . . . Li+1,k−(2m−2) Li,k−(2m−1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= ∆

Also

Li+1,k = Li+1,k+m

− (1 +m C0)Li+1,k+m−1

+ (1 +m C0 −m C1)Li+1,k+m−2

− (1 +m C0 −m C1 +m C2)Li+1,k+m−3

+ . . .

+ (−1)m−1(1 +m C0 −m C1 +m C2 − . . . +m Cm−2)Li+1,k+1

+ (−1)mLi,k

Applying column operation on the last column as per the above formula, we get
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Li+1,k+1 Li+1,k Li+1,k−1 . . . Li+1,k−(m−2) Li+1,k−(m−1)

Li+1,k Li+1,k−1 Li+1,k−2 . . . Li+1,k−(m−1) Li+1,k−m

Li+1,k−1 Li+1,k−2 Li+1,k−3 . . . Li+1,k−m Li+1,k−(m+1)

. . . . . . . . . . . . . . . . . .

Li+1,k−(m−2) Li+1,k−(m−1) Li+1,k−m . . . Li+1,k−(2m−3) Li+1,k−(2m−2)

Li+1,k−(m−1) Li+1,k−m Li+1,k−(m+1) . . . Li+1,k−(2m−2) Li+1,k−(2m−1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (−1)m∆

Thus we generalize Cassini-like identity as

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Li,k+1 Li,k Li,k−1 . . . Li,k−(m−1)

Li,k Li,k−1 Li,k−2 . . . Li,k−m

Li,k−1 Li,k−2 Li,k−3 . . . Li,k−(m+1)

. . . . . . . . . . . . . . .

Li,k−(m−2) Li,k−(m−1) Li,k−m . . . Li,k−(2m−2)

Li,k−(m−1) Li,k−m Li,k−(m+1) . . . Li,k−(2m−1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (−1)m(i−1)|B|







































(−1)
m
2 when m is even,

(−1)
m−1

2 when m is odd,

and k is even,

(−1)
m+1

2 when both m

and k are odd.
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Remark 4.2. While forming the matrix B, we first write the first and last rows and fill the remaining
rows with 0s and 1s according to the mentioned pattern. 1 is added to the entry in the second column of
the first row and to the entry in the mth column of the last row.

For m = 3, B =









3C0
3C1 + 1 3C2

3C3

1 0 1 0
0 1 0 1
1 −3C0 −3C1 + 1 −3C2









=









1 4 3 1
1 0 1 0
0 1 0 1
1 −1 −2 −3









For m = 2, B =





2C0
2C1 + 1 2C2

1 0 1
1 −2C0 + 1 −2C1



 =





1 3 1
1 0 1
1 0 −2





For m = 1, B =

[

1C0
1C1 + 1

1 + 1 −1C0

]

=

[

1 2
2 −1

]

Remark 4.3. Here we verify few entries of the matrix BAk for m = 6 and k = 1.

1. Entry in the first row and second column:

From the product BA, the entry is mC0
mC1 + mC2 = 6C0

6C1 + 6C2 = 1.6 + 15 = 21.

By substituting m = 6 and k = 1 in the corresponding entry in BAk, we get the entry as

m
∑

j=1

mCjL1,k+1−j =
6

∑

j=1

6CjL1,2−j

= 6C1L1,1 + 6C2L1,0 + 6C3L1,−1 + 6C4L1,−2 + 6C5L1,−3 + 6C6L1,−4

= ( 6C0L1,2 + 6C1L1,1 + 6C2L1,0 + 6C3L1,−1 + 6C4L1,−2 + 6C5L1,−3

+ 6C6L1,−4) − 6C0L1,2

= L1,3 − L1,2 = 29 − 8 = 21

2. Entry in the first row and third column:

From the product BA, the entry is mC0
mC2 + mC3 = 6C0

6C2 + 6C3 = 1.15 + 20 = 35.

By substituting m = 6 and k = 1 in the corresponding entry in BAk, we get the entry as

m
∑

j=2

mCjL1,k+2−j =
6

∑

j=2

6CjL1,3−j

= 6C2L1,1 + 6C3L1,0 + 6C4L1,−1 + 6C5L1,−2 + 6C6L1,−3

= ( 6C0L1,3 + 6C1L1,2 + 6C2L1,1 + 6C3L1,0 + 6C4L1,−1

+ 6C5L1,−2 + 6C6L1,−3) − 6C0L1,3 − 6C1L1,2

= L1,4 − L1,3 − 6L1,2

= 112 − 29 − 6.8 = 35

3. Entry in the third row and fourth column:

From the product BA, the entry is 0 mC3 + 1.0 + 0.0 + 1.0 = 0.
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By substituting m = 6 and k = 1 in the corresponding entry in BAk, we get the entry as

m
∑

j=3

mCjL1,k+1−j =

6
∑

j=3

6CjL1,2−j

= 6C3L1,−1 + 6C4L1,−2 + 6C5L1,−3 + 6C6L1,−4

= ( 6C0L1,2 + 6C1L1,1 + 6C2L1,0 + 6C3L1,−1 + 6C4L1,−2

+ 6C5L1,−3 + 6C6L1,−4) − 6C0L1,2 − 6C1L1,1 − 6C2L1,0

= L1,3 − L1,2 − 6L1,1 − 15L1,0

= 29 − 8 − 6.1 − 15.1 = 0

Remark 4.4. For m = 1, generalized Cassini-like identity reduces to a 2x2 determinant with i = 1.
That is,

∣

∣

∣

∣

L1,k+1 L1,k

L1,k L1,k−1

∣

∣

∣

∣

= |B|

{

1 when k is even,

−1 when k is odd.

where |B| =

∣

∣

∣

∣

1 2
2 −1

∣

∣

∣

∣

= −5 which is the Cassini-like identity Lk+1Lk−1 − L2
k = 5(−1)k+1 for Lucas

numbers. Note that for m = 1, L1,k = Lk.

In [11], the identity Fp+q = Fp+1Fq + FpFq−1 is generalized, for the first sequence, as

S1,p+q =





m
∑

j=0

mCjS1,p−j



 S1,q +





m
∑

j=1

mCjS1,p−j+1



 S1,q−1 +





m
∑

j=2

mCjS1,p−j+2



 S1,q−2 + . . .

+ . . . +





m
∑

j=m−1

mCjS1,p−j+(m−1)



 S1,q−(m−1) + S1,pS1,q−m

This can be further generalized for the ith sequence as

Si,p+q =





m
∑

j=0

mCjS1,p−j



 Si,q +





m
∑

j=1

mCjS1,p−j+1



 Si,q−1 +





m
∑

j=2

mCjS1,p−j+2



 Si,q−2 + . . .

+ . . . +





m
∑

j=m−1

mCjS1,p−j+(m−1)



 Si,q−(m−1) + S1,pSi,q−m

Our next theorem generalizes the identity Lp+q = Lp+1Fq + LpFq−1.

Theorem 4.5. For ith sequence,

Li,p+q =





m
∑

j=0

mCjL1,p−j



 Si,q +





m
∑

j=1

mCjL1,p−j+1



 Si,q−1 +





m
∑

j=2

mCjL1,p−j+2



 Si,q−2 + . . .

+ . . . +





m
∑

j=m−1

mCjL1,p−j+(m−1)



 Si,q−(m−1) + L1,pSi,q−m

Proof. Since BAp+q = (BAp)Aq, the entries in the first row first column of both these matrices are equal.
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This gives

L1,p+q+1 =





m
∑

j=0

mCjL1,p−j









m
∑

j=0

mCjS1,q−j



 +





m
∑

j=1

mCjL1,p−j+1









m
∑

j=0

mCjS1,q−j−1





+





m
∑

j=2

mCjL1,p−j+2









m
∑

j=0

mCjS1,q−j−2



 + . . . + . . .

+





m
∑

j=m−1

mCjL1,p−j+(m−1)









m
∑

j=0

mCjS1,q−j−(m−1)



 + L1,p





m
∑

j=0

mCjS1,q−j−m





Note: S1,q =

m
∑

j=0

mCjS1,(q−1)−j .

Therefore

L1,p+q+1 =





m
∑

j=0

mCjL1,p−j



 S1,q+1 +





m
∑

j=1

mCjL1,p−j+1



 S1,q +





m
∑

j=2

mCjL1,p−j+2



 S1,q−1 + . . .

+ . . . +





m
∑

j=m−1

mCjL1,p−j+(m−1)



 S1,q−(m−2) + L1,pS1,q−(m−1)

(4.1)

Writing q − 1 for q, we get

L1,p+q =





m
∑

j=0

mCjL1,p−j



 S1,q +





m
∑

j=1

mCjL1,p−j+1



 S1,q−1 +





m
∑

j=2

mCjL1,p−j+2



 S1,q−2 + . . .

+ . . . +





m
∑

j=m−1

mCjL1,p−j+(m−1)



 S1,q−(m−1) + L1,pS1,q−m (4.2)

Adding corresponding sides of (4.1) and (4.2), we get

L2,p+q+1 =





m
∑

j=0

mCjL1,p−j



 S2,q+1 +





m
∑

j=1

mCjL1,p−j+1



 S2,q +





m
∑

j=2

mCjL1,p−j+2



 S2,q−1 + . . .

+ . . . +





m
∑

j=m−1

mCjL1,p−j+(m−1)



 S2,q−(m−2) + L1,pS2,q−(m−1)

Writing q − 1 for q,

L2,p+q =





m
∑

j=0

mCjL1,p−j



 S2,q +





m
∑

j=1

mCjL1,p−j+1



 S2,q−1 +





m
∑

j=2

mCjL1,p−j+2



 S2,q−2 + . . .

+ . . . +





m
∑

j=m−1

mCjL1,p−j+(m−1)



 S2,q−(m−1) + L1,pS2,q−m
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Proceeding in a similar fashion, we get the required identity as

Li,p+q =





m
∑

j=0

mCjL1,p−j



 Si,q +





m
∑

j=1

mCjL1,p−j+1



 Si,q−1 +





m
∑

j=2

mCjL1,p−j+2



 Si,q−2 + . . .

+ . . . +





m
∑

j=m−1

mCjL1,p−j+(m−1)



 Si,q−(m−1) + L1,pSi,q−m

�

Remark 4.6. For m = 1, i = 1, and therefore

Li,p+q =





m
∑

j=0

mCjL1,p−j



 Si,q +





m
∑

j=1

mCjL1,p−j+1



 Si,q−1 +





m
∑

j=2

mCjL1,p−j+2



 Si,q−2 + . . .

+ . . . +





m
∑

j=m−1

mCjL1,p−j+(m−1)



 Si,q−(m−1) + L1,pSi,q−m

reduces to

L1,p+q =





1
∑

j=0

1CjL1,p−j



 S1,q + L1,pS1,q−1

or, Lp+q =





1
∑

j=0

1CjLp−j



 Fq + LpFq−1

or, Lp+q =
(

1C0Lp + 1C1Lp−1

)

Fq + LpFq−1

or, Lp+q = (Lp + Lp−1) Fq + LpFq−1

or, Lp+q = Lp+1Fq + LpFq−1

5. Conclusion

The generalization of Lucas sequence as discussed in this paper is used to generalize Cassini-like
identity for Lucas numbers in matrix form. In addition to it, we have generalized many identities and
also obtained a recurrence relation to generate one of the m sequences. This recurrence relation is used
to prove that gcd of (m + 1) consecutive terms in any of the sequences is one.
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