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abstract: In this paper we study some basic properties of strong λ-statistical convergence of sequences in
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1. Introduction

The concept of probabilistic metric (PM) space was introduced and studied by Menger [12] under the
name of “statistical metric space” by taking the distance between two points a and b as a distribution
function Fab instead of a non-negative real number and the value of the function Fab at any t > 0 i.e.
Fab(t) is interpreted as the probability that the distance between the points a and b is ≤ t. After Menger,
works of several mathematicians such as Schwiezer and Sklar [18,19,20,21], Tardiff [25], Thorp [26] and
many others, developed the theory of probabilistic metric spaces. A through development of probabilistic
metric spaces can be found in the famous book of Schwiezer and Sklar [22]. Several topologies are defined
on a PM space but strong topology is one of them, which received most attention to date and it is the
main tool of our paper.

As a generalization of the usual notion of convergence of sequences of real numbers, the notion of
statistical convergence was introduced and studied independently by Fast [7] and Schoenberg [17] based
on the notion of natural density of subsets of N, the set of all natural numbers. A subset M of N is said
to have natural density or asymptotic density d(M) if

d(M) = lim
n→∞

|M(n)|

n

where M(n) = {j ∈ M : j ≤ n} and |M(n)| represents the number of elements in M(n).
A sequence {xk}k∈N of reals is said to be statistically convergent to ξ ∈ R if for every ǫ > 0, d(A(ǫ)) =

0, where A(ǫ) = {k ∈ N : |xk − ξ| ≥ ǫ}.
After the great works of Salat [15] and Fridy [8], many works have been done in this area of summa-

bility theory. More primary work on this convergence notion can be found from [1,2,3,9,10,14,24].
The notion of natural density of subsets of N was further generalized to the notion of λ-density by

Mursaleen [13] and with the help of λ-density he generalized the notion of statistical convergence of real
sequences to the notion of λ-statistical convergence. If λ = {λn}n∈N

is a non-decreasing sequence of
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positive real numbers tending to ∞ such that λ1 = 1, λn+1 ≤ λn + 1, n ∈ N, then any subset M of N is
said to have λ-density dλ(M) if

dλ(M) = lim
n→∞

|{k ∈ In : k ∈ M}|

λn

,

where In = [n − λn + 1, n]. It is clear that if A, B ⊂ N and dλ(A) = 0, dλ(B) = 0 then dλ(Ac) = 1 =
dλ(Bc), dλ(A ∪ B) = 0. Also if A, B ⊂ N, A ⊂ B and dλ(B) = 0, then dλ(A) = 0. The collection of all
such sequences λ is denoted by ∆∞. Throughout the paper λ stands for such a sequence.

If a sequence x = {xk}k∈N satisfies a property P for each k except for a set of λ-density zero, then
we say that the sequence x satisfies the property P for “λ-almost all k” or in short “λ-a.a.k.”.

A sequence x = {xk}k∈N of real numbers is said to be λ-statistically convergent or Sλ-convergent to
L ∈ R if, for every ǫ > 0, dλ(M(ǫ)) = 0, where M(ǫ) = {k ∈ N : |xk − L| ≥ ǫ}.

If λn = n, ∀n ∈ N, then the notions of λ-density and λ-statistical convergence coincide with the
notions of natural density and statistical convergence respectively.

Because of immense importance of probabilistic metric space in mathematics, the notion of strong
statistical convergence was introduced by Şençimen et al. [23] in a PM space and this was further
generalized to the notion of strong λ-statistical convergence by Das et al. [4].

Following the line of Şençimen et al. [23] and also that of Das et al. [4] in this paper we study some
basic properties of strong λ-statistical convergence of sequences in probabilistic metric spaces not done
earlier. We also introduce the notion of strong λ-statistically Cauchy sequences and study some of its
basic properties including its relationship with strong λ-statistical convergence in a probabilistic metric
space. Further in section 4 of this paper we introduce and study the notions of strong λ-statistical limit
points and strong λ-statistical cluster points of a sequence in a probabilistic metric space including their
interrelationship.

2. Basic Definitions and Notations

In this section we recall some basic definitions and results related to probabilistic metric spaces (or
PM spaces) (see [18,19,20,21,22] for more details).

Definition 2.1. A nondecreasing function f : [−∞, ∞] → [0, 1] with f(−∞) = 0 and f(∞) = 1, is called
a distribution function.

We denote the set of all distribution functions left continuous over (−∞, ∞) by D.
We consider a relation ≤ on D defined by g ≤ f if and only if g(x) ≤ f(x) for all x ∈ [−∞, ∞].

Clearly the relation ‘≤’ is a partial order on D.

Definition 2.2. For any q ∈ [−∞, ∞] the unit step at q is denoted by ǫq and is defined to be a function
in D given by

ǫq(x) = 0, if − ∞ ≤ x ≤ q

= 1, if q < x ≤ ∞.

Definition 2.3. A sequence {fn}n∈N of distribution functions is said to converge weakly to a distribution
function f , if the sequence {fn(x)}n∈N converges to f(x) at each continuity point x of f . We write

fn
w
−→ f .

Definition 2.4. The distance between f and g in D is denoted by dL(f, g) and is defined by the infimum
of all numbers w ∈ (0, 1] such that the inequalities

f(x − w) − w ≤ g(x) ≤ f(x + w) + w
and g(x − w) − w ≤ f(x) ≤ g(x + w) + w

hold for every x ∈ (− 1
w

, 1
w

).

It is known that dL is a metric on D and for any sequence {fn}n∈N in D and f ∈ D, we have
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fn
w
−→ f if and only if dL(fn, f) → 0.

Definition 2.5. A nondecreasing real valued function h defined on [0, ∞] that satisfies h(0) = 0 and
h(∞) = 1 and is left continuous on (0, ∞) is called a distance distribution function.

The set of all distance distribution functions is denoted by D+. The function dL is clearly a metric
on D+. The metric space (D+, dL) is compact and hence complete.

Theorem 2.6. Let f ∈ D+ be given . Then for any t > 0, f(t) > 1 − t if and only if dL(f, ǫ0) < t.

Definition 2.7. A triangle function is a binary operation τ on D+ which is commutative, nondecreasing,
associative in each place and ǫ0 is the identity.

Definition 2.8. A probabilistic metric space, briefly PM space, is a triplet (X,F, τ ), where X is a
nonempty set whose elements are the points of the space, F is a function from X × X into D+, τ is a
triangle function and the following conditions are satisfied for all x, y, z ∈ X:

1. F(x, x) = ǫ0

2. F(x, y) 6= ǫ0 if x 6= y

3. F(x, y) = F(y, x)

4. F(x, z) ≥ τ (F(x, y),F(y, z)).

From now on we will denote F(x, y) by Fxy and its value at b by Fxy(b).

Definition 2.9. Let (X,F, τ ) be a PM space. For x ∈ X and r > 0, the strong r-neighborhood of x is
denoted by Nx(r) and is defined by

Nx(r) = {y ∈ X : Fxy(r) > 1 − r}.

The collection Nx = {Nx(r) : r > 0} is called the strong neighborhood system at x and the union
N =

⋃

x∈X

Nx is called the strong neighborhood system for X.

From Theorem 2.6, we can write Nx(r) = {y ∈ X : dL(Fxy, ǫ0) < r}. If τ is continuous, then the
strong neighborhood system N determines a Hausdorff topology for X . This topology is called the strong
topology for X and members of this topology are called strongly open sets.

Throughout the paper, in a PM space (X,F, τ), we always consider that τ is continuous and X is
endowed with the strong topology.

In a PM space (X,F, τ) the strong closure of any subset A of X is denoted by k(A) and for any
nonempty subset A of X strong closure of A is defined by,

k(A) = {a ∈ X : for any t > 0, ∃ b ∈ A such that Fab(t) > 1 − t}.

Definition 2.10. [6] Let (X,F, τ) be a PM space. Then a subset H of X is called strongly closed if its
complement is a strongly open set.

Definition 2.11. Let (X,F, τ ) be a PM space and H 6= ∅ be a subset of X. Then ξ ∈ X is said to be a
strong limit point of H if for every t > 0,

Nξ(t) ∩ (H \ {ξ}) 6= ∅.

The set of all strong limit points of the set H is denoted by LF
H.

Definition 2.12. [6] Let (X,F, τ) be a PM space and H be a subset of X. Let Q be a family of strongly
open subsets of X such that Q covers H. Then Q is said to be a strong open cover for H.

Definition 2.13. [6] Let (X,F, τ ) be a PM space and H be a subset of X. Then H is called a strongly
compact set if every strong open cover of H has a finite subcover.
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Definition 2.14. [6] Let (X,F, τ) be a PM space, x = {xk}k∈N
be a sequence in X. Then x is said to

be strongly bounded if there exists a strongly compact subset E of X such that xk ∈ E, ∀k ∈ N.

Definition 2.15. [6] Let (X,F, τ ) be a PM space, x = {xk}k∈N
be a sequence in X. Then x is said to be

strongly statistically bounded if there exists a strongly compact subset E of X such that d({k ∈ N : xk /∈
E}) = 0.

Theorem 2.16. [6] Let (X,F, τ) be a PM space and H be a strongly compact subset of X. Then every
strongly closed subset of H is strongly compact.

Definition 2.17. Let (X,F, τ) be a PM space. Then for any r > 0, the subset V(r) of X × X given by

V(r) = {(x, y) : Fxy(r) > 1 − r}

is called the strong r-vicinity.

Theorem 2.18. Let (X,F, τ) be a PM space and τ be continuous. Then for any r > 0, there is an η > 0
such that V(η) ◦ V(η) ⊂ V(r), where V(η) ◦ V(η) = {(x, z) : for some y, (x, y) and (y, z) ∈ V(η)}.

Note 1. From the hypothesis of Theorem 2.18, we can say that for any r > 0, there is an η > 0 such
that Fab(r) > 1 − r whenever Fac(η) > 1 − η and Fcb(η) > 1 − η. Equivalently it can be written as: for
any r > 0, there is an η > 0 such that dL(Fab, ǫ0) < r whenever dL(Fac, ǫ0) < η and dL(Fcb, ǫ0) < η.

Definition 2.19. [23] Let (X,F, τ) be a PM space. A sequence x = {xk}k∈N in X is said to be strongly
convergent to L ∈ X if for every t > 0, ∃ a natural number k0 such that

xk ∈ NL(t), whenever k ≥ k0.

In this case, we write F- lim
k→∞

xk = L or xk
F

−→ L.

Definition 2.20. [22] Let (X,F, τ) be a PM space. A sequence x = {xk}k∈N in X is said to be strong
Cauchy if for every t > 0, ∃ a natural number k0 such that

(xj , xk) ∈ U(t), whenever j, k ≥ k0.

Definition 2.21. [23] Let (X,F, τ) be a PM space. A sequence x = {xk}k∈N in X is said to be strongly
statistically convergent to ξ ∈ X if for any t > 0

d({k ∈ N : Fxkξ(t) ≤ 1 − t}) = 0 or d({k ∈ N : xk /∈ Nξ(t)}) = 0.

In this case we write stF- lim
k→∞

xk = ξ.

Definition 2.22. [23] Let (X,F, τ) be a PM space. A sequence x = {xk}k∈N in X is said to be strong
statistically Cauchy if for any t > 0, ∃ a natural number N0 = N0(t) such that

d({k ∈ N : FxkxN0
(t) ≤ 1 − t}) = 0.

3. Strong λ-Statistical Convergence and Strong λ-Statistical Cauchyness

In this section we first study some basic properties of strong λ-statistical convergence in a PM space
and then introducing the notion of strong λ-statistical Cauchyness we study its relationship with strong
λ-statistical convergence.

Definition 3.1. [4] Let (X,F, τ) be a PM space, x = {xk}k∈N be a sequence in X and λ ∈ ∆∞. Then
x is said to be strongly λ-statistically convergent to L ∈ X, if for every t > 0,

dλ({j ∈ N : FxjL(t) ≤ 1 − t}) = 0.

or
dλ({j ∈ N : xj /∈ NL(t)}) = 0.

In this case we write, stFλ - lim
k→∞

xk = L or simply as xk

stFλ−−→ L and L is called strong λ-statistical limit of
x.
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Remark 3.2. From Theorem 2.6 and Definition 3.1 we see that the following statements are equivalent:

1. xk

stFλ−−→ L

2. For each t > 0, dλ({k ∈ N : dL(FxkL, ǫ0) ≥ t}) = 0

3. stFλ - lim
k→∞

dL(FxkL, ǫ0) = 0.

Theorem 3.3. Let (X,F, τ) be a PM space, x = {xk}k∈N be a sequence in X and λ ∈ ∆∞. If the
sequence x = {xk}k∈N is strongly λ-statistically convergent in X, then the strong λ-statistical limit of x
is unique.

Proof. Let the sequence x = {xk}k∈N be strongly λ-statistically convergent in X . If possible, let stFλ -
lim

k→∞
xk = ξ1 and stFλ - lim

k→∞
xk = ξ2 with ξ1 6= ξ2. Since ξ1 6= ξ2, Fξ1ξ2

6= ǫ0. Then there is a t > 0

such that dL(Fξ1ξ2
, ǫ0) = t. We choose γ > 0 so that dL(Fuv, ǫ0) < γ and dL(Fvw , ǫ0) < γ imply that

dL(Fuw , ǫ0) < t. Since stFλ - lim
k→∞

xk = ξ1 and stFλ - lim
k→∞

xk = ξ2, so dλ(A1(γ)) = 0 and dλ(A2(γ)) = 0,

where
A1(γ) = {k ∈ N : Fxkξ1

(γ) ≤ 1 − γ}

and
A2(γ) = {k ∈ N : Fxkξ2

(γ) ≤ 1 − γ}.

Now let A3(γ) = A1(γ)∪A2(γ). Then dλ(A3(γ)) = 0 and this gives dλ(Ac
3(γ)) = 1. Let k ∈ Ac

3(γ). Then
dL(Fxkξ1

, ǫ0) < γ and dL(Fξ2xk
, ǫ0) < γ and so dL(Fξ1ξ2

, ǫ0) < t, this gives a contradiction. Hence strong
λ-statistical limit of a strongly λ-statistically convergent sequence in a PM space is unique. �

Theorem 3.4. Let (X,F, τ) be a PM space and {xn}n∈N, {yn}n∈N be two sequences in X such that

xn

stFλ−−→ l ∈ X and yn

stFλ−−→ m ∈ X. Then

stFλ - lim
n→∞

dL(Fxnyn
,Flm) = 0.

Proof. Since τ is continuous and X is endowed with the strong topology, so F is uniformly continuous. So
for any t > 0 there exists η(t) > 0 such that dL(Flm,Fl1m1

) < t, whenever l1 ∈ Nl(η) and m1 ∈ Nm(η).
Then by the given condition, for any t > 0

{n ∈ N : dL(Fxnyn
,Flm) ≥ t} ⊂ {n ∈ N : xn /∈ Nl(η)} ∪ {n ∈ N : yn /∈ Nm(η)}.

This gives

{n ∈ Ik : dL(Fxnyn
,Flm) ≥ t} ⊂ {n ∈ Ik : xn /∈ Nl(η)} ∪ {n ∈ Ik : yn /∈ Nm(η)}.

Thus,

dλ({n ∈ N : dL(Fxnyn
,Flm) ≥ t})

≤ dλ({n ∈ N : xn /∈ Nl(η)} ∪ {n ∈ N : yn /∈ Nm(η)}).

As xn

stFλ−−→ l and yn

stFλ−−→ m, so right hand side of the above inequality is zero and so

dλ({n ∈ N : dL(Fxnyn
,Flm) ≥ t}) = 0.

Hence stFλ - lim
n→∞

dL(Fxnyn
,Flm) = 0. �

Theorem 3.5. Let (X,F, τ) be a PM space, x = {xk}k∈N be a sequence in X and λ ∈ ∆∞. If the
sequence x = {xk}k∈N is strongly convergent to L ∈ X, then stFλ - lim

k→∞
xk = L.
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Proof. Let the sequence x = {xk}k∈N be strongly convergent to L. So, for t > 0, there is a natural
number N0 such that FxkL(t) > 1 − t for all k ≥ N0. Thus dλ({k ∈ N : FxkL(t) ≤ 1 − t}) = 0 and so
stFλ - lim

k→∞
xk = L. �

Theorem 3.6. Let (X,F, τ) be a PM space, x = {xk}k∈N be a sequence in X and λ ∈ ∆∞. Then
stFλ - lim

k→∞
xk = L if and only if there is a subset G = {q1 < q2 < ...} of N such that dλ(G) = 1 and

F- lim
n→∞

xqn
= L.

Proof. Let us assume that stFλ - lim
k→∞

xk = L. Then for each t ∈ N, let

Et = {q ∈ N : dL(FxqL, ǫ0) ≥
1

t
}

and

Gt = {q ∈ N : dL(FxqL, ǫ0) <
1

t
}.

Then from Remark 3.2, we get dλ(Et) = 0. Also by construction of Gt for each t ∈ N we have
G1 ⊃ G2 ⊃ G3 ⊃ ... ⊃ Gm ⊃ Gm+1 ⊃ ... with dλ(Gt) = 1 for each t ∈ N.

Let u1 ∈ G1. As dλ(G2) = 1, so ∃ u2 ∈ G2 with u2 > u1 such that for each n ≥ u2, |G2(n)|
λn

> 1
2 where

Gt(n) = {k ∈ In : k ∈ Gt} and |Gt(n)| is the number of element in the set Gt(n) for each t ∈ N.

Again, as dλ(G3) = 1, so ∃ u3 ∈ G3 with u3 > u2 such that for each n ≥ u3, |G3(n)|
λn

> 2
3 .

Thus we set a strictly increasing sequence {ut}t∈N of positive integers such that ut ∈ Gt for each t ∈ N

and
|Gt(n)|

λn

>
t − 1

t
for each n ≥ ut, t ∈ N.

We now define the set G as follows

G =

{

k ∈ N : k ∈ [1, u1]

}

⋃

{

⋃

t∈N

{k ∈ N : k ∈ [ut, ut+1] and k ∈ Gt}

}

.

Then, for each n, ut ≤ n < ut+1, we have

|G(n)|

λn

≥
|Gt(n)|

λn

>
t − 1

t
.

Therefore dλ(G) = 1.
Let η > 0. We choose l ∈ N such that 1

l
< η. Let n ≥ ul, n ∈ G. Then ∃ a natural number r ≥ l such

that ur ≤ n < ur+1. Then by the construction of G, n ∈ Gr. So,

dL(FxnL, ǫ0) <
1

r
≤

1

l
< η.

Thus dL(FxnL, ǫ0) < η for each n ∈ G, n ≥ ul. Hence F- lim
k→∞

k∈G

xk = L. Writing G = {q1 < q2 < ...}

we have dλ(G) = 1 and F- lim
n→∞

xqn
= L.

Conversely, let there exists a subset G = {q1 < q2 < ...} of N such that dλ(G) = 1 and F- lim
n→∞

xqn
=

L(∈ X). Then for each t > 0, there is an N0 ∈ N so that

FxqnL(t) > 1 − t, ∀ n ≥ N0,

i.e.,
dL(FxqnL, ǫ0) < t, ∀ n ≥ N0.

Let r > 0 be a real number and Er = {n ∈ N : dL(FxqnL, ǫ0) ≥ r}. Then Er ⊂ N \ {q
N0+1

, q
N0+2

, ...}.

Now dλ(N \ {q
N0+1

, q
N0+2

, ...}) = 0 and so dλ(Er) = 0. Therefore, stFλ - lim
k→∞

xk = L. �
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Theorem 3.7. Let (X,F, τ) be a PM space, x = {xk}k∈N be a sequence in X and λ ∈ ∆∞. Then

xk

stFλ−−→ L if and only if there exists a sequence {gk}k∈N such that xk = gk for λ-a.a.k. and gk
F
−→ L.

Proof. Let xk

stFλ−−→ L. Then we have

stFλ - lim
k→∞

dL(FxkL, ǫ0) = 0.

So by Theorem 3.6, there is a set G = {q1 < q2 < ... < qn < ...} ⊂ N such that dλ(G) = 1 and
F- lim

n→∞
dL(FxqnL, ǫ0) = 0.

We now define a sequence {gk}k∈N as follows:

gk =

{

xk, if k ∈ G
L, if k /∈ G.

Then clearly, gk
F
−→ L and xk = gk for λ-a.a.k.

Conversely, let xk = gk for λ-a.a.k. and gk
F
−→ L. Let t > 0. Then for each n ∈ N, we get

{k ∈ In : xk /∈ NL(t)} ⊂ {k ∈ In : xk 6= gk} ∪ {k ∈ In : gk /∈ NL(t)}.

As {gk}k∈N is strongly convergent to L, so the set {k ∈ N : xk /∈ NL(t)} is finite and so dλ({k ∈ N : gk /∈
NL(t)}) = 0.
Thus,

dλ({k ∈ N : xk /∈ NL(t)})

≤ dλ({k ∈ N : xk 6= gk}) + dλ({k ∈ N : gk /∈ NL(t)}) = 0.

Therefore, dλ({k ∈ N : xk /∈ NL(t)}) = 0 for each t > 0 i.e., the sequence {xk}k∈N is strongly λ-
statistically convergent to L. �

Definition 3.8. Let (X, ρ) be a metric space and x = {xk}k∈N be a sequence in X. Then x is said to be
λ-statistically Cauchy in X if for every η > 0, there exists a natural number N0 such that

dλ({k ∈ N : ρ(xk, xN0
) ≥ η}) = 0.

Now as a consequence of the proposition 4., of [5], we get the following lemma.

Lemma 3.9. Let (X, ρ) be a metric space and x = {xk}k∈N be a sequence in X. Then the following
statements are equivalent:

1. x is a λ-statistically Cauchy sequence.

2. For all η > 0, there is a set G ⊂ N such that dλ(G) = 0 and ρ(xm, xn) < η for all m, n /∈ G.

3. For every η > 0, dλ({j ∈ N : dλ(Dj) 6= 0}) = 0, where Dj(η) = {k ∈ N : ρ(xk, xj) ≥ η}, j ∈ N.

Proof. (1) ⇒ (2): Let (1) hold. Let η > 0. Since x is λ-statistically Cauchy, so there exists j ∈ N

depending on η
2 such that dλ({k ∈ N : ρ(xk, xj) ≥ η

2 }) = 0. Let G = {k ∈ N : ρ(xk, xj) ≥ η
2 }. Then

dλ(G) = 0. Now if p, q /∈ G then ρ(xp, xj) < η
2 and ρ(xq , xj) < η

2 and so ρ(xp, xq) < η.
(2) ⇒ (3):
Let η > 0 and G be chosen according to condition (2). We show that the set {j ∈ N : dλ(Dj(η)) 6=

0} ⊂ G, where Dj(η) = {k ∈ N : ρ(xk, xj) ≥ η}. Let P = {j ∈ N : dλ(Dj(η)) 6= 0}. Let j ∈ P . If
possible, let j /∈ G. Then we can choose q ∈ Dj(η) \ G. Then ρ(xq, xj) ≥ η. But j, q /∈ G implies
ρ(xq , xj) < η (by (2)), which is a contradiction. So {j ∈ N : dλ(Dj(η)) 6= 0} ⊂ G and since dλ(G) = 0,
so dλ({j ∈ N : dλ(Dj(η)) 6= 0}) = 0.

(3) ⇒ (1): Let for every η > 0, dλ({j ∈ N : dλ(Dj(η)) 6= 0}) = 0, where Dj(η) = {k ∈ N : ρ(xk, xj) ≥
η}, j ∈ N. So, there exists j ∈ N such that dλ(Dj(η)) = 0 and so x is λ-statistically Cauchy. �
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Definition 3.10. Let (X,F, τ) be a PM space, x = {xk}k∈N be a sequence in X and λ ∈ ∆∞. Then x
is said to be strong λ-statistically Cauchy sequence if for every t > 0, ∃ a natural number N0 depending
on t such that

dλ({k ∈ N : FxkxN0
(t) ≤ 1 − t}) = 0.

Theorem 3.11. Let (X,F, τ ) be a PM space, x = {xk}k∈N be a sequence in X and λ ∈ ∆∞. If x is
strongly λ-statistically convergent, then x is strong λ-statistically Cauchy.

Proof. Let xk

stFλ−−→ L. Let t > 0 be given. Then ∃ a real number γ = γ(t) > 0 such that dL(Fuv, ǫ0) < γ

and dL(Fvw , ǫ0) < γ implies dL(Fuw, ǫ0) < t. Since xk

stFλ−−→ L, so for the above γ > 0 we get dλ({k ∈
N : xk /∈ NL(γ)}) = 0. Then dλ(A) = 1, where A = {k ∈ N : xk ∈ NL(γ)}. We choose N0 = N0(γ =
γ(t)) = N0(t) such that xN0

∈ NL(γ) i.e., dL(FxN0
L, ǫ0) < γ. Let k ∈ A, then dL(FxkL,ǫ0

) < γ. Now,
dL(FxkL,ǫ0

) < γ and dL(FxN0
L, ǫ0) < γ implies dL(FxkxN0

,ǫ0
) < t.

Therefore,

xk ∈ NxN0
(t)

⇒ k ∈ {j ∈ N : xj ∈ NxN0
(t)}

⇒ k ∈ {j ∈ N : dL(FxjxN0
, ǫ0) < t}

⇒ k ∈ {j ∈ N : FxjxN0
(t) > 1 − t}.

So, we get A ⊂ {j ∈ N : FxjxN0
(t) > 1 − t}.

Hence,

dλ({j ∈ N : FxjxN0
(t) > 1 − t}) = 1

or, dλ({j ∈ N : FxjxN0
(t) ≤ 1 − t}) = 0

So, the given sequence x = {xk}k∈N is strong λ-statistically Cauchy. �

Theorem 3.12. Let (X,F, τ ) be a PM space, x = {xk}k∈N be a sequence in X and λ ∈ ∆∞. If the
sequence x = {xk}k∈N is strong λ-statistically Cauchy, then for each t > 0, there is a set Ht ⊂ N with
dλ(Ht) = 0 such that Fxkxj

(t) > 1 − t for any k, j /∈ Ht.

Proof. Let x = {xk}k∈N be strong λ-statistically Cauchy. Let t > 0. Then by Note 1, there is a
γ = γ(t) > 0 such that,

FLr(t) > 1 − t whenever FLj(γ) > 1 − γ and Fjr(γ) > 1 − γ.

As the sequence x = {xk}k∈N is strong λ-statistically Cauchy, so there is an N0 = N0(γ) ∈ N such
that

dλ({k ∈ N : FxkxN0
(γ) ≤ 1 − γ}) = 0.

Let Ht = {k ∈ N : FxkxN0
(γ) ≤ 1 − γ}. Then dλ(Ht) = 0 and FxkxN0

(γ) > 1 − γ and FxjxN0
(γ) > 1 − γ

for k, j /∈ Ht. Hence for every t > 0, there is a set Ht ⊂ N with dλ(Ht) = 0 such that Fxkxj
(t) > 1 − t for

every k, j /∈ Ht. �

Corollary 3.13. Let (X,F, τ ) be a PM space, x = {xk}k∈N be a sequence in X and λ ∈ ∆∞. If the
sequence x = {xk}k∈N is strong λ-statistically Cauchy, then for each t > 0, there is a set Gt ⊂ N with
dλ(Gt) = 1 such that Fxkxj

(t) > 1 − t for any k, j ∈ Gt.

Theorem 3.14. Let (X,F, τ ) be a PM space, x = {xk}k∈N, g = {gk}k∈N be two strong λ-statistically
Cauchy sequences in X and λ ∈ ∆∞. Then {Fxkgk

}k∈N is a λ-statistically Cauchy sequence in (D+, dL).
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Proof. As x = {xk}k∈N and g = {gk}k∈N are strong λ-statistically Cauchy sequences, so by corollary
3.13, for every γ > 0 there are Uγ , Vγ ⊂ N with dλ(Uγ) = dλ(Vγ) = 1 so that Fxqxj

(γ) > 1 − γ holds for
any q, j ∈ Uγ and Fgsgt

(γ) > 1 − γ holds for any s, t ∈ Vγ . Let Wγ = Uγ ∩ Vγ . Then dλ(Wγ) = 1. So, for
every γ > 0, there is a set Wγ ⊂ N with dλ(Wγ) = 1 so that Fxpxr

(γ) > 1 − γ and Fgpgr
(γ) > 1 − γ for

any p, r ∈ Wγ . Now let t > 0. Then there exists a γ(t) and hence a set Wγ = Wt ⊂ N with dλ(Wt) = 1
so that dL(Fxpgp

,Fxrgr
) < t for any p, r ∈ Wt, as F is uniformly continuous. Then the result follows from

Lemma 3.9. �

4. Strong λ-Statistical Limit Points and Strong λ-Statistical Cluster Points

In this section we introduce the notions of strong λ-statistical limit points and strong λ-statistical
cluster points of a sequence in a PM space and study some of their properties.

Definition 4.1. Let (X,F, τ) be a PM space, x = {xk}k∈N be a sequence in X and λ ∈ ∆∞. If {xqk
}k∈N

is a subsequence of the sequence x and B = {qk : k ∈ N} then we denote {xqk
}k∈N by {x}B. Now if

dλ(B) = 0, then {x}B is called a λ-thin subsequence of x. On the other hand, {x}B is called a λ-nonthin
subsequence of x, if B does not have λ-density zero i.e., if either dλ(B) is a positive number or B fails to
have λ-density.

Definition 4.2. [23] Let (X,F, τ ) be a PM space, x = {xk}k∈N be a sequence in X and λ ∈ ∆∞. An
element l ∈ X is said to be a strong limit point of the sequence x, if there exists a subsequence of x that
strongly converges to l.

To denote the set of all strong limit points of any sequence x in a PM space (X,F, τ ) we use the
notation LF

x .

Definition 4.3. Let (X,F, τ) be a PM space, x = {xk}k∈N be a sequence in X and λ ∈ ∆∞. An element
L ∈ X is said to be a strong λ-statistical limit point of the sequence x = {xk}k∈N, if there exists a
λ-nonthin subsequence of x that strongly converges to L.

To denote the set of all strong λ-statistical limit points of any sequence x in a PM space (X,F, τ ) we
use the notation Λst

x (λ)Fs .

Definition 4.4. Let (X,F, τ) be a PM space, x = {xk}k∈N be a sequence in X and λ ∈ ∆∞. An element
Y ∈ X is said to be a strong λ-statistical cluster point of the sequence x = {xk}k∈N, if for every t > 0,
the set {k ∈ N : FxkY(t) > 1 − t} does not have λ-density zero.

To denote the set of all strong λ-statistical cluster points of any sequence x in a PM space (X,F, τ )
we use the notation Γst

x (λ)Fs .

Note 2. If we choose λn = n for all n ∈ N, then strong λ-statistical limit points and strong λ-statistical
cluster points coincide with strong statistical limit points and strong statistical cluster points of a sequence
respectively in a PM space as introduced in [23].

Theorem 4.5. Let (X,F, τ) be a PM space, x = {xk}k∈N be a sequence in X and λ ∈ ∆∞. Then
Λst

x (λ)Fs ⊂ Γst
x (λ)Fs ⊂ LF

x .

Proof. Let ξ ∈ Λst
x (λ)Fs . Then we get a subsequence {xkn

}n∈N of the sequence x such that F- lim
n→∞

xkn
= ξ

and dλ(M) 6= 0, where M = {kn ∈ N : n ∈ N}. Suppose t > 0 be arbitrary. Since F- lim
n→∞

xkn
= ξ, so

∃ p0 ∈ N such that Fxkn ξ(t) > 1 − t whenever n ≥ p0. Let B = {k1, k2, ..., kp0−1}. Then,

{k ∈ N : Fxkξ(t) > 1 − t} ⊃ {kn ∈ N : n ∈ N}\B

⇒ M = {kn ∈ N : n ∈ N} ⊂ {k : Fxkξ(t) > 1 − t} ∪ B.

Now if dλ({k ∈ N : Fxkn ξ(t) > 1 − t}) = 0, then we get dλ(M) = 0, a contradiction. Hence ξ is a strong

λ-statistical cluster point of x. Since ξ ∈ Λst
x (λ)Fs is arbitrary, so Λst

x (λ)Fs ⊂ Γst
x (λ)Fs .
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Now let α ∈ Γst
x (λ)Fs . Then λ-density of the set

{k ∈ N : Fxkα(t) > 1 − t}

is not zero, for every t > 0. So there exists a subsequence {x}K of x that strongly converges to α. So,
α ∈ LF

x .
Therefore, Γst

x (λ)Fs ⊂ LF
x . �

Theorem 4.6. Let (X,F, τ ) be a PM space, x = {xk}k∈N be a sequence in X and λ ∈ ∆∞. If
stFλ - lim

k→∞
xk = α, then Λst

x (λ)Fs = Γst
x (λ)Fs = {α}.

Proof. Let stFλ - lim
k→∞

xk = α. So for every t > 0, dλ({k ∈ N : Fxkα(t) > 1 − t}) = 1. Therefore,

α ∈ Γst
x (λ)Fs . Now assume that there exists at least one β ∈ Γst

x (λ)Fs such that α 6= β. Then Fαβ 6= ǫ0.
Then there is a t1 > 0 such that dL(Fαβ , ǫ0) = t1. Then there exists t > 0 such that dL(Fuv, ǫ0) < t
and dL(Fvw , ǫ0) < t imply that dL(Fuw, ǫ0) < t1. Now since α, β ∈ Γst

x (λ)Fs , for that t > 0, dλ(G) 6= 0
and dλ(H) 6= 0, where G = {k ∈ N : Fxkα(t) > 1 − t} and H = {k ∈ N : Fxkβ(t) > 1 − t}. As, α 6= β,
so G ∩ H = ∅ and so H ⊂ Gc. Since stFλ - lim

k→∞
xk = α so dλ(Gc) = 0. Then dλ(H) = 0, which is a

contradiction.

Therefore, Γst
x (λ)Fs = {α}.

As stFλ - lim
k→∞

xk = α, so from Theorem 3.7, we have α ∈ Λst
x (λ)Fs . Now by Theorem 4.5, we get

Λst
x (λ)Fs = Γst

x (λ)Fs = {α}. �

Theorem 4.7. Let (X,F, τ ) be a PM space, λ ∈ ∆∞ and x = {xk}k∈N, y = {yk}k∈N be two sequences
in X such that dλ({k ∈ N : xk 6= yk}) = 0. Then Λst

x (λ)Fs = Λst
y (λ)Fs and Γst

x (λ)Fs = Γst
y (λ)Fs .

Proof. Let ξ ∈ Γst
x (λ)Fs and ǫ > 0 be given. Let B = {k ∈ N : xk = yk}. Since dλ(B) = 1, so

dλ({k ∈ N : Fxkξ(t) > 1 − t} ∩ B) is not zero. This gives dλ({k ∈ N : Fykξ(t) > 1 − t}) is not zero and so
ξ ∈ Γst

y (λ)Fs . Since ξ ∈ Γst
x (λ)Fs is arbitrary, so Γst

x (λ)Fs ⊂ Γst
y (λ)Fs . Similarly, we get Γst

x (λ)Fs ⊃ Γst
y (λ)Fs .

Hence Γst
x (λ)Fs = Γst

y (λ)Fs .

Now let η ∈ Λst
y (λ)Fs . Then y has a λ-nonthin subsequence {ykn

}n∈N that strongly converges to η. Let
Z = {kn ∈ N : ykn

= xkn
}. Since dλ({kn ∈ N : ykn

6= xkn
}) = 0 and {ykn

}n∈N is a λ-nonthin subsequence
of y so dλ(Z) 6= 0. Using the set Z we get a λ-nonthin subsequence {x}Z of the sequence x that strongly
converges to η. Thus η ∈ Λst

x (λ)Fs . Since η ∈ Λst
y (λ)Fs is arbitrary, so Λst

y (λ)Fs ⊂ Λst
x (λ)Fs . By similar

argument, we get Λst
x (λ)Fs ⊂ Λst

y (λ)Fs . Hence Λst
x (λ)Fs = Λst

y (λ)Fs . �

Theorem 4.8. Let (X,F, τ ) be a PM space, x = {xk}k∈N
be a sequence in X and λ ∈ ∆∞. Then the

set Γst
x (λ)Fs is a strongly closed set.

Proof. To show that Γst
x (λ)Fs is a strongly closed, let ξ be a strong limit point of the set Γst

x (λ)Fs . Then
for every t > 0 we have Nξ(t)∩ (Γst

x (λ)Fs )\{ξ}) 6= ∅. Let β ∈ Nξ(t)∩ (Γst
x (λ)Fs )\{ξ}). Now we can choose

t1 > 0 such that Nβ(t1) ⊂ Nξ(t). Since β ∈ Γst
x (λ)Fs so

dλ({k ∈ N : Fxkβ(t1) > 1 − t1}) 6= 0

⇒ dλ({k ∈ N : Fxkξ(t) > 1 − t}) 6= 0.

Hence ξ ∈ Γst
x (λ)Fs . �

Theorem 4.9. Let (X,F, τ ) be a PM space, x = {xk}k∈N
be a sequence in X and λ ∈ ∆∞. Let C be a

strongly compact subset of X such that C ∩ Γst
x (λ)Fs = ∅. Then dλ(G) = 0, where G = {k ∈ N : xk ∈ C}.
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Proof. As C ∩ Γst
x (λ)Fs = ∅, so for all β ∈ C, there exists a real number t = t(β) > 0 so that dλ({k ∈

N : Fxkβ(t) > 1 − t}) = 0. Let Bβ(t) = {a ∈ X : Faβ(t) > 1 − t}. Then the family of strongly open sets
Q = {Bβ(t) : β ∈ C} forms a strong open cover of C. As C is a strongly compact set, so there exists

a finite subcover {Bβ1
(t1), Bβ2

(t2), ..., Bβm
(tm)} of the strong open cover Q. Then C ⊂

m
⋃

j=1

Bβj
(tj) and

also for each j = 1, 2, ..., m we have dλ({k ∈ N : Fxkβj
(tj) > 1 − tj}) = 0. So,

|{k ∈ N : xk ∈ C} | ≤
m

∑

j=1

∣

∣

∣
{k ∈ N : Fxkβj

(tj) > 1 − tj}
∣

∣

∣
.

Then,

lim
n→∞

1

λn

|{k ∈ In : xk ∈ C}| ≤ lim
n→∞

1

λn

m
∑

j=1

∣

∣

∣
{k ∈ In : Fxkβj

(tj) > 1 − tj}
∣

∣

∣
= 0.

This gives dλ(G) = 0, where G = {k ∈ N : xk ∈ C}. �

Theorem 4.10. Let (X,F, τ) be a PM space and x = {xk}k∈N
be a sequence in X. If x has a strongly

bounded λ-nonthin subsequence, then the set Γst
x (λ)Fs is nonempty and strongly closed.

Proof. Let {x}B be a strongly bounded λ-nonthin subsequence of x. So dλ(B) 6= 0 and there exists a
strongly compact subset C of X such that xk ∈ C for all k ∈ B. If Γst

x (λ)Fs = ∅ then C ∩ Γst
x (λ)Fs = ∅

and then by Theorem 4.9, we get dλ(G) = 0, where G = {k ∈ N : xk ∈ C}. But |{k ∈ In : k ∈ B}| ≤
|{k ∈ In : xk ∈ C}|, which gives dλ(B) = 0, which contradicts our assumption. Hence Γst

x (λ)Fs is nonempty
and also by Theorem 4.8, Γst

x (λ)Fs is strongly closed. �

Definition 4.11. Let (X,F, τ) be a PM space and x = {xk}k∈N
be a sequence in X. Then x is said to

be strongly λ-statistically bounded if there exists a strongly compact subset C of X such that dλ({k ∈ N :
xk /∈ C}) = 0.

Theorem 4.12. Let (X,F, τ ) be a PM space and x = {xk}k∈N
be a sequence in X. If x is strongly

λ-statistically bounded then the set Γst
x (λ)Fs is nonempty and strongly compact.

Proof. Let x be strongly λ-statistically bounded. Let C be a strongly compact set with dλ(E) = 0, where
E = {k ∈ N : xk /∈ C}. Then dλ(Ec) = 1 6= 0 and so C contains a λ- nonthin subsequence of x. So, by
Theorem 4.10, Γst

x (λ)Fs is nonempty and strongly closed. We now prove that Γst
x (λ)Fs is strongly compact.

For this we only show that Γst
x (λ)Fs ⊂ C. If possible, let η ∈ Γst

x (λ)Fs \ C. As C is strongly compact so
there is a q > 0 such that Nη(q) ∩ C = ∅. So we get {k ∈ N : Fxkη(q) > 1 − q} ⊂ {k ∈ N : xk /∈ C} which
implies that dλ({k ∈ N : Fxkη(q) > 1 − q}) = 0, which contradicts that η ∈ Γst

x (λ)Fs . So, Γst
x (λ)Fs ⊂ C. �
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