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Symmetricity of Rings Relative to the Prime Radical

Debraj Roy and Tikaram Subedi

abstract: In this paper, we introduce and study a strict generalization of symmetric rings. We call a ring
R ‘P -symmetric’ if for any a, b, c ∈ R, abc = 0 implies bac ∈ P (R), where P (R) is the prime radical of R. It
is shown that the class of P -symmetric rings lies between the class of central symmetric rings and generalized
weakly symmetric rings. Relations are provided between P -symmetric rings and some other known classes of
rings. From an arbitrary P -symmetric ring, we produce many families of P -symmetric rings.
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1. Introduction

Throughout this paper, R denotes an associative ring with identity. The symbols E(R), J(R), N(R),
P (R), Z(R) respectively stand for the set of all idempotent elements, the Jacobson radical, the set of all
nilpotent elements, the prime radical and the center of R. R is reduced if N(R) = 0. R is left (right)
quasi-duo if every maximal left (right) ideal of R is an ideal. A proper ideal P of R is prime if for any
ideals A, B of R with AB ⊆ P , either A ⊆ P or B ⊆ P . An element a ∈ R is strongly nilpotent if we
consider any sequence {pn} where p0 = a and pi+1 ∈ piRpi for all i ≥ 0, then there exists a positive
integer k such that pk = 0. It is well known that P (R) consists of all strongly nilpotent elements of R.
We also know that P (R) = {a ∈ R | RaR is nilpotent}. R is 2-primal if N(R) = P (R).

R is symmetric if for any a, b, c ∈ R, abc = 0 implies bac = 0. Lambek in [7] introduced symmetric
rings and obtained some of the significant results in this direction. Further contribution to symmetric
rings and their generalizations have been made by various authors over the last several years (see, [4],
[7], [8], [10]). Recently, semicommutativity of rings related to the prime radical was studied in [5]. This
motivated us to introduce rings called P -symmetric rings wherein a ring R is called P -symmetric if for
any a, b, c ∈ R, abc = 0 implies bac ∈ P (R). This paper studies P -symmetric rings in consultation and
continuation with various existing generalizations of symmetric rings.

2. P -symmetric rings

Definition 2.1. We call a ring R ‘P -symmetric’ if for any a, b, c ∈ R, abc = 0 implies bac ∈ P (R).

It follows that symmetric rings are P -symmetric. Not every P -symmetric ring is symmetric as shown
by the following example:

Example 2.2. Let R = S4(R) =























a b1 b2 b3

0 a b4 b5

0 0 a b6

0 0 0 a









: a, bi ∈ R















. It is easy to see that every element

of R is either a unit or an element of the prime radical and so R is P -symmetric.

Now A =









0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0









, B =









0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0









∈ R and AB = 0 but BA 6= 0 which proves that

R is not symmetric.
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R is P -semicommutative ( [5]) if for any a, b ∈ R, ab = 0 implies aRb ⊆ P (R).

Theorem 2.3. Let R be a P -symmetric ring. Then N2(R) = {a ∈ R | a2 = 0} ⊆ P (R). In particular,
R is P -semicommutative.

Proof. Let R be a P -symmetric ring and a ∈ N2(R), r ∈ R. Then raa = 0. As R is P -symmetric,
we obtain ara ∈ P (R). Therefore aRa ⊆ P (R) which leads to a ∈ P (R). By ( [5], Theorem 2.4), R is
P -semicommutative. �

Theorem 2.4. The following conditions are equivalent for any ring R:

1. R is 2-primal.

2. For any a, b ∈ R, ab ∈ P (R) implies ba ∈ P (R).

3. R/P (R) is reduced.

Proof. (1) =⇒ (2). Let a, b ∈ R with ab ∈ P (R). Then (ba)2 = b(ab)a ∈ P (R) = N(R) which implies
that ba ∈ N(R) = P (R).

(2) =⇒ (3). Let a ∈ R with a2 ∈ P (R). Then for any r ∈ R, raa ∈ P (R) and hence by hypothesis,
ara ∈ P (R). Therefore a ∈ P (R).

(3) =⇒ (1) is trivial. �

Theorem 2.5. The following conditions are equivalent for a 2-primal ring R:

1. R is P -symmetric.

2. For any a, b, c ∈ R, abc = 0 implies acb ∈ P (R).

3. For any a, b, c ∈ R, abc = 0 implies cba ∈ P (R).

Proof. (1) =⇒ (2). Let a, b, c ∈ R with abc = 0. By hypothesis, (acb)2 = ac(bac)b ∈ P (R). Then by
Theorem 2.4, acb ∈ P (R).

That (2) =⇒ (3) and (3) =⇒ (1) can be proved similarly. �

Theorem 2.6. Let R be a left quasi-duo ring such that every prime ideal of R is maximal. Then R is
P -symmetric.

Proof. We note that J(R) = P (R) since every prime ideal of R is maximal. Let a, b, c ∈ R with abc = 0
and M be a maximal left ideal of R. If a /∈ M , then x + ya = 1 for some x ∈ M, y ∈ R leading to
xbc = bc. Since R is left quasi-duo, this leads to bc ∈ M . If b /∈ M , then (1 − qb)c ∈ M for some q ∈ R
which further leads to c ∈ M . It follows that bac ∈ J(R) = P (R). �

R is central symmetric ( [4]) if for any a, b, c ∈ R, abc = 0 implies bac ∈ Z(R). R is generalized weakly
symmetric ( [10]) if for any a, b, c ∈ R, abc = 0 implies bac ∈ N(R).

Theorem 2.7. Every central symmetric ring is P -symmetric.

Proof. Let R be central symmetric and a, b, c ∈ R with abc = 0. As every central symmetric ring
is generalized weakly symmetric ( [10], Proposition 2.3), there exists a positive integer m such that
(bac)2m

= 0. Consider any sequence {pn} where p0 = bac and pi+1 ∈ piRpi for all i ≥ 0. Since
bac ∈ Z(R), p1 = (bac)2r1 for some r1 ∈ R. Similarly p2 = (bac)4r2 for some r2 ∈ R. Therefore it can
be shown that for any positive integer n, pn = (bac)2n

rn for some rn ∈ R. Hence it follows that pm = 0.
Therefore bac ∈ P (R). �

Not every P -symmetric ring is central symmetric as shown by the following example:
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Example 2.8. Let R = S4(R). Then R is P -symmetric.

Take A =









0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0









and B =









0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0









∈ R. Then AB = 0 but BA /∈ Z(R) so that

R is not central symmetric.

Observing that P (R) ⊆ N(R), we have the following theorem:

Theorem 2.9. Every P -symmetric ring is generalized weakly symmetric.

R is weakly reversible ( [3]) if for any a, b, r ∈ R, ab = 0 implies Rbra is a nil left ideal.

Proposition 2.10. Every P -symmetric ring is weakly reversible.

Proof. Let R be a P -symmetric ring and a, b, r ∈ R with ab = 0. For any s ∈ R, (sbra)(bra)(sbra) = 0.
By hypothesis, bra(sbra)2 ∈ P (R) ⊆ N(R) which implies that sbra ∈ N(R). Hence Rbra is a nil left
ideal. �

Remark 2.11. Since a homomorphic image of a central symmetric ring need not be generalized weakly
symmetric ( [10], Example 2.11), it follows that a homomorphic image of a P -symmetric ring need not
be P-symmetric.

Proposition 2.12. Let R be a ring and e ∈ E(R). If R is P -symmetric, then eRe is P -symmetric.

Proof. The result follows from the fact that for any ring R, P (eRe) = eP (R)e for any e ∈ E(R) ( [6]). �

Proposition 2.13. For any ring R, R/P (R) is P -symmetric implies R is P -symmetric.

Lemma 2.14. ( [5], Lemma 3.2) Let R be a ring and I, J are ideals of R with I ∩ J = 0. Then
P (R) = (

⋂

i∈I1
Pi)

⋂

(
⋂

i∈I2
Pi) and Pi is a prime ideal of R for every i ∈ I1

⋃

I2 where I1 and I2 are
index sets for the prime ideals of R containing I and J , respectively.

Theorem 2.15. Finite subdirect product of P -symmetric rings is P -symmetric.

Proof. Let R be the subdirect product of two P -symmetric rings A and B. Then we have epimorphisms
f : R → A and g : R → B with Ker(f) ∩ Ker(g) = 0 and A ∼= R/Ker(f) and B ∼= R/Ker(g). We
denote I = Ker(f), J = Ker(g). Let a, b, c ∈ R with abc = 0. Then abc = 0 ∈ R/I. Since R/I ∼= A is
P -symmetric, bac ∈ P (R/I) = (

⋂

i∈I1
Pi)/I where I1 is the index set for the prime ideals of R containing

I. Therefore bac ∈
⋂

i∈I1
Pi. Similarly we can prove that bac ∈

⋂

i∈I2
Pi where I2 is the index set for the

prime ideals of R containing J . Hence by Lemma 2.14, bac ∈ P (R) which proves that R is P -symmetric.
�

Lemma 2.16. ( [5], Lemma 2.17) Let R be a ring and S be a multiplicatively closed subset of R consisting
of central regular elements. Then P (S−1R) = {u−1a | u ∈ S, a ∈ P (R)}.

Theorem 2.17. Let R be a ring and S be a multiplicatively closed subset of R consisting of central
regular elements. Then R is P -symmetric if and only if S−1R is P -symmetric.

Proof. Let R be a P -symmetric ring and α, β, γ ∈ S−1R with αβγ = 0. Let α = m−1a, β = n−1b, γ =
p−1c where m, n, p ∈ S, a, b, c ∈ R. Since S ⊆ Z(R), αβγ = m−1an−1bp−1c = (mnp)−1abc = 0, so that
abc = 0. As R is P -symmetric, bac ∈ P (R). Therefore by Lemma 2.16, βαγ ∈ P (S−1R) which implies
that S−1R is P -symmetric.
Converse is trivial. �
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R is Armendariz ( [9]) if for any f(x) =

i=m
∑

i=0

aix
i, g(x) =

j=n
∑

j=0

bjxj ∈ R[x], f(x)g(x) = 0 implies

aibj = 0 for every i, j.

Theorem 2.18. Consider the following statements for any ring R:

1. R is P -symmetric.

2. R[x] is P -symmetric.

3. The ring of Laurent polynomials R[x; x−1] is P -symmetric.

Then (2) =⇒ (3) =⇒ (1). Further, (1) =⇒ (2) if R is an Armendariz ring.

Proof. (2) =⇒ (3). Assume R[x] is P -symmetric and let S = {1, x, x2, ...}. Then S is a multiplicatively
closed subset of R[x] consisting of central regular elements. Therefore by Theorem 2.17, S−1R[x] is
P -symmetric. Since R[x; x−1] ≃ S−1R[x], the result follows.
(3) =⇒ (1) is trivial.

Let R be an Armendariz ring and f(x) =

i=m
∑

i=0

aix
i, g(x) =

j=n
∑

j=0

bjxj , h(x) =

k=l
∑

k=0

ckxk ∈ R[x] with

f(x)g(x)h(x) = 0. Since R is Armendariz, by ( [1], Proposition 1), aibjck = 0 for all i, j, k. As R is
P -symmetric, bjaick ∈ P (R) for all i, j, k, which implies that g(x)f(x)h(x) ∈ P (R[x]) as P (R[x]) =
P (R)[x].

�

Theorem 2.19. The following conditions are equivalent for any ring R:

1. R is P -symmetric.

2. Tn(R), the ring of all n × n upper triangular matrices over R is P -symmetric for any n ≥ 1.

3. Sn(R) =





























a a12 . . . a1n

0 a . . . a2n

...
...

. . .
...

0 0 . . . a











: a, aij ∈ R, i < j ≤ n



















is P -symmetric for any n ≥ 1.

4. Vn(R) =





























a0 a1 a2 . . . an−1

0 a0 a1 . . . an−2

...
...

...
. . .

...
0 0 0 . . . a0











: ai ∈ R, i = 0, 1, 2, ..., n − 1



















is P -symmetric for any n ≥

1.

Proof. That (2) =⇒ (1), (3) =⇒ (1), (4) =⇒ (1) follows trivially.
We know that for any n ≥ 1,

P (Tn(R)) =





























a11 a12 . . . a1n

0 a22 . . . a2n

...
...

. . .
...

0 0 . . . ann











: aii ∈ P (R), aij(i 6= j) ∈ R



















,

P (Sn(R)) =





























a a12 . . . a1n

0 a . . . a2n

...
...

. . .
...

0 0 . . . a











: a ∈ P (R), aij ∈ R, i < j ≤ n



















,
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P (Vn(R)) =





























a0 a1 a2 . . . an−1

0 a0 a1 . . . an−2

...
...

...
. . .

...
0 0 0 . . . a0











: a0 ∈ P (R), ai ∈ R, i = 1, 2, ..., n − 1



















.

(1) =⇒ (2).

Let A =











a11 a12 . . . a1n

0 a22 . . . a2n

...
...

. . .
...

0 0 . . . ann











, B =











b11 b12 . . . b1n

0 b22 . . . b2n

...
...

. . .
...

0 0 . . . bnn











,

C =











c11 c12 . . . c1n

0 c22 . . . c2n

...
...

. . .
...

0 0 . . . cnn











∈ Tn(R) with ABC = 0. Then for all i, 1 ≤ i ≤ n, aiibiicii = 0 and hence

by hypothesis, biiaiicii ∈ P (R) which implies that BAC ∈ P (Tn(R)).
That (1) =⇒ (3), (1) =⇒ (4) can be proved in a similar way. �

If R is P -symmetric, then Mn(R), the ring of n × n matrices over R, need not be P -symmetric as
shown by the following example:

Example 2.20. Let R = M2(R) and A =

(

0 0
1 0

)

, B =

(

0 1
0 0

)

, C =

(

1 1
0 0

)

∈ R. Then

ABC = 0 but BAC =

(

1 1
0 0

)

/∈ P (R) as BAC is not nilpotent.

For any non-empty sets A and B, let R[A, B] denote the set {(a1, a2, ..., an, b, b, ...) : ai ∈ A, b ∈
B, n ≥ 1, 1 ≤ i ≤ n}. If A is a ring with identity and B is a subring of A with the same identity element
of A, then R[A, B] becomes a ring.

Lemma 2.21. ( [5], Lemma 3.7) Let B be a subring of a ring A. Then

P (R[A, B]) = R[P (A), P (A)
⋂

P (B)].

Theorem 2.22. Let B be a subring of a ring A with the identity element same as that of A. The
following statements are equivalent:

1. A and B are P -symmetric.

2. R[A, B] is P -symmetric.

Proof. (1) =⇒ (2). Let f, g, h ∈ R[A, B] satisfy fgh = 0.
Let f = (a1, a2, ..., an1

, a, a, ...), g = (b1, b2, ..., bn2
, b, b, ...),

h = (c1, c2, ..., cn3
, c, c, ...), where ai, bj, ck ∈ A, a, b, c ∈ B, n1, n2, n3 ≥ 1, 1 ≤ i ≤ n1, 1 ≤ j ≤ n2, 1 ≤

k ≤ n3. Take n = max{n1, n2, n3}. If n1 is maximum, let bj = b for n2 + 1 ≤ j ≤ n1, and ck = c for
n3 + 1 ≤ k ≤ n1. Similar relations are assumed when n2 or n3 is maximum. Then abc = 0 and for
1 ≤ i ≤ n, aibici = 0. Therefore by hypothesis and Proposition 2.21, we conclude that gfh ∈ P (R[A, B]).

(2) =⇒ (1). Let a, b, c ∈ A satisfy abc = 0. Consider the element f = (a, 0, 0, ...), g = (b, 0, 0, ...), h =
(c, 0, 0, ...) ∈ R[A, B] with fgh = 0 in R[A, B]. Then by hypothesis and Proposition 2.21, gfh ∈
P (R[A, B]) which yields bac ∈ P (A). Hence A is P -symmetric. Similarly, we can establish that B
is P -symmetric.

�

Theorem 2.23. The following statements are equivalent for a ring R:

1. R is P -symmetric.
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2. The ring S = {(x, y) ∈ R × R | x − y ∈ P (R)} is P -symmetric.

Proof. (1) =⇒ (2). Consider the homomorphisms f : S → R by (x, y) → x and g : S → R by
(x, y) → y. Then f and g are epimorphisms and Ker(f) ∩ Ker(g) = 0. By hypothesis, S/Ker(f) ∼= R
and S/Ker(g) ∼= R are P -symmetric rings. Therefore S becomes a subdirect product of S/Ker(f) and
S/Ker(g). Hence by Theorem 2.15, S is P -symmetric.

(2) =⇒ (1). Let a, b, c ∈ R with abc = 0. Then (a, a)(b, b)(c, c) = (0, 0). By hypothesis,
(b, b)(a, a)(c, c) ∈ P (S). Consider any sequence {pn} in R with p0 = bac and pi+1 ∈ piRpi for all i ≥ 0. Let
q0 = (b, b)(a, a)(c, c), q1 = (p1, p1), q2 = (p2, p2), ..., qn = (pn, pn) with (pi+1, pi+1) = (pi, pi)(x, x)(pi, pi)
for all i ≥ 0, for some x ∈ R. By hypothesis, there exists positive integer m such that qm = (0, 0) which
implies that pm = 0. This shows that bac ∈ P (R). Hence R is P -symmetric. �
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