Bol. Soc. Paran. Mat. (3s.) v. 2023 (41) : 1-9.
©SPM ~ISSN-2175-1188 ON LINE ISSN-0037-8712 IN PRESS
SPM: www.spm.uem.br/bspm d0i:10.5269/bspm.51809

Reliability Estimation of Lomax Distribution with Fuzziness

Nadia Hashim Al-Noor

ABSTRACT: This paper considers the problem of estimating the reliability function for Lomax distribution
with the presence of fuzziness through two procedures. The first procedure depends on fuzzy reliability
definition that uses the composite trapezoidal rule in order to find the numerical integration and the second
is Bayesian procedure which includes different cases depends on sample data and hyper-parameters of prior
gamma distribution with squared error as a symmetric loss function and precautionary as asymmetric loss
function. In the Bayesian procedure, we proposed to consider three cases to estimate the fuzzy reliability
with fuzzy observations, precise observations with fuzzy hyper-parameter, and fuzzy observations with fuzzy
hyper-parameter.

Key Words: Fuzzy Reliability, Lomax Distribution, Gamma Distribution, composite trapezoidal
rule.
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1. Introduction

The reliability function is the most commonly used functions in lifetime data analysis. It gives the
probability of a system ” or unit or component ” operating for a specified period of time without failure.
The reliability of a system can be determined on the basis of the acquisition of operative data. However
due to the uncertainty and inaccuracy of this data the estimation of precise values of probabilities is
very difficult in many systems. For this reason, the fuzzy reliability concept has been introduced and
formulated in the context of a fuzzy measure. The theory of the fuzzy set was pioneered by Zadeh (1965)
who presented the concept of fuzzy set and fuzzy logic. Later, the theory and the mathematics of fuzzy
sets were applied in many research fields (Singer (1990)).

In classical reliability theory, many methods and models assumed that all parameters of lifetime
density function are precise “crisp”. But in real situations, the lifetime data might be mixed up with
the fuzziness. The present paper considers the problem of estimating the reliability function for Lomax
distribution in the presence of fuzziness.

The rest of this paper is structured as follows. In Sec. 2, we briefly introduce Lomax distribution.
In Sec. 3, The theory of fuzzy reliability is introduced. In Sec. 4, two procedures to estimate the fuzzy
reliability of Lomax distribution are presented. Description of the simulation study and its results offered
in Sec. 5. Finally, the conclusions are presented in Sec. 6.
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2. Lomax Distribution

For modeling business failure data, Lomax (1954) introduced and studied a new distribution called
by his name as Lomax distribution ”"sometimes called Pareto type II or Pearson type VI”. The Lomax
distribution plays an important role in different applied areas especially with modeling and analyzing the
lifetime data in engineering, biological and medical science (for more details see, Hassan and Al-Ghamdi
(2009), Al-Zahrani and Al-Sobhi(2013), Al-Noor and Alwan (2015a,b), Kilany (2016) and Kumar et al.
(2018).

If X is a Lomax non-negative random variable with shape parameter A> 0 and scale parameter
B> 0, then its cumulative distribution function (cdf) and probability density function (pdf) are respec-
tively (Ashour and Abdelfattah (2011)) given by,

F(z;\p)=1— <1+%)_A (2.1)
Fing) =3 (1 T %) o (2:2)

Setting f = 1 in (2.1) and (2.2), we obtain the cdf and pdf of the one parameter Lomax random
variable given by,
Flz;\N)=1—(14z)" (2.3)

Flas ) = A1 + )" A (2.4)
Then the crisp reliability function of the one parameter Lomax random variable is given by,

R(z;\)=1—F(z;)) = (14+2)" (2.5)

According to the importance of Lomax distribution, it has received extensive attention in the literature
especially with the estimation of its reliability based on complete and censored data assumed that the
available data are precise numbers “crisp data” (see, e.g., Okasha (2014), Panahi and Asadi (2011), Kim
(2016), Mahmoud et al. (2016), Parviz (2016), Rao et al. (2016), and Yadav et al. (2019)). But, in
real situations, the collected lifetime data might be not precise numbers but less or more fuzzy (see
Jamkhaneh (2012) and Vishwakarma et al. (2018). So, this paper considers the problem of estimating
the fuzzy reliability for Lomax distribution by two procedures. The first procedure depends on the fuzzy
reliability definition and the second is the Bayesian procedure.

3. Fuzzy Reliability

The theory of fuzzy reliability was proposed and developed by several authors (see Chen and Mon
(1993) and Venkatesh and Elango (2013). Let T be the continuous random variable represent the failure
time of a system ”or unit or component ”. Then by using the formula of fuzzy probability, the fuzzy
reliability can be obtained (Cheng (1996)) by,

R(t):P(TSt):/OOu(a:)f(a:) de  :0<t<w<oo (3.1)

where p (z) is a membership function that represents, for every element of a given universe, the degree
to which this element belongs to fuzzy set.
Now, assume that p (x) is,

0 s <ty
pr)=9Q =% i<z <ty ,t1>0 (3.2)
1 ;T > 12

For p (z), by the computational method of the function of fuzzy numbers, the lifetime 2 () can be
obtained corresponds to a certain value of & — cut , o € [0,1], (Cheng (1996)) as follows,
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p(r)=a— £=f =a, then
(o) <ty ca=0
z(a)=ti+alta—t) ;0<a<l (3.3)
r(a) >ty a=1

Thus, the fuzzy reliability values can be obtained for all values of « as,

Rtlco= [ 1) dr=0 (3.4)

B z(a)=t1+a(ta—t1)
R(t)gcqer = /t f(z) dx (3.5)
R(t),, = ’ f(z) dz (3.6)

t1

4. Fuzzy Lomax Reliability

Here, we consider the definition of fuzzy reliability and the Bayesian procedure to estimate the fuzzy
reliability of Lomax distribution. Assume that f(x) in (3.1),(3.4),(3.5) and (3.6) represent the pdf of
Lomax distribution as in (2.4), then,

First Procedure: According to (3.1), the fuzzy reliability definition R (t), = t‘f(a) () A1+ x)f(AH)dx
where p (z) as in (3.2)and = () as in (3.3), then,

B z(a=0)
R(t),_, = / 0N (1+2) O gp—g (4.1)
t1
B z(0<a<l) ¢
R(E) gy = / L0 (1) g (4.2)
t to — 11
~ o(a=1) —(A+1) Y A
R()._, :/ 1A (1+2) do=(1+t) = (1+1) (4.3)
t1

and A represented by its maximum likelihood estimator that can be obtained from the likelihood
function L (\|z),

L (M) =[] £ (e A) = A" e O 2, Inlie) (4.4)

i=1
Taking the natural logarithm, L (A|z) will be,

n

I(Alz) =In L(Az) =nln A= A+ 1) In(1+z) (4.5)

i=1

Differentiating the natural log-likelihood function, I (A|z), partially with respect to A and then equating

to zero we get the maximum likelihood estimator of A by, A = m )
i=1 v

The numerical integration in (4.2) obtained by using the composite trapezoidal (CT) rule (Dahlquist

and Bjorck (2008)), so, its symbolized by R (t)OC<Ta<1.

Second Procedure: According to the Bayesian procedure, assume that A has a gamma prior distribution,
g (A), with hyper-parameters a and b, then the posterior distribution can be obtained as,
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A e *“*UZ" n(1+e;) b A 1,—Ab

Nz) = OOL(Alz)g(A) _
77( |£) fo L(A|z)g(\)dx foo A e—(AH)Zi:ll“(l*’%) Fb( AT Te—Abg)
0 a

)\n+a 1 e*)x(b#»z ln 1+L ))
f— f )\n+a71 e_k(b-*—z'i:l ln(1+zi))d>\
9]

By using the transformation u =X (b+ > 1, In(1+z;)) = A= and

dX =

u
b+2:=1 In(1+z;)

du h
—_— 5 n
b+ E :L:l ln(lJra:,i)7 the ’

(b+ 30, in1+20) e
© ynt+a—1 _—A(b+) = In(l+x; _ [o© u —u du
Jo A € =t = [, (b+2:;1 In(1+z;) ) ¢ bty In(ltz;)

— 1 X nta—1 ,—u
= (b+2?=11n(1+ri))n+a o U e du

_ 1
= S ) I'(n+a)

The posterior distribution of A will be,

yln (14 a)"" |
r () = & Zl}lf: i +) i) ymram1 A S0 (1)

Now according to(3.4),(3.5) and (3.6), we get,

R(t)yeo=0 (4.6)
R()geper =1 +t) M= (1 +z(@); z(a) =t +alta —t) (4.7)
R(t)gey = (14+1) = (1 +12) 7 (4.8)

With the squared error loss as a symmetric loss function, the Bayes estimator of fuzzy reliability is
obtained as follows,
~ BS ~
R(t), = (R ) fo 7 (Mz) dX
(b+Zn 1n(1+w¢))"+a

= Tora Jo [(1+t1) (1+x(a)) }A““ Lo (o2 ken) gy

(0+3°7 m(1420))" " T oo \nta—1 ~A(b+S" In(l4a)+n(1+t
= _ﬁ(n+a) |:f0 A e ( E1=1 ( ) ( 1) )d)\ _

fooo AnJrafle—A(b—i-E?:l In(1+z;)+In(1+z(a)) )d/\:|
Again using the transformation u* = A (b+ > In (14 z;) +In (1 +¢1) ), we get that,

/oo )\n+a71€—A(b+Z?=1 In(1+4x;)+In(1+t1) )d)\ _ _ 1 nJraF (n i a)
b+>, In(1+az)+In(l+1t))

and using the transformation v** = A (b+>"" ; In(1+z;) + In(1 4+ z («)) ), we get that,

/°° Arta=1, = A6+ 07 Itz +in(1+a(e) ) gy — ! I'(n+a)
; b+ In(1+2;) +In(1+2 ()"
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Then,
R(D)poner = (b+ iy o (14 2:)"" - (b+ 30, In (1 +2:)" ™ (4.9)
O S (4 a) +In(1+6)"T b+ (1 +a) +In(1+z ()"
P (9 > YYCR2) N (£ v F1 LT ) o

(b+>" In(l+z)+In(l+t)) b+ " In(1+z)+In(1+1t))" "

With the precautionary loss as asymmetric loss function, the Bayes estimator of fuzzy reliability is
obtained as follows,

where,

E|(R®),)"] = J;7 (R(),)"7 (M) d

n n z n+a i B _ 2 - - n 0 o
- (HE":ﬁ(lnS 2 Jo [(1+t1) A (142 (a) A} Artam 1= A (b4 In(ie) gy

fooo )\n—i-a—lef)\(bJrZ?:lln(1+:r,i)+21n(1+t1) )d)\

B (b+2:=1 111(1+:E,;))"+a' ’
- T'(n+a) ) j‘OOO )\n+a—1ef)\(b+2?:1ln(1+w¢)+ln(1+t1)+1n(1+w(a)))d)\

+j‘000 )\n+a—1ef)\(b+z:;l 1n(1+w¢)+21n(1+w(a)))d)\

Using the transformation w = A (b4 Y7, In (1 + ;) + 2In (1 + ¢1) ), we get that,

00 n n+a
A/ )\n+a—1ef)\(b+2:=l In(14x;)+2In(1+t1) )d)\ _ (b + Zi:l In (1 + xl))
0 b+ " In(1+z)+ 2 (1+4)) "

Using the transformation w* =X (b+ Y . In(1+ ;) +In(1+¢1) +In (1 + z («)) ), we get that,

AJ‘OO )\n+a—167)\(b+2?:1ln(1+:r,i)+ln(1+t1)+ln(1+a:(a)) )d>\ _ (b‘i‘ZZLI 11‘(1+$i))yn+a
0 (b+>°7  In(1+zs)+HIn(1+t) +n(1+a(a)))" T

Using the transformation w** =X (b+ > ; In (14 ;) + 2In (1 + 2 («))), we get that,

o0 n n+a
A/ \rFa—1,= A+ Y07 (e +2m(14+a(@) gy — (b+> 0 In(1+z))
0 (b+ 37 In(1+ ;) +2In (1 + ()"
Then,
1
(b+Z:=1 1n(1+a:,i))"+a' i (b+Z:=1 1n(1+w¢))"+a 2
~  \BP (b+>.7 (o) +2n(14+6))" " T (64> In(1+as)+2n(1+a(a)))"
B(Mocacr = (b+32"  In(14a))" (4.11)
-2 i=1 ’
(64> In(L+ay)+Hn(1+tn) Hn(l+a(a)) " "
(G0 DyLEEY) AN (15 DALCEE)
R(t)Bfl _ (b+Zj:11n(1+zi)+21n(1+t1))"+: (b+Z:%z:—lan(l+a:ri)+21n(1+t2))n+a (4.12)
¢ b+ n(1ta))

, T
(b+zj=1ln(1+z,;)+ln(1+t1)+ln(1+t2))n N

For Bayesian procedure, with (4.9),(4.10),(4.11),(4.12), we consider the following three cases to estimate
the fuzzy reliability with,
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1. Fuzzy observations, x; = p(x;) ,
2. Precise observations and fuzzy hyper-parameter b = b («) with p (b)) = o — bl;__bbll = « , where by
and by represents the lower and upper confidence interval of b , and then we have,

b(a) < by a=0
b(a)=bi+alb—b) ;0<a<l (4.13)
b(a) > by sa=1

3. Fuzzy observations, x; = p(z;) and fuzzy hyper-parameter, b = b («) .

5. Simulation Study

We performed a simulation in order to investigate the performance of all estimates for fuzzy reliability.
We generated 5000 samples of size n = 10,25, 50 from the Lomax distribution through the adoption of
the inverse transformation method with A < 1 and A > 1 where A = 0.5 and 2. The values of ¢; and 9 are
taken to be 1 and 4 respectively. The real values of fuzzy reliability with A\ = 0.5 and 2 are equal to 0.2599
and 0.2100 respectively. The hyper-parameters are chosen to be (a, b) = (1,1), (1,3),(3,1) and (3, 3).
The values of o — cut are taken to be 0.2, 0.6 and 1.The results of the average mean square error (MSE)
values are given in Tables 1, 2, 3 and 4.

From the results, it appears that, for all estimates, the values of the MSE decreased as the a — cut
increased. For the Bayes estimates, generally, the values of the MSE decreased as the b increased or
both hyper-parameter a, b increased together, while the values of the MSE increased when only the a
increased. Also, for all estimates, the values of the MSE decreased as the value of \ increased.

Table 1: MSE values of CT estimate of fuzzy reliability
A | a-cut | n=10 | n=25 | n=>50
0.2 0.0672 | 0.0667 | 0.0658
0.5 0.6 0.0655 | 0.0621 | 0.0566

1 0.0614 | 0.0518 | 0.0376
0.2 0.0439 | 0.0436 | 0.0431
2 0.6 0.0403 | 0.0344 | 0.0256
1 0.0386 | 0.0302 | 0.0185

Table 2: MSE values of Bayes estimates of fuzzy reliability for n=10

A | a,b | a-cut | BS1 BS2 BS3 BP1 BP2 BP3
0.2 0.0382 | 0.0239 | 0.0386 | 0.0377 | 0.0238 | 0.0381
1,1 0.6 0.0253 | 0.0106 | 0.0247 | 0.0243 | 0.0103 | 0.0237
1 0.0224 | 0.0102 | 0.0204 | 0.0212 | 0.0100 | 0.0193
0.2 0.0342 | 0.0237 | 0.0352 | 0.0338 | 0.0236 | 0.0348
1,3 0.6 0.0193 | 0.0102 | 0.0178 | 0.0185 | 0.0101 | 0.0171
1 0.0157 | 0.0094 | 0.0114 | 0.0149 | 0.0094 | 0.0107
0.2 0.0397 | 0.0240 | 0.0409 | 0.0392 | 0.0239 | 0.0396
3,1 0.6 0.0276 | 0.0109 | 0.0271 | 0.0266 | 0.0106 | 0.0261
1 0.0250 | 0.0103 | 0.0231 | 0.0238 | 0.0103 | 0.0220
0.2 0.0357 | 0.0225 | 0.0366 | 0.0352 | 0.0224 | 0.0362
3,3 0.6 0.0214 | 0.0104 | 0.0200 | 0.0206 | 0.0102 | 0.0193
1 0.0181 | 0.0096 | 0.0139 | 0.0171 | 0.0095 | 0.0131

0.5
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Table 2 continued from previous page

A | ab | a-cut | BS1 BS2 BS3 BP1 BP2 BP3
0.2 0.0285 | 0.0209 | 0.0289 | 0.0279 | 0.0208 | 0.0283

1,1 0.6 0.0227 | 0.0086 | 0.0220 | 0.0217 | 0.0086 | 0.0211

1 0.0216 | 0.0077 | 0.0197 | 0.0205 | 0.0077 | 0.0185

0.2 0.0243 | 0.0199 | 0.0254 | 0.0238 | 0.0198 | 0.0248

1,3 0.6 0.0165 | 0.0086 | 0.0150 | 0.0157 | 0.0086 | 0.0142

9 1 0.0150 | 0.0078 | 0.0104 | 0.0140 | 0.0078 | 0.0097
0.2 0.0296 | 0.0191 | 0.0300 | 0.0290 | 0.0190 | 0.0294

3,1 0.6 0.0245 | 0.0076 | 0.0239 | 0.0234 | 0.0076 | 0.0229

1 0.0235 | 0.0075 | 0.0218 | 0.0223 | 0.0075 | 0.0206

0.2 0.0255 | 0.0192 | 0.0265 | 0.0250 | 0.0192 | 0.0259

3,3 0.6 0.0183 | 0.0086 | 0.0169 | 0.0174 | 0.0086 | 0.0161

1 0.0169 | 0.0077 | 0.0126 | 0.0159 | 0.0077 | 0.0117

Table 3: MSE values of Bayes estimates of fuzzy reliability for n=25

A | a,b | a-cut | BS1 BS2 BS3 BP1 BP2 BP3
0.2 0.0370 | 0.0228 | 0.0377 | 0.0361 | 0.0227 | 0.0368

1,1 0.6 0.0233 | 0.0097 | 0.0215 | 0.0217 | 0.0097 | 0.0200

1 0.0199 | 0.0089 | 0.0150 | 0.0180 | 0.0088 | 0.0134

0.2 0.0308 | 0.0226 | 0.0324 | 0.0303 | 0.0226 | 0.0317

1,3 0.6 0.0142 | 0.0095 | 0.0111 | 0.0132 | 0.0093 | 0.0103

05 1 0.0101 | 0.0088 | 0.0039 | 0.0090 | 0.0087 | 0.0034
0.2 0.0396 | 0.0229 | 0.0407 | 0.0389 | 0.0228 | 0.0394

3,1 0.6 0.0275 | 0.0098 | 0.0261 | 0.0260 | 0.0098 | 0.0244

1 0.0249 | 0.0090 | 0.0201 | 0.0228 | 0.0090 | 0.0183

0.2 0.0333 | 0.0219 | 0.0350 | 0.0327 | 0.0219 | 0.0343

3,3 0.6 0.0177 | 0.0096 | 0.0145 | 0.0165 | 0.0095 | 0.0136

1 0.0140 | 0.0089 | 0.0067 | 0.0127 | 0.0088 | 0.0060

0.2 0.0268 | 0.0194 | 0.0276 | 0.0258 | 0.0196 | 0.0265

1,1 0.6 0.0199 | 0.0085 | 0.0180 | 0.0183 | 0.0085 | 0.0165

1 0.0185 | 0.0072 | 0.0136 | 0.0166 | 0.0073 | 0.0119

0.2 0.0202 | 0.0190 | 0.0219 | 0.0196 | 0.0195 | 0.0212

1,3 0.6 0.0106 | 0.0084 | 0.0075 | 0.0095 | 0.0084 | 0.0067

9 1 0.0086 | 0.0071 | 0.0028 | 0.0074 | 0.0071 | 0.0024
0.2 0.0291 | 0.0191 | 0.0299 | 0.0281 | 0.0190 | 0.0288

3,1 0.6 0.0233 | 0.0075 | 0.0217 | 0.0215 | 0.0075 | 0.0200

1 0.0222 | 0.0069 | 0.0177 | 0.0202 | 0.0070 | 0.0159

0.2 0.0224 | 0.0193 | 0.0242 | 0.0217 | 0.0193 | 0.0233

3,3 0.6 0.0135 | 0.0075 | 0.0104 | 0.0123 | 0.0075 | 0.0095

1 0.0117 | 0.0072 | 0.0049 | 0.0104 | 0.0071 | 0.0042
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Table 4: MSE values of Bayes estimates of fuzzy reliability for n=>50

A | ab | a-cut | BS1 BS2 BS3 BP1 BP2 BP3
0.2 0.0356 | 0.0220 | 0.0366 | 0.0340 | 0.0219 | 0.0350
1,1 0.6 0.0203 | 0.0069 | 0.0148 | 0.0176 | 0.0067 | 0.0129

1 0.0168 | 0.0059 | 0.0073 | 0.0137 | 0.0059 | 0.0059
0.2 0.0278 | 0.0222 | 0.0291 | 0.0271 | 0.0222 | 0.0283
1,3 0.6 0.0093 | 0.0053 | 0.0061 | 0.0082 | 0.0051 | 0.0056
1 0.0061 | 0.0045 | 0.0056 | 0.0049 | 0.0043 | 0.0047

0-5 0.2 0.0393 | 0.0226 | 0.0405 | 0.0375 | 0.0226 | 0.0381
3,1 0.6 0.0273 | 0.0078 | 0.0247 | 0.0254 | 0.0076 | 0.0222

1 0.0248 | 0.0061 | 0.0163 | 0.0225 | 0.0060 | 0.0141

0.2 0.0326 | 0.0218 | 0.0346 | 0.0317 | 0.0198 | 0.0335

3,3 0.6 0.0166 | 0.0067 | 0.0104 | 0.0149 | 0.0065 | 0.0095

1 0.0136 | 0.0056 | 0.0047 | 0.0117 | 0.0054 | 0.0042

0.2 0.0240 | 0.0099 | 0.0250 | 0.0223 | 0.0098 | 0.0233

1,1 0.6 0.0158 | 0.0062 | 0.0107 | 0.0131 | 0.0061 | 0.0087

1 0.0139 | 0.0057 | 0.0057 | 0.0108 | 0.0058 | 0.0045

0.2 0.0159 | 0.0105 | 0.0173 | 0.0152 | 0.0104 | 0.0164

1,3 0.6 0.0058 | 0.0052 | 0.0055 | 0.0047 | 0.0050 | 0.0051

9 1 0.0048 | 0.0041 | 0.0028 | 0.0038 | 0.0042 | 0.0019

0.2 0.0291 | 0.0098 | 0.0298 | 0.0275 | 0.0097 | 0.0286
3,1 0.6 0.0233 | 0.0063 | 0.0182 | 0.0205 | 0.0062 | 0.0159

1 0.0219 | 0.0050 | 0.0119 | 0.0188 | 0.0051 | 0.0101
0.2 0.0201 | 0.0099 | 0.0220 | 0.0192 | 0.0098 | 0.0209
3,3 0.6 0.0111 | 0.0053 | 0.0062 | 0.0097 | 0.0055 | 0.0054
1 0.0098 | 0.0050 | 0.0032 | 0.0083 | 0.0051 | 0.0031

6. Conclusions

In this paper, we have discussed two estimation procedures for the fuzzy reliability of the Lomax
distribution. The first procedure depends on the fuzzy reliability definition that uses the composite
trapezoidal rule in order to find the numerical integration and the second is Bayesian procedure with
informative gamma prior based on squared error and precautionary ”as symmetric and asymmetric” loss
functions.

In Bayesian, we have proposed to consider three different cases:

1. when the data are available in the form of fuzzy information "fuzzy observations”,
2. precise observations with fuzzy hyper-parameter and

3. fuzzy observations and fuzzy hyper-parameter.

From the simulation study, with respect to minimum values of MSE, although it appears that the perfor-
mance of Bayes estimates with case 2 "under precautionary (BP2) and squared error (BS2)” better than
the other with cases 1 and 2, one cannot say in some absolute sense that this two estimates are superior
than the other due to its deal only with fuzzy hyper-parameter not fuzzy observations. In terms of overall
comparison, the performance of the Bayes estimates is generally best and especially with precautionary
than squared error loss.
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