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Consistency of an Infinite System of Third Order Three-Point Boundary Value Problem
in the bv0 Space by the Theory of Measure of Noncompactness

Niraj Sapkota, Rituparna Das∗ and Santonu Savapondit

abstract: Several authors have examined the solvability conditions for an infinite system of differential
equations in different Banach spaces using the concept of measure of noncompactness. In all these studies,
they have considered differential equations where the boundary conditions are defined on two points. In this
paper, we have studied the solvability conditions for an infinite system of third-order three point boundary
value problem in the sequence space of bounded variation bv0 with the help of the theory of measure of
noncompactness and have given a suitable example to illustrate the result.
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1. Introduction

Infinite system of differential equations for it’s solvability and existence of solutions has been studied
by several authors over the years. The following system of second order infinite system of differential
equations is one such example studied by Mursaleen and Rizvi [14],

x
′′

i (η) = −hi(η, x1, x2, x3, · · · ); xi(0) = xi(U) = 0, η ∈ [0, U ].

These kinds of equations occurs in various topics of non-linear analysis. Several works can be found in
the literature for solvability and existence conditions of various kinds of first and second order infinite
systems of differential equations in various sequence spaces (cf. [2], [15], [4], [13], [21], [19], [22], [23], [24]).
These works originate with the introduction of infinite system of differential equations by Persidskii in
1959 [16] under the name “Countable Systems of differential equations” and later in 1961 [17] and 1976
[18]. The theory of measure of noncompactness (MNC) which was introduced in 1930 by Kuratowski
[11] and later by Darbo [7], Goldens̆tein and Markus [8] and Istrăţescu [9] and the axiomatic definition
by Banaś and Goebel [5] helped in working for the solvability conditions of infinite system of differential
equations.

In this paper, we address the solvability of infinite system of third-order differential equations of the
type

d3

dξ3 ui(θ) + fi(θ, u1, u2, · · · ) = 0, i ∈ N, θ ∈ [a, b]
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with three-point boundary value

ui(a) = 0 = u
′

i(a), ui(b) = kui(η), ∀i ∈ N, η ∈ (a, b)

in the sequence space of bounded variation bv0. Further, we claim that no work has been done by any
author in three-point boundary value problem in this sequence space. For detailed discussion of the
system see section 4.

2. Preliminaries and Background

Let (X, ||.||) be a Banach space over R. Also, let MX be the sub-collection of all non-empty and
bounded subsets of X and M

C
X ⊆ MX be the collection of all closed sets. Further, let NX be the

collection of all non-empty and relatively compact subsets of X . If E ⊆ X , then Ē and Conv(E), be the
closure and convex closure E respectively.

The following definition of measure of noncompactness is given by Banaś and Goebel [5]:

Definition 2.1. For a Banach space X, a function ϕ : MX → R is called a measure of noncompactness
in X if it satisfies the following axioms:

i) The family ker ϕ = {A ∈ MX : ϕ(A) = 0} is non-empty and ker ϕ ⊂ NX .

ii) A1 ⊂ A2 ⇒ ϕ(A1) ≤ ϕ(A2).

iii) ϕ(A) = ϕ(A).

iv) ϕ(Conv(A)) = ϕ(A).

v) ϕ (θA + (1 − θ)B) ≤ θϕ(A) + (1 − θ)ϕ(B) for all θ ∈ (0, 1) .

vi) If (Fn) is a decreasing sequence in M
C
X and lim

n→∞
ϕ(Fn) = 0, then

∞
⋂

n=1
Fn 6= ∅.

The following definitions and results are used to establish the main results of this paper.

Definition 2.2. (Akhmerov et. al. [3]) For two arbitrary measures of noncompactness ϕ1 and ϕ2

on the Banach spaces E1 and E2 respectively. A (ϕ1, ϕ2)-condensing operator is defined as an operator
F : E1 → E2 such that

i) F is continuous,

ii) for each set A in E1 which is bounded as well as non-compact, we have ϕ2(F (A)) < ϕ1(A).

It is to be noted that a (ϕ1, ϕ2)-condensing operator is said to be a ϕ-condensing operator if ϕ1 = ϕ2 = ϕ
and is defined on the same Banach space.

Theorem 2.3. (Darbo [7]) For a Banach space E with an arbitrary measure of noncompactness and
A ∈ M

C
E , a continuous mapping F : A 7→ A contains a fixed point in A if

i) A is convex,

ii) ϕ(F (A)) ≤ kϕ(A) for some k ∈ [0, 1).

Definition 2.4. (Meir and Keeler [12]) For a metric space (E, d) a Meir-Keeler contraction on E is
defined as a mapping F on E such that for any ǫ > 0, there exists δ > 0 with d(Fu, Fv) < ǫ whenever
ǫ ≤ d(u, v) < ǫ + δ for all u, v ∈ E.

Theorem 2.5. (Meir and Keeler [12]) A Meir-Keeler contraction mapping F on a metric space (E, d)
has an unique fixed point if E is complete.

Definition 2.6. (Aghajani et. al. [1]) For an arbitrary measure of noncompactness ϕ on a Banach
space E, and C a non-empty subset of E. A Meir-Keeler condensing operator acting upon C is defined
as an operator F : C 7→ C such that for any ǫ > 0, there exists δ > 0 with ϕ(F (B)) < ǫ whenever
ǫ ≤ ϕ(B) < ǫ + δ for every bounded subset B of C.
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Theorem 2.7. (Aghajani et. al. [1]) Let E be a Banach space and A ∈ M
C
E with ϕ an arbitrary

measure of noncompactness on E. A continuous mapping F : A 7→ A contains at least one fixed point
and also the set of all fixed points of F in A is compact if

i) A is convex,

ii) F is a Meir-Keeler condensing operator.

3. Hausdorff Measure of Noncompactness(MNC) on Banach Spaces

There are various measure of noncompactness developed over the years. Among such measures is
χ-measure defined by

χ(E) = inf{ǫ > 0 : X contains finite ǫ-net of E}

which is also called Hausdorff MNC. Here finite ǫ-net represents
n∈N
⋃

i=1

B(xi, ri), where each B(xi, ri) being

the open ball of radius ri < ǫ, xi ∈ X that covers E ⊂ X . To calculate the Hausdorff measure following
result will help.

Theorem 3.1. (Banaś and Mursaleen [6]) Let X be a Banach sequence space with continuous
coordinates such that:

i) X satisfies AK,

ii) X has a monotone norm ||.||,

iii) E ∈ MX , and Pn be the projection mapping defined by

Pn(y1, y2, · · · ) = y[n] = (y1, y2, · · · , yn, 0, 0, · · · )

mapped from X into itself for all (y1, y2, · · · ) ∈ X,

then
χ(E) = lim

n→∞

(

sup
y∈E

||(I − Pn)y||
)

.

4. Infinite System of Third-order Differential Equations

In this study, we consider the following infinite system of differential equations

d3

dξ3 ui(θ) + fi(θ, u1, u2, · · · ) = 0, i ∈ N, θ ∈ [a, b] (4.1)

ui(a) = 0 = u
′

i(a), ui(b) = kui(η), ∀i ∈ N, η ∈ (a, b) (4.2)

where, k ∈ R such that k(a − η)2 6= (a − b)2 and fi ∈ C([a, b] × R,R) with fi(θ, u1, u2, · · · ) 6= 0.
For the infinite system of differential equations (4.1) and the boundary conditions (4.2) the Green’s
function is given by,

G(θ, τ ) =

{

(a−θ)2(τ−b)2

2(a−b)2 − (τ−θ)2

2 + k(a−θ)2

(a−b)2−k(a−η)2 R(η, τ), a ≤ τ ≤ θ ≤ b,
(a−θ)2(τ−b)2

2(a−b)2 + k(a−θ)2

(a−b)2−k(a−η)2 R(η, τ), a ≤ θ ≤ τ ≤ b.
(4.3)

where, R(θ, τ ) is Green’s function associated with the differential equation

u
′′′

(θ) + f(θ) = 0; θ ∈ [a, b]

u(a) = 0 = u
′

(a); u(b) = 0,

given by

R(θ, τ) =

{

(a−θ)2(τ−b)2

2(a−b)2 − (τ−θ)2

2 , a ≤ τ ≤ θ ≤ b,
(a−θ)2(τ−b)2

2(a−b)2 a ≤ θ ≤ τ ≤ b.
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For the detailed formulation of above Green’s function, one can refer to [20]. The following bound for
G(θ, τ ) shall serve later for achieving the results.

∫ b

a

|G(θ, τ )|dτ ≤ (b − a)3

3
+

|k|
3

(b − a)5

|(b − a)2 − k(η − a)2| (4.4)

5. Sequence Space of bounded variation bv and it’s subspace bv0

The sequence space of bounded variation

bv :=

{

x = (xn) :

∞
∑

n=1

|xn − xn+1| < ∞
}

forms a BK-Space with the norm ||x||bv = |x0| +
∑∞

k=1 |xk − xk−1|. And the space bv0 denotes bv ∩ c0.
This will also further mean that bv = bv0 + {e}, where e denotes the sequence (1, 1, 1, · · · ) and bv0 ⊂ bv
(details in [10]). Hence,

bv0 :=

{

x = (xn) :

∞
∑

n=1

|xn − xn+1| < ∞ and lim
n→∞

xn

}

Also bv0 forms a BK-Space with AK under the norm ||x||bv0 =
∑∞

n=1 |∆xn|. This norm can easily be
verified to be monotonic as for each x, y ∈ bv0 with |xk| ≤ |yk| for all k, then ||x|| ≤ ||y||. Hence with the
use of Theorem 3.1, we can formulate the Hausdorff measure of noncompactness for bv0 as follows:

χ(B) = lim
n→∞

{

sup
u∈B

[

∞
∑

k=n

|uk − uk+1|
]}

. (5.1)

For the rest of the paper we shall discuss the solvability of infinite system of differential equations (4.1)
along with the three-point boundary conditions (4.2).

6. Solvability in bv0

For the solvability in the sequence space of bounded variation bv0, we take the following assumptions;

(H1) Collection ((fu)(θ))θ∈I at each u ∈ bv0 holds equicontinuity. Where, f is the operator defined on
the space [a, b] × bv0 by

(θ, u) ֌ (fu)(θ) = (f1(θ, u), f2(θ, u), f3(θ, u)...);

fi(θ, u1, u2, u3, ...) ∈ ([a, b] × R
∞,R)

(H2) pi(θ) and qi(θ) are continuous functions defined on interval [a, b] such that following inequality
holds:

|fn(θ, u) − fn+1(θ, u)| ≤ {|un(θ) − un+1(θ)|}qn(θ) + pn(θ).
∑

k≥n pk(θ) shows uniform convergence on [a, b] and the collection (qn(θ)) is equibounded on interval
[a, b].

Now, we introduce the following notations:

• p(θ) =
∑

k≥n pk(θ), ∀θ ∈ [a, b].

• P = sup{p(θ) : θ ∈ [a, b]}.

• Q = sup{qn(θ) : θ ∈ [a, b], n ∈ R}.
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Theorem 6.1. Under the hypotheses (H1)-(H2), infinite system of differential equations (4.1) along with
the boundary conditions (4.2) has at least one solution u(θ) = ui(θ) whenever

Q

(

(b − a)3

3
+

|k|
3

(b − a)5

|(b − a)2 − k(η − a)2|

)

< 1

such that u(θ) ∈ bv0, for all θ ∈ [a, b].

Proof. Using the Green’s function (4.3) along with the hypothesis (H1), we get

||u(θ)||bv0 =
∞
∑

i=1

∣

∣

∣

∫ b

a

G(τ , θ)(fi(τ , u(τ)) − fi+1(τ , u(τ)))dτ
∣

∣

∣

≤
∞
∑

i=1

∫ b

a

|G(θ, τ )||fi(τ , u(τ )) − fi+1(τ , u(τ ))|dτ

≤
∞
∑

i=1

∫ b

a

|G(θ, τ )|(|ui(τ) − ui+1(τ )|qi(τ) + pi(τ ))dτ

=

∞
∑

i=1

∫ b

a

|G(θ, τ )||ui − ui+1|qi(τ )dτ +

∞
∑

i=1

∫ b

a

|G(θ, τ )|pi(τ )dτ

≤
(

(b − a)3

3
+

|k|
3

(b − a)5

|(b − a)2 − k(η − a)2|

)

(Q||u||bv0 + P ).

Hence, we get

||u||bv0 <
(|(b − a)2 − k(η − a)2|(b − a)3 + |k|(b − a)5)P

|(b − a)2 − k(η − a)2|(3 − (b − a)3Q) + |k|(b − a)5Q
= r. (6.1)

Let a non-empty ball B = B(u0, r1) with centre u0(θ) = (u0
i (θ)) and radius r1 ≤ r, where u0

i (θ) = 0, is
such that B remains bounded and is convex in bv0. Then we consider u(θ) = (ui(θ)) ∈ B and an operator
F = (Fi) defined on C([a, b], B) given by

(Fu)(θ) = {(Fiu)(θ)} =

{

∫ b

a

G(θ, τ)fi(τ , u(τ))dτ

}

; θ ∈ [a, b], ui(θ) ∈ C([a, b],R). (6.2)

With the use of the fact that (fi(θ, u(θ))) ∈ bv0, we have for ∀ θ ∈ [a, b],

∞
∑

k=1

|(Fku)(θ) − (Fk+1u)(θ)| =

∞
∑

k=1

|
∫ b

a

G(θ, τ)fk(τ , u(τ ))dτ

−
∫ b

a

G(θ, τ )fk+1(τ , u(τ ))dτ |

=
∞
∑

k=1

|
∫ b

a

G(θ, τ)(fk(τ , u(τ ) − fk+1(τ , u(τ )))dτ |

≤
∞
∑

k=1

∫ b

a

|G(θ, τ )||fk(τ , u(τ ) − fk+1(τ , u(τ ))|dτ

≤
∞
∑

k=1

∫ b

a

|G(θ, τ )|(|uk(τ ) − uk+1(τ )|qk(τ ) + pk(τ ))dτ

≤
(

(b − a)3

3
+

|k|
3

(b − a)5

|(b − a)2 − k(η − a)2|

)

(Q||u||bv0 + P )

< ∞
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Thus, we find that for all θ ∈ [a, b], (Fu)(θ) = {(Fiu)(θ)} ∈ bv0.
Now,

G(θ, τ ) =
(a − a)2(τ − b)2

2(a − b)2
+

k(a − a)2

(a − b)2 − k(a − η)2
R(η, τ) = 0.

Therefore,

(Fi)(a) =

∫ b

a

G(a, τ)fi(τ , u(τ))dτ

=

∫ b

a

0.fi(τ , u(τ ))dτ

= 0.

Also, (F
′

i)(θ) at θ = a denoted by

(F
′

i)(θ)

∣

∣

∣

∣

∣

θ=a

=

∫ b

a

{

−2(a − θ)(τ − b)2

2(a − b)2
− −2k(a − θ)

(a − b)2 − k(a − η)
R(η, τ)

}∣

∣

∣

∣

∣

θ=a

fi(τ , u(τ)) dτ

and so,

(F)
′

i(a) =

∫ b

a

0.fi(τ , u(τ))dτ

= 0.

Also,

(Fi)(b)

=

∫ b

a

{

(a − b)2(τ − b)2

2(a − b)2
− (τ − b)2

2
+

k(a − b)2

(a − b)2 − k(a − η)2
R(η, τ)

}

fi(τ , u(τ)) dτ

=

∫ b

a

k(a − b)2

(a − b)2 − k(a − η)2
R(η, τ)fi(τ , u(τ)) dτ .

But,

(Fi)(η) =

∫ b

a

G(η, s).fi(τ , u(τ )) dτ

=

∫ b

a

{

R(η, τ) +
k(a − η)2

(a − b)2 − k(a − η)2
R(η, τ)

}

fi(τ , u(τ)) dτ

=

∫ b

a

(a − b)2 − k(a − η)2 + k(a − η)2

(a − b)2 − k(a − η)2
R(η, τ) dτ

=

∫ b

a

(a − b)2

(a − b)2 − k(a − η)2
R(η, τ).fi(τ , u(τ)) dτ .

Hence,

(Fi)(b) = k

∫ b

a

(a − b)2

(a − b2) − k(a − η)2
R(η, τ).fi(τ , u(τ)) dτ

= k(Fi(η)).
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Therefore, each (Fiu)(θ) satisfies boundary condition given in (4.2).
Since, ||(Fu)(θ) − u0(θ)||bv0 = ||(Fu)(θ)||bv0 ≤ r, thus F on the closed ball B self-maps. Now, we will find
δǫ > 0 for every ǫ > 0 such that χ(B) ∈ [ǫ, ǫ + δ) implies χ(F(B)) < ǫ. Using (5.1), we proceed as follows

χ(FB) = lim
n→∞

( sup
u(θ)∈B

[

∞
∑

k=1

|
∫ b

a

G(θ, τ)(fk − fk+1)dτ |])

≤ lim
n→∞

( sup
u(θ)∈B

[
∑

k≥n

∫ b

a

|G(θ, τ)||fk(τ , u(τ )) − fk+1(τ , u(τ ))|dτ ])

= lim
n→∞

( sup
u(θ)∈B

∑

k≥n

∫ b

a

|G(θ, τ )|(pk(τ ) + qk(τ )|uk(τ ) − uk+1(τ )|dτ ))

= lim
n→∞

( sup
u(θ)∈B

∑

k≥n

∫ b

a

|G(θ, τ )|pk(τ )dτ )

+ lim
n→∞

( sup
u(θ)∈B

∑

k≥n

∫ b

a

|G(θ, τ)|qk(τ )|uk(τ ) − uk+1(τ )|dτ )

≤ Q

(

(b − a)3

3
+

|k|
3

(b − a)5

|(b − a)2 − k(η − a)2|

)

χ(B) < ǫ,

which implies

χ(B) ≤ ǫ

Q

(

1
(b−a)3

3 + |k|
3

(b−a)5

|(b−a)2−k(η−a)2|

)

=
ǫ

Q

(

3|(b − a)2 − k(η − a)2|
|(b − a)2 − k(η − a)2|(b − a)3 + |k|(b − a)5

)

.

Let us suppose

δ =

[

1

Q

(

3|(b − a)2 − k(η − a)2|
|(b − a)2 − k(η − a)2|(b − a)3 + |k|(b − a)5

)

− 1

]

ǫ. (6.3)

Using equation (6.3), we found that χ(B) ∈ [ǫ, ǫ + δ). Assumption (H1) ensures the continuity of F

in C([a, b], B). Combining all the results achieved above for the operator F, one can establish F as a
Meir-Keeler condensing operator acting on subset B ⊂ bv0. Further, we also observe that F also satisfies
the conditions given in Theorem(2.7). Therefore, B contains a fixed point of B, which acts as a solution
for the system (4.1) along with the three-point boundary conditions (4.2). �

Note 1. The fixed point u(θ) is such that (ui(θ)) ∈ ker χ, ∀θ ∈ [a, b].

Example 6.2. As an example we consider an infinite system of third-order differential equations

u
′′′

n (θ) +
(−1)n

√
θ

2nn3
+

∞
∑

m=n

θ sin(θ)

π32exp(−θ)

(um(θ) − um+1(θ))

(m + 1)2
= 0, θ ∈

[

1

2
,

3

2

]

, n ∈ N (6.4)

along with the boundary conditions

un

(

1

2

)

= 0 = u
′

n

(

1

2

)

, un

(

3

2

)

= πun(1). (6.5)

Clearly, (−1)n
√

θ

2nn3 and
∑∞

m=n
θ sin(θ)

π32exp(−θ)

(um(θ)−um+1(θ))
(m+1)2 are continuous on the interval [1

2 , 3
2 ], for each

n ∈ N.
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Notice that for any θ ∈ [ 1
2 , 3

2 ], (fn(θ, u(θ))) ∈ bv0 if (un(θ)) ∈ bv0. Also,

∞
∑

k=1

|fk(θ, u(θ)) − fk+1(θ, u(θ))|

=

∞
∑

k=1

∣

∣

∣

∣

∣

(−1)k
√

θ

2kk3
+

∞
∑

m=k

θ sin(θ)

π32exp(−θ)

(um(θ) − um+1(θ))

(m + 1)2

− (−1)k+1
√

θ

2k+1(k + 1)3
−

∞
∑

m=k+1

θ sin(θ)

π32exp(−θ)

(um(θ) − um+1(θ))

(m + 1)2

∣

∣

∣

∣

∣

≤
∞
∑

k=1

∣

∣

∣

∣

∣

(−1)k
√

θ

2kk3
− (−1)k+1

√
θ

2k+1(k + 1)3

∣

∣

∣

∣

∣

+

∞
∑

k=1

∣

∣

∣

∣

∣

∞
∑

m=k

θ sin(θ)

π32exp(−θ)

[

(um(θ) − um+1(θ))

(m + 1)2
− (um+1(θ) − um+2(θ))

(m + 2)2

]
∣

∣

∣

∣

∣

≤
∞
∑

k=1

∣

∣

∣

∣

∣

(−1)k2(k + 1)3
√

θ − (−1)k+1k3
√

θ

2k+1(k + 1)3k3

∣

∣

∣

∣

∣

+

∞
∑

k=1

θ

π3
|uk(θ) − uk+1(θ)|

≤
∞
∑

k=1

∣

∣

∣

∣

∣

(−1)k2(k + 1)3
√

θ + (−1)kk3
√

θ

2k+1(k + 1)3k3

∣

∣

∣

∣

∣

+
3/2

π3
||u(θ)||bv0

≤
∞
∑

k=1

2(k + 1)3 + k3

2k−1(k + 1)3k3
|(−1)k||

√
θ| +

3

2π3
||u(θ)||bv0

≤
√

3√
2

(

−1

2
+ 2 Li3

(

1

2

))

+
3

2π3
||u(θ)||bv0 < ∞.

We now show that (H1) is satisfied for which we consider v(θ) = (vn(θ)) ∈ bv0 and fix u(θ) = (un(θ)) ∈
bv0, ǫ > 0 arbitrarily. Then the relation

||u(θ) − v(θ)|| ≤ δ(ǫ) :=
2π3

3
ǫ,

yields

|fn(θ, u(θ)) − fn(θ, v(θ))| =

∣

∣

∣

∣

∣

∞
∑

m=n

θ sin(θ)

π32exp(−θ)

(um(θ) − um+1(θ)) − (vm(θ) − vm+1(θ))

(m + 1)2

∣

∣

∣

∣

∣

≤
∞
∑

m=n

∣

∣

∣

∣

∣

θ sin(θ)

π32exp(−θ)

∣

∣

∣

∣

∣

|(um(θ) − um+1(θ)) − (vm(θ) − vm+1(θ))|
(m + 1)2

≤ 3

2π3

∞
∑

k=1

|(uk(θ) − vk(θ)) − (uk+1(θ) − vk+1(θ))|
(k + 1)2

≤ 3

2π3
||(u(θ) − v(θ)||bv0 < ǫ

This is the continuity as in (H1).
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Now, for (H2)

|fk(θ, u) − fk+1(θ, u)| =

∣

∣

∣

∣

∣

(−1)k
√

θ

2kk3
− (−1)k+1

√
θ

2k+1(k + 1)3

+

∞
∑

m=n

θ sin(θ)

π32exp(−θ)

(um(θ) − um+1(θ))

(m + 1)2

−
∞
∑

m=n+1

θ sin(θ)

π32exp(−θ)

(um(θ) − um+1(θ))

(m + 1)2

∣

∣

∣

∣

∣

≤ 2(k + 1)3 + k3

2k+1k3(k + 1)3
|(−1)k||

√
θ| + 2

∞
∑

n=1

∣

∣

∣

∣

∣

θ sin(θ)

π32exp(−θ)

∣

∣

∣

∣

∣

|(un(θ) − un+1(θ))|
(n + 1)2

≤ 2(k + 1)3 + k3

2k+1k3(k + 1)3
|
√

θ| +
2

π3

∞
∑

n=1

|θ||(un(θ) − un+1(θ))|
(n + 1)2

= pk(θ) + qk(θ)|uk(θ) − uk+1(θ)|.

The functions pk(θ) = 2(k+1)3+k3

2k+1k3(k+1)3 |
√

θ| and qk(θ) = θ
3π

are continuous. Also the series
∑

n≥1 pn(θ)

uniformly converges to
√

3√
2

(

− 1
2 + 2 Li3

(

1
2

))

and the sequence (qn(θ)) is equibounded on [1
2 , 3

2 ] by Q = 1
2π

.

Further, for interval [a, b]; a = 1
2 , b = 3

2 and k = π, η = 1

Q

(

(b − a)3

3
+

|k|
3

(b − a)5

|(b − a)2 − k(η − a)2|

)

< 1

is satisfied. This gives Q ≅ 1.591549 and P ≅ 0.703525.
Thus, by taking a suitable value of r1 as in Theorem (6.1) operator F has a fixed point u(θ) = (ui(θ)) ∈ bv0

which acts as a solution for the system (6.4)-(6.5).

7. Conclusion

In our present work, we have provided the solvability conditions for an infinite system of third-order
three point boundary value problem in the sequence space of bounded variation bv0. We have also
provided an example to further illustrate the result. The concept of measure of noncompactness along
with the Meir-Keeler condensing operator served as tools for proving our result. Solvability conditions
for similar type of infinite system in various other Banach spaces still remains open for further research.
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