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The Existence of Renormalized Solution for Quasilinear Parabolic Problem with Variable

Exponents and Measure Data

Fairouz Souilah, Messaoud Maouni, Kamel Slimani

abstract: In this paper, the study of the existence of a renormalized solution for quasilinear parabolic
problem with variable exponents and measure data. The model is:





ut − div(|∇u|p(x)−2 ∇u) + λ |u|p(x)−2 u = µ in Q = Ω×]0, T [,
u = 0 on Σ = ∂Ω×]0, T [,
u(., 0) = u0(.) in Ω,

where λ > 0 and T is any positive constant, u0 ∈ L1 and for any measure with bounded total variation over
Q that do not charge the sets of zero p(.)-capacity.
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1. Introduction

Variable-exponent Lebesgue and Sobolev spaces are the natural extensions of the classical constant
exponent Lp-spaces. This kind of theory finds many applications, for example in nonlinear elastic me-
chanics, electrorheological fluids dynamics, and image restoration etc. We refer the readers to [10].
In the classical case (p(.) = 2 or p(.) = p (a constant)), we recall that the notion of renormalized solutions
was introduced by Di Perna and Lions [11] in their study of the Boltzmann equation. It has been studied
by many authors under various conditions on the data the existence and uniqueness of the renormalized
solution for parabolic equations with measure data in the classical Sobolev spaces (see [5], [7], [17] and
[20]). In Sobolev space with variable exponents, the authors in [9] have proved the existence of entropy
and renormalized solutions for strongly nonlinear elliptic equations in the framework of Sobolev spaces
with variable exponents and in 2014, Chao zhang [22] provides the existence and uniqueness of entrpy
solution for p(x)-Laplace equations with a Radon measure which is absolutely continuous with respect
to the relative p(x)-capacity. The corresponding parabolic case equations in [12] have proved the exis-
tence of renormalized solutions for a class of nonlinear parabolic systems with variable exponents and,
for the corresponding parabolic equations with L1 data, the authors in [8] have proved the existence
and uniqueness of renormalized solution to nonlinear parabolic equations with variable exponents and
L1 data. Chao Zhang and Shulin Zhou in [23] proved the existence and uniqueness results renormalized
solutions and entropy solutions for nonlinear parabolic equations with variable exponents and L1 data.
The purpose of this article is to study the existence of renormalized solutions u to the quasilinear parabolic
problem involving the p(x)-Laplacian type operator
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ut − divA(x, t,∇u) + B(u) = µ in Q = Ω×]0, T [,
u = 0 on Σ = ∂Ω×]0, T [,
u(., 0) = u0(.) in Ω,

(1.1)

where Ω be a bounded-connected domain of RN , (N ≥ 2) with lipshitz boundary ∂Ω and Q = Ω × ]0, T [
for any fixed T > 0. Let p : Ω −→ [1,+∞) be a continuous real-valued function, let p− = min

x∈Ω p(x)

and p+ = max
x∈Ω p(x) with 1 < p− ≤ p+ < N. The operator −divA(x, t,∇u) = −div(|∇u|p(x)−2 ∇u)

is a Leary lions operator (see assumption (4.1)-(4.3)), and B : R → R with B(u) = λ |u|p(x)−2
u is as

continuous increasing function for λ > 0 and B(0) = 0.
The existence of renormalized solution for quasilinear parabolic problem with variable exponents and
measure data of (1.1), prove in clasical Sobolev space [20] in case where u = b(u), b(u0) ∈ L1(Ω) with
b : R → R is a increasing C1-function and b(0) = 0, for every µ is diffuse measure and also the purpose
of this paper is to extend the results in [1] to the case of parabolic equations.
In the following section 2 is to recall some basic notations and properties of variable exponent Lebesgue-
Sobolev space. Section 3 is to introduce some basic knowledge on p(.)-parabolic capacity and properties
of measures. Section 4, is devoted to set the main assumption, to the definition of renormalized solu-
tions of (1.1). Section 5 is prove that the formulation of renormalized solution does not depend on the
decomposition of µ. Finally, to prove the main result of this paper (Theorem (5.1) ), on the existence of
a renormalized solution.

2. The Functional Spaces

We recall some defnitions and basic properties of the generalized Lebesgue-Sobolev spaces Lp(.)(Ω),

W 1,p(.)(Ω) and W
1,p(.)
0 (Ω), where Ω is an open set of R

N . To refer to Fan and Zhao [13] for further
properties of Lebesgue-Sobolev spaces with variable exponents. Let p : Ω −→ [1,+∞) be a continuous
real-valued function, let p− = min

x∈Ω p(x) and p+ = max
x∈Ω p(x) with 1 < p(.) < N . To denote the

Lebesgue space with variable exponent Lp(.)(Ω) as the set of all measurable function u : Ω −→ R for
which the convex modular

ρp(.)(u) =

∫

Ω

|u|
p(x)

dx, (2.1)

is finite. If the exponent is bounded, i.e, if p+ < +∞, then the expression

‖u‖Lp(.)(Ω) = inf



µ > 0;

∫

Ω

∣∣∣∣
u(x)

µ

∣∣∣∣
p(x)

dx ≤ 1



 , (2.2)

defines a norm in Lp(.) (Ω) called the Luxemburg norm. The space (Lp(.)(Ω); ‖.‖p(.)) is a separable Banach

space. Moreover, if 1 < p− ≤ p+ < +∞, then Lp(.)(Ω) is uniformly convex, hence reflexive and its dual
space is isomorphic to Lp′(.)(Ω), where 1

p(x)+ 1
p′(x) = 1, for x ∈ Ω. The following inequality will be used

later:

min
{

‖u‖p−

Lp(.)(Ω)
, ‖u‖p+

Lp(.)(Ω)

}
(2.3)

≤

∫

Ω

|u(x)|p(x)
dx ≤ max

{
‖u‖p−

Lp(.)(Ω)
, ‖u‖p+

Lp(.)(Ω)

}
.

Finally, the Hölder type inequality

∣∣∣∣∣∣

∫

Ω

uvdx

∣∣∣∣∣∣
≤

(
1

p−
+

1

p+

)
‖u‖

p(.)
‖v‖

p′(.)
, (2.4)
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for all u∈ Lp(.)(Ω) and v ∈ Lp′(.)(Ω). Let

W 1,p(.)(Ω) =
{
u ∈ Lp(.)(Ω); |∇u| ∈ Lp(.)(Ω)

}
, (2.5)

which is Banach space equipped with the following norm

‖u‖
1,p(.)

= ‖u‖
p(.)

+ ‖∇u‖
p(.)

. (2.6)

The space (W 1,p(.)(Ω); ‖.‖1,p(.)) is a separable and reflexive Banach space. The manipulation of the
generalized Lebesgue and Sobolev spaces is plays and important role using the modular ρp(.) of the space

Lp(.)(Ω). The results as follows:

Proposition 2.1. If un, u ∈ Lp(.)(Ω) and p+ < +∞, the following properties hold true.

(i) ‖u‖
p(.)

> 1 =⇒ ‖u‖
p+

p(.)
< ρp(.)(u) < ‖u‖

p−

p(.)
,

(ii) ‖u‖
p(.)

< 1 =⇒ ‖u‖
p−

p(.)
< ρp(.)(u) < ‖u‖

p+

p(.)
,

(iii) ‖u‖
p(.)

< 1 (respectively = 1;> 1)⇐⇒ ρp(.)(u) < 1 (respectively = 1;> 1),

(iv) ‖un‖
p(.)

−→ 0 (respectively −→ +∞)⇐⇒ ρp(.)(un) < 1(respectively −→ +∞),

(v) ρp(.)

(
u

‖u‖
p(.)

)
= 1.

For a measurable function u : Ω −→ R, we introduce the following notation

ρ1,p(.) =

∫

Ω

|u|
p(x)

dx+

∫

Ω

|∇u|
p(x)

dx.

Proposition 2.2. If u ∈ W 1,p(.)(Ω) and p+ < +∞, the following properties hold true.

(i)‖u‖
1,p(.)

> 1 =⇒ ‖u‖p+

1,p(.)
< ρ1,p(.)(u) < ‖u‖p−

1,p(.)
,

(ii)‖u‖
1,p(.)

< 1 =⇒ ‖u‖
p−

1,p(.)
< ρ1,p(.)(u) < ‖u‖

p+

1,p(.)
,

(iii)‖u‖
1,p(.)

< 1 (respectively = 1;> 1)⇐⇒ ρ1,p(.)(u) < 1 ( respectively = 1;> 1).

Extending a variable exponent p : Ω −→ [1,+∞) to Q = Ω × [0, T ] by setting p(x, t) = p(x) for all
(x, t) ∈ Q. We may also consider the generalized Lebesgue space

Lp(.)(Q) =



u : Q −→ R mesurable such that

∫

Q

|u(x, t)|
p(x)

d(x, t) < ∞



 ,

endowed with the norm

‖u‖Lp(.)(Q) = inf



µ > 0;

∫

Q

∣∣∣∣
u(x, t)

µ

∣∣∣∣
p(x)

d(x, t) ≤ 1



 ,

which share the same properties as Lp(.)(Ω).

3. The Inportance of Parabolic Capacity And Measures

3.1. The Parabolic Capacity

The relevant notion in the study of problems as (1.1) is the notion of parabolic p(.)-capacity. Let
Q = Ω × ]0, T [ for any fixed T > 0. We recall that for every p > 1 and every open subset U ⊂ Q, the
p(.)-parabolic capacity of U is given by (see [16])

capp(.)(U) = inf
{

‖u‖Wp(.)(0,T ) : u ∈ Wp(.)(0, T ), u ≥ XU a.e in Q
}
,
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where
Wp(.)(0, T ) =

{
u ∈ Lp−(0, T ;V ),∇u ∈ (Lp(.)(Q)N, ut ∈ L(p−)

′

(0, T ;V
′

)
}
,

being V = W
1,p(.)
0 (Ω) ∩ L2(Ω) and V

′

its dual space. As usual Wp(.)(0, T ) is endowed with the norm

‖u‖Wp(.)(0,T ) = ‖u‖Lp−(0,T ;V ) + ‖∇u‖(Lp(.)(Q))N + ‖ut‖L(p−)
′
(0,T ;V ′ )

.

The p(.)-parabolic capacity capp is then extended to arbitrary Borel subsets B ⊆ Q as

capp(.)(B) = inf
{
capp(.)(U) : B ⊆ U and U ⊂ Q is open

}
.

3.2. The Measures

Let M(Q) denotes the set of all Radon measures with bounded variation on Q. Moreover, as already
mentioned, by M0(Q) we will denote the set of all measures with bounded total variation over Q that do
not charge the sets of zero p(.)-capacity, that is, if µ ∈ M0(Q), then µ(E) = 0 for every Borel set E ⊂ Q

such that capp(.)(E) = 0.
In [16] the authors also proved the following decomposition theorem:

Theorem 3.1. Let µ be a bounded measure on Q. If µ ∈ M0(Q), then there exists (f ;F ; g1; g2) such
that f ∈ L1(Q), F ∈ (Lp′(.)(Q))N, g1 ∈ L(p−)′

(0, T ;W−1,p′(.)(Ω)),
g2 ∈ L(p−)(0, T ;V ) and

∫

Q

ϕdµ =

∫

Q

fdxdt+

∫

Q

F∇ϕdxdt+

T∫

0

〈g1, ϕ〉 dt−

T∫

0

〈ϕt, g2〉 dt, (3.1)

for any ϕ ∈ C∞
c ([0, T ] × Ω). Such a triplet (f, F, g1, g2) will be called a decomposition of µ.

Note that the decomposition of µ is not uniquely determined.
In the proof of that result the density will be used as an argument, and so the following preliminary
result can be found, for instance, in [16].

Proposition 3.2. Let µ ∈ M0(Q). Then there exists a decomposition (f ;F ; div(G); g) of µ in the sense
of Theorem (3.1) and an approximation µε of µ satisfying the following conditions:

µε ∈ C∞
c (Q); ‖µε‖L1(Q) ≤ C, (3.2)

∫

Q

µεϕdxdt =

∫

Q

fεϕdxdt+

∫

Q

F ε∇ϕdxdt+

T∫

0

〈div(Gε), ϕ〉 dt

−

T∫

0

〈ϕt, g
ε〉 dt, ∀ϕ ∈ C∞

c (Q), (3.3)

and

fε ∈ C∞
c (Q) : fε → f L1(Q),

F ε ∈ (C∞
c (Q))N : F ε → F

(
Lp′(.)(Q)

)N

,

Gε ∈ (C∞
c (Q))

N
: Gε → G

(
Lp′(.)(Q)

)N

,

gε ∈ C∞
c (Q) : gε → g L(p−)(]0, T [ ;V ),

as ε → 0.
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Here are some notations that be used throughout the paper. For any nonnegative real number k
denoted by Tk(r) = min(k; max(r; −k)) the truncation function at level k. By using 〈., .〉 mean the duality
between suitable spaces in which functions are involved. In particular to consider both the duality between

W
1,p(.)
0 (Ω) and W−1,p′(.) (Ω) and the duality between W

1,p(.)
0 (Ω) ∩ L∞ (Ω) and W−1,p′(.) (Ω) + L1 (Ω).

Note that the formulation of a renormalized solution does not depend on the decomposition of µ. The
proof of this fact relies on the following result.

Lemma 3.3. Let µ ∈ M0(Q), and let (f ;F ; g1; g2) and (f̃ ; F̃ ; g̃1; g̃2) to be two different decompositions

of µ according to Theorem (3.1). Then we have (g2 − g̃2)t = f̃ − f + F̃ − F + g̃1 − g1 in distributional
sense, g2 − g̃2 ∈ C(]0, T [;L1(Ω)) and (g2 − g̃2)(0) = 0.

Proof. See [16], Lemma 4.6. �

4. The Main Assumptions And The Definition of Renormalized Solution

Let Ω be a bounded open set of R
N (N ≥ 2), T > 0 is given and we set Q = Ω × ]0, T [, and

A : Q× R
N → R

N be a Carathéodory function, such that for all ξ, η ∈ R
N , ξ 6= η

A(x, t, ξ).ξ > α |ξ|
p(x)

, (4.1)

|A(x, t, ξ)| 6 β
[
b(x, t) + |ξ|

p(x)−1
]
, (4.2)

(A(x, t, ξ) − A(x, t, η)).(ξ − η) > 0, (4.3)

µ ∈ M0(Q), (4.4)

u0 is a measurable function in Ω, such that u0 ∈ L1(Ω). (4.5)

Where 1 < p− ≤ p+ < +∞, α, β are positives constants and b is a nonnegative function in Lp′(.)(Q). And
B : R → R is a continuous increasing function with B(0) = 0.
The definition of a renormalized solution for Problem (1.1) can be stated as follows.

Definition 4.1. Let µ ∈ M0(Q) and 2 −
1

N + 1
< p− ≤ p+ < N , let u0 ∈ L1 (Ω), (f ;F ; div(G); g) a

decomposition of µ. A measurable function u defined on Q is a renormalized solution of problem (1.1) if
:

Tk(u − g) ∈ Lp−

(]0, T [;W
1,p(.)
0 (Ω)) for any k > 0 , B(u) ∈ L1 (Q) , (4.6)

and v=u− g ∈ L∞
(
]0, T [;L1 (Ω)

)
∩ Lq−

(]0, T [;W
1,q(.)
0 (Ω)), (4.7)

for all continuous functions q(x) on Ω satisfying q(x) ∈
[
1, p(x) − N

N+1

)
for all x ∈ Ω,

lim
n→∞

∫

{n≤|u−g|≤n+1}

|∇u|p(x)dxdt = 0, (4.8)

and if, for every function S ∈ W 2,∞(R) which is piecewise C1 and such that S′ has compact support on
R, so

(S(v))t − div(A(x, t,∇u)S′(v)) + S′′(v)A(x, t,∇u)∇v

+B(u)S′(v) = fS′(v) + FS′(v) +GS′′(v)∇v

−div(GS′(v)) in D
′(Q), (4.9)

S(v)(t = 0) = S(u0) in Ω. (4.10)

The following are explained as shown below on definition (4.1).
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Remark 4.2. Note that, all terms in (4.9) are well defined. Indeed, let k > 0 such that supp(S′) ⊂ [K,K],

let S(u−g) = S(Tk(u−g)) ∈ Lp−

(]0, T [;W
1;p(.)
0 (Ω)) and ∂S(u−g)

∂t
∈ D′(Q). The term S′(u−g)A(x, t,∇u)

identifes with S′(Tk(v) + g)A(x, t,∇(Tk(v) + g)) a.e. in Q, where v = u − g and u = Tk(v) + g in
{|u− g| ≤ k}, assumptions (4.2) imply that

|S′(Tk(u − g))A(x, t,∇u)| (4.11)

≤ β ‖S′‖L∞(R)

[
b(x, t) + |∇(Tk(v) + g)|

p(x)−1
]

a.e in Q.

Using (4.2) and (4.6), it follows that S′(u − g)A(x, t,∇u) ∈ (Lp′(.)(Q))N . The term
S′′(u − g)A(x, t,∇u)∇(u − g) identifes with S′′(u − g)A(x, t,∇(Tk(v) + g))∇Tk(u − g) and in view
of (4.2), (4.6) and (4.11), to obtain S′′(u − g)A(x, t,∇u)∇(u − g) ∈ L1(Q) and S′(u − g)B(u) ∈
L1(Q). Finally f S′(u − g) and GS′′(u − g)∇Tk(u − g) belongs to L1(Q) and FS′ ∈ (Lp′(.)(Q))N and

GS′(u − g) ∈ (Lp′(.)(Q))N in view of (4.6) and because S′ is a bounded function on R. Also ∂S(u−g)
∂t

∈

L(p−)′

(]0, T [;W−1,p′(.)(Ω)) + L1(Q) and S(u − g) ∈ Lp−

(]0, T [;W
1,p(.)
0 (Ω)), which implies that S(u − g)

∈ C(]0, T [;L1(Ω)).

Let it first be proven that the formulation of renormalized solution does not depend on the decompo-
sition of µ. This fact essentially relies on Lemma (3.3).

Proposition 4.3. Let u be a renormalized solution of (1.1). Then u satisfies (4.6)-(4.10) for every
decomposition (f ;F ; div(G); g) of µ.

Proof. Assume that u satisfies the conditions of Definition (4.1) for (f ;F ; div(G); g), and let

(f̃ ; F̃ ; div(G̃); g̃) be a different decomposition of µ. Note that since, by Lemma (3.3), then
g − g̃ ∈ C(]0, T [;L1(Ω)) let u- g̃ ∈ L∞(]0, T [;L1(Ω)), hence it is almost everywhere finite. First of

all to prove that Tk(u− g̃) ∈ Lp−

(]0, T [;W
1,p(.)
0 (Ω)) for every k > 0.

Let us introduce a sequence of increasing C∞(R)-functions Sn such that, for any n ≥ 1





Sn(r) = r if |r| ≤ n,

supp (S′
n) ⊂ [−(n+ 1), (n+ 1)] ,
‖S′′

n‖L∞(R) ≤ 1.
(4.12)

To choose as test function Tk(Sn(u− g) + g − g̃) in (4.9) and use Lemma (3.3), to obtain

A+B +D + E = F + I +H +M. (4.13)

Where

A =

T∫

0

〈(Sn(u − g) + g − g̃)t , Tk(Sn(u− g) + g − g̃)〉 dt,

B =

∫

Q

S′
n(u− g)A(x, t,∇u)∇Tk(Sn(u − g) + g − g̃)dxdt,

D = −

∫

Q

S′′
n(u− g)A(x, t,∇u)∇(u − g)Tk(Sn(u− g) + g − g̃)dxdt,

E =

∫

Q

S′
n(u− g)B(u)Tk(Sn(u− g) + g − g̃)dxdt,
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F =

∫

Q

(
(S′

n(u − g) − 1) f + f̃
)
Tk(Sn(u − g) + g − g̃)dxdt,

I =

∫

Q

((S′
n(u− g) − 1)F + F̃ )∇Tk(Sn(u− g) + g − g̃)dxdt,

H =

∫

Q

(
(S′

n(u − g) − 1)G+ G̃
)

∇Tk(Sn(u− g) + g − g̃)dxdt,

M =

∫

Q

S′′
n(u− g)G∇(u − g)Tk(Sn(u− g) + g − g̃)dxdt.

By initial condition (4.10) and Lemma (3.3), to obtain

A =

∫

Ω

Θk(Sn(u− g))(T )dx−

∫

Ω

Θk(Sn(u0))dx, (4.14)

where Θk(r) =
r∫
0

Tk(s)ds is a positive Lipschitz continuous function. Using (4.14) and the definition

(4.12) of Sn, leads to

A ≥ −k

∫

Ω

|u0| dx, ∀n ≥ 1. (4.15)

Let Ek = {(x, t) ∈ Q : |Sn(u− g) + g − g̃| ≤ k}, we have

B =

∫

Ek

|S′
n(u− g)|

2
A(x, t,∇u)∇udxdt (4.16)

−

∫

Ek

|S′
n(u− g)|

2
A(x, t,∇u)∇gdxdt

+

∫

Ek

S′
n(u − g)A(x, t,∇u)∇(g − g̃)dxdt

(4.17)

= B1 +B2 +B3,

the properties of Sn, and because 0 < S′
n < 1 let (S′

n (s))
p−

≤ S′
n (s) , (S′

n (s))
(p−)′

≤ S′
n (s) , S′

n (s) ≤

S′
n (s)

2
+ χ{n≤|s|≤n+1}, to obtain

B1 ≥ α

∫

Ek

|S′
n (u− g)|

p−
|∇u|

p(x)
dxdt (4.18)

− α

∫

{n≤|v|≤n+1}

|∇u|p(x)dxdt.

Using (4.1), (4.2), and Young’s inequality, to deduce that

|B2| + |B3| ≤

[
C

(
1

ε

)
‖c‖

(p−)′

Lp′(.) + C

(
1

ε

)
‖∇g‖

p−

Lp(.) (4.19)

+C ‖∇ (g − g̃)‖
p−

Lp(.)

]
+
α

2

∫

Ek

|S′
n(u − g)|

p−
|∇u|p(x)

+

∫

{n≤|u−g|≤n+1}

|∇u|p(x)dxdt,
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and,

|D| + |M | ≤ C

[
‖b‖

(p−)′

Lp′(.) + ‖∇g‖
p−

Lp(.) + ‖G‖
(p−)′

Lp′(.)

]
(4.20)

+C

∫

{n≤|u−g|≤n+1}

|∇u|p(x)dxdt.

Using (4.1) and Young’s inequality, to obtain

|E| + |F | + |H | + |I| ≤ C
[
‖B(u)‖L1 + ‖f‖L1 +

∥∥∥f̃
∥∥∥

L1
(4.21)

+

∫

Ek

1

p′(x)(
α

2
p(x))

p(x)

p′(x)

|G|
p′(x)

dxdt +

∫

Ek

1

p′(x)(
α

2
p(x))

p(x)

p′(x)

∣∣∣G̃
∣∣∣
p′(x)

dxdt

+

∫

Ek

1

p(x)(
α

2
p

′
p′(x)
p(x)

|∇g|
p(x)

dxdt+

∫

Ek

1

p(x)(
α

2
p

′
p′(x)
p(x)

|∇g̃|
p(x)

dxdt

+

∫

Ek

1

p′(x)(
α

2
p(x))

p(x)

p′(x)

|F |
p′(x)

dxdt+

∫

Ek

1

p′(x)(
α

2
p(x))

p(x)

p′(x)

∣∣∣F̃
∣∣∣
p′(x)

dxdt

+ ‖u0‖L1 ] + α

∫

Ek

|S′
n(u− g)|

p−

|∇u|p(x)
dxdt

+C

∫

{n≤|u−g|≤n+1}

|∇u|p(x)dxdt.

Using (4.13) to (4.21), we deduce that

α

∫

Ek

|S′
n(u − g)|

p−

|∇u|p(x) ≤ (4.22)

C

[
‖B(u)‖L1 + ‖f‖L1 +

∥∥∥f̃
∥∥∥

L1
+ ‖G‖

(p−)′

Lp
′

(.)
+

∥∥∥G̃
∥∥∥
(p−)′

Lp′(.)

+ ‖∇g‖
p−

Lp(.) + ‖∇g̃‖
p−

Lp(.) + ‖F‖
(p−)

′

Lp
′

(.)
+

∥∥∥F̃
∥∥∥
(p−)′

Lp′(.)
+ ‖u0‖L1

]

+C
∫

{n≤|u−g|≤n+1}

|∇u|p(x)dxdt.

Using the properties of Sn and the fact that g̃ belongs to Lp−

(]0, T [;W
1,p(.)
0 (Ω)), the result that will

be deduced from preceding inequality that, for all n ≥ 1,
∫

Q

χEk
|∇(Sn(u− g))|

p(x)
dxdt ≤ C,

inequality (2.3) implies that

T∫

0

χEk
min

{
‖∇(Sn(u− g))‖

p−

Lp(x)(Ω)
, ‖∇(Sn(u − g))‖

p+

Lp(x)(Ω)

}

≤

∫

Q

χEk
|∇(Sn(u− g))|p(x)

dxdt ≤ C,
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then is Sn(u−g) is bounded in Lp−(]0, T [;W
1,p(.)
0 (Ω)). Since ∇(Tk(Sn(u−g)+g−g̃)) = χEk

∇(Sn(u−g)+

g− g̃) and since g, g̃ ∈ Lp−

(]0, T [;W
1,p(.)
0 (Ω)), this implies that vn = Tk(Sn(u− g) + g− g̃) is bounded in

Lp−

(]0, T [;W
1,p(.)
0 (Ω)) and converges, up to a subsequence converge to v weakly in Lp−(]0, T [;W

1,p(.)
0 (Ω)),

thus also in D′(Q); but vn → Tk(u− g̃) a.e. in Q and is bounded by k, so that vn → Tk(u− g̃) in D′(Q).

Then Tk(u − g̃) = v ∈ Lp−

(]0, T [;W
1,p(.)
0 (Ω)), for all k > 0. To prove that (4.8) holds true for g̃. Using

the admissible test function θh(Sn(u − g) + g − g̃) in (4.9) with S = Sn; θh(s) = Th+1(s) − Th(s), the
coercive character (4.1) and the use of Young’s inequality it possible to obtain that

α

∫

Fn

|S′
n (u− g)|

2
|∇u|p(x)dxdt (4.23)

≤ Ck

∫

Q

(
|B(u)| + |f | +

∣∣∣f̃
∣∣∣
)
θh (Sn (u− g) + g − g̃) dxdt

+

∫

Ω

θh (Sn (u0)) dx+

∫

Fn

(
p+ − 1

p+
|F |

p′(x)
+
p+ − 1

p+

∣∣∣F̃
∣∣∣
p′(x)

+
p+ − 1

p+
|G|

p′(x)
+
p+ − 1

p+

∣∣∣G̃
∣∣∣
p′(x)

+
p+ − 1

p+
|b|

p′(x)

+
C1

p(x)(
α

2
p(x))

p′(x)

p(x)

|∇g|p(x) +
C1

p(x)(
α

2
p(x))

p′(x)

p(x)

|∇g̃|p(x)




+C

∫

{n≤|u−g|≤n+1}

|∇u|p(x)dxdt+ ω(n).

Where Fn = {h ≤ |Sn(u− g) + g − g̃| ≤ h+ 1}. Taking the limit as n tends to +∞ in (4.23), using (4.8)
and the convergence of χFn

to χ{h≤|u−g|≤h+1} shows that for any h > 0.

α

∫

{h≤|u−g̃|≤h+1}

|∇u|p(x)dxdt ≤

∫

{|u0|>h}

|u0| dx+

∫
C

{|u−g̃|≥h}

(
|B(u)| + |f | +

∣∣∣f̃
∣∣∣
)
dxdt+

∫
C2

{h≤|u−g̃|≤h+1}

(
|G|

p′(x)
+

∣∣∣G̃
∣∣∣
p′(x)

+ |F |
p′(x)

+
∣∣∣F̃

∣∣∣
p′(x)

+ |b|
p′(x)

+ |∇g|
p(x)

+ |∇g̃|
p(x)

)
dxdt, (4.24)

which yields, as h tends to infinity (recall that u− g̃ is almost everywhere finite),

lim
h→∞

∫

{h≤|u−g̃|≤h+1}

|∇u|p(x)dxdt = 0. (4.25)

In the following to prove that the renormalized equation (4.9) and the initial condition (4.10) hold
with g̃ as well. For every function S in W 2,∞(R) which is piecewise C1 and such that S′ has a compact
support and let ϕ ∈ C∞

c (Q), we chose S′(Sn(u − g) + g − g̃) as test function in (4.9) (with S = Sn in
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(4.9) and to Lemma (3.3), the result is:

T∫

0

〈(Sn(u − g) + g − g̃)t, S
′(Sn(u − g) + g − g̃)ϕ〉 dt (4.26)

+

∫

Q

S′
n(u− g)A(x, t,∇u)∇ϕS′(Sn(u− g) + g − g̃)dxdt

+

∫

Q

S′
n(u− g)A(x, t,∇u)∇(S′(Sn(u− g) + g − g̃))ϕdxdt

+

∫

Q

S′′
n(u− g)A(x, t,∇u)∇(u − g)S′(Sn(u− g) + g − g̃)ϕdxdt

+

∫

Q

S′
n(u− g)B(u)S′(Sn(u − g) + g − g̃)ϕdxdt

=

∫

Q

(
(S′

n(u− g) − 1) f + f̃
)
S′(Sn(u − g) + g − g̃)ϕdxdt

+

∫

Q

(
(S′

n(u − g) − 1)F + F̃
)

∇ϕS′(Sn(u− g) + g − g̃)dxdt

+

∫

Q

(
(S′

n(u − g) − 1)F + F̃
)

∇(S′(Sn(u− g) + g − g̃))ϕdxdt

+

∫

Q

(
(S′

n(u− g) − 1)G+ G̃
)
S′(Sn(u− g) + g − g̃)∇ϕdxdt

+

∫

Q

(
(S′

n(u− g) − 1)G+ G̃
)

∇ (S′(Sn(u− g) + g − g̃))ϕdxdt

+

∫

Q

S′′
n(u − g)G∇(u− g)S′(Sn(u− g) + g − g̃)ϕdxdt.

In what follows to pass to the limit as n tends to ∞ in each term of (4.26). In what follows ω(n) stands
for any quantity that vanishes as n diverges. For the parabolic contribution in (4.26)

T∫

0

〈(Sn(u− g) + g − g̃)t , S
′ (Sn(u − g) + g − g̃)ϕ〉 dt (4.27)

=

T∫

0

〈(S (Sn(u− g) + g − g̃))t , ϕ〉 dt

= −

∫

Q

S (Sn(u− g) + g − g̃))ϕtdxdt =

T∫

0

〈(S(u− g̃))t , ϕ〉 dt+ ω(n).

Recall that, since supp(S′) ⊂ [−k, k] and, supp (S′
n(u− g)S′Sn(u− g) + g − g̃)) ⊂

{|u− g| ≤ n+ 1, |u− g̃| ≤ k}; then ∇u may be replaced by ω = ∇ (Tk+1 (u− g̃) + g̃) ∈
(
Lp(.) (Q)

)N
in
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all the terms of (4.26). Using the definition of Sn, (S′
n → 1 and is bounded by1), we obtain

∫

Q

S′
n(u − g)A(x, t,∇u)∇ϕS′(Sn(u− g) + g − g̃)dxdt

=

∫

Q

S′
n(u − g)A(x, t, ω)∇ϕS′(Sn(u− g) + g − g̃)dxdt

−→
n→+∞

∫

Q

A(x, t, ω)∇ϕS′(u − g̃)dxdt (4.28)

=

∫

Q

A(x, t,∇u)∇ϕS′(u− g̃)dxdt.

And,

∫

Q

S′
n(u− g)A(t, x,∇u)∇(S′(Sn(u − g) + g − g̃))ϕdxdt

=

∫

Q

S′
n(u− g)A(x, t, ω)∇(S′(Sn(u − g) + g − g̃))ϕdxdt

−→
n→+∞

∫

Q

A(x, t, ω)∇(S′(u− g̃))ϕdxdt (4.29)

=

∫

Q

A(x, t,∇u)∇(S′(u− g̃))ϕdxdt,

and,

∫

Q

S′
n(u− g)B(u)S′(Sn(u− g) + g − g̃)ϕdxdt

−→
n→+∞

∫

Q

B(u)S′(u− g̃)ϕdxdt, (4.30)

the definition of S′
n, (S′′

n → 0) allows to obtain that

∫

Q

S′′
n(u− g)A(x, t,∇u)∇(u− g)S′(Sn(u− g) + g − g̃)ϕdxdt

=

∫

Q

S′′
n(u− g)A(x, t, ω)∇ (Tk+1 (u− g̃) + g̃ − g) (4.31)

S′(Sn(u − g) + g − g̃)ϕdxdt −→
n→+∞

0,

repeating the arguments that lead to (4.28), (4.29), (4.30) and (4.31), we obtain

∫

Q

(
(S′

n(u− g) − 1) f + f̃
)
S′(Sn(u− g) + g − g̃)ϕdxdt

−→
n→+∞

∫

Q

f̃S′(u − g̃)ϕdxdt, (4.32)
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∫

Q

(
(S′

n(u− g) − 1)F + F̃
)
S′(Sn(u − g) + g − g̃)∇ϕdxdt

−→
n→+∞

∫

Q

F̃S′(u− g̃)∇ϕdxdt, (4.33)

∫

Q

(
(S′

n(u− g) − 1)F + F̃
)

∇ (S′(Sn(u− g) + g − g̃))ϕdxdt

−→
n→+∞

∫

Q

F̃∇ (S′(u− g̃))ϕdxdt, (4.34)

∫

Q

(
(S′

n(u− g) − 1)G+ G̃
)
S′(Sn(u− g) + g − g̃)∇ϕdxdt

−→
n→+∞

∫

Q

G̃S′(u− g̃)∇ϕdxdt, (4.35)

∫

Q

(
(S′

n(u− g) − 1)G+ G̃
)

∇ (S′(Sn(u− g) + g − g̃))ϕdxdt

−→
n→+∞

∫

Q

G̃∇ (S′(u− g̃))ϕdxdt, (4.36)

∫

Q

S′′
n(u− g)G∇(u− g)S′(Sn(u− g) + g − g̃)ϕdxdt −→

n→+∞
0. (4.37)

As a consequence of the above convergence results in a position to pass to the limit as n tends to +∞
in (4.26) and to conclude that u satisfies (4.9) (with g instead of g̃). It remains to show that S(u − g̃)
satisfies the initial condition (4.10). To this end, for ψ ∈ C∞

0 (Ω) we take ϕ = (T − t)ψ in (4.26), it
possible to obtain

lim
n→+∞

T∫

0

〈(Sn(u− g) + g − g̃)t, S
′(Sn(u− g) + g − g̃)ϕ〉 dt (4.38)

+

∫

Q

A(t, x,∇u)∇ϕS′(u − g̃)dxdt +

∫

Q

A(x, t,∇u)∇(S′(u− g̃))ϕdxdt

+

∫

Q

B(u)S′(u− g̃)ϕdxdt =

∫

Q

fS′(u − g̃)ϕdxdt+

∫

Q

G∇ϕS′(u− g̃)dxdt

+

∫

Q

Gϕ∇ (S′(u − g̃)) dxdt+

∫

Q

F∇ϕS′(u − g̃)dxdt

+

∫

Q

Fϕ∇ (S′(u− g̃)) dxdt.
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As far as the parabolic contribution in (4.38) is concerned, since ϕ(0) 6= 0, Sn(u − g) = Sn(u0) and
(g − g̃)(0) = 0 and the integration by parts

T∫

0

〈(Sn(u− g) + g − g̃)t , S
′ (Sn(u − g) + g − g̃)ϕ〉 dt (4.39)

=

T∫

0

〈(S′Sn(u− g) + g − g̃)t , ϕ〉 dt = −

∫

Ω

S (Sn (u0))ϕ (0)dx

−

∫

Q

S (Sn(u− g) + g − g̃)ϕtdxdt = −

∫

Ω

S (u0)ϕ (0) dx

−

∫

Q

S (u− g̃)ϕtdxdt + ω (n) .

Secondly, we use ϕ as test function in (4.9) ( with g̃), then leads to

−

∫

Ω

S (u− g̃) (0) dx

−

∫

Q

S (u− g̃)ϕtdxdt+

∫

Q

A(x, t,∇u)∇ϕS′(u − g̃)dxdt (4.40)

+

∫

Q

A(x, t,∇u)∇(S′(u− g̃))ϕdxdt+

∫

Q

B(u)S′(u − g̃)ϕdxdt

=

∫

Q

fS′(u− g̃)ϕdxdt+

∫

Q

G∇ϕS′(u− g̃)dxdt

+

∫

Q

Gϕ∇ (S′(u− g̃)) dxdt

+

∫

Q

F∇ϕS′(u− g̃)dxdt +

∫

Q

Fϕ∇ (S′(u− g̃)) dxdt.

From (4.38), (4.39) and (4.40) the conclusion is that
∫
Ω

S (u− g̃) (0)ψdx =
∫
Ω

S (u0)ψdx; for all ψ ∈

C∞
0 (Ω), then S (u− g̃) (0) = S (u0) in Ω.

�

5. The Existence of Result

This section is devoted to establish the existence of a renormalized solution.

Theorem 5.1. Under assumptions (4.1)-(4.5) there exists at least a renormalized solution u of Problem
(1.1).

Proof. (of Theorem (5.1)) The proof is divided into 6 steps. In Step 1, we introduce an approximate
problem. Step 2 is devoted to establish a few a priori estimates. In Step 3, the limit u of the approximate
solutions uε is introduced and u − g is shown to belongs to L∞(]0, T [;L1(Ω)) and to satisfy (4.6)-(4.7).
In Step 4, the definition of a time regularization of the field Tk(u) and to establish Lemma (5.2), which
allows to control the parabolic contribution that arises in the monotonicity method when passing to the
limit. Step 5 is devoted to prove an energy estimate (Lemma (5.3)). At last, Step 6 is devoted to prove
that u satisfies (4.8)-(4.10) of Definition (4.1).
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• Step 1. Let us introduce the following regularization of the data: for ε > 0 fixed

uε
0 are a sequence of C∞

c (Ω) functions such that (5.1)

uε
0 → u0 in L1(Ω) as ε tends to 0.

In view of Proposition (3.2), we can find

µε ∈ C∞
c (Ω) : ‖µε‖L1(Q) ≤ C and

µε = fε + F ε − div(Gε) + (gε)t , (5.2)

and such that
fε ∈ C∞

c (Ω) : fε → f in L1 (Q) as ε tends to 0, (5.3)

F ε ∈ C∞
c (Ω) : F ε → F in

(
Lp′(.)(Q)

)N

as ε tends to 0, (5.4)

Gε ∈ C∞
c (Ω) : Gε → G in

(
Lp′(.)(Q)

)N

as ε tends to 0, (5.5)

gε ∈ C∞
c (Ω) : gε → g in Lp− (]0, T [;V ) as ε tends to 0 . (5.6)

Let us now consider the following regularized problem

(uε)t − divA(x, t,∇uε) + B (uε)

= µε = fε + F ε − div(Gε) + (gε)t in Q, (5.7)

uε = 0 on ]0, T [ × ∂Ω, (5.8)

uε (t = 0) = uε
0 in Ω. (5.9)

As a consequence, proving existence of a weak solution uε ∈ Lp−

(0, T ;W
1,p(.)
0 (Ω)) of (5.7)-(5.9) is

an easy task (see [15]).

• Step 2 Using Tk(uε − gε) as a test function in (5.7) leads to

∫

Ω

T k(uε − gε)(t)dx +

t∫

0

∫

Ω

A(x, t,∇uε)∇Tk(uε − gε)dxds

+

t∫

0

∫

Ω

B (uε)Tk(uε − gε)dxds =

t∫

0

∫

Ω

fεTk(uε − gε)dxds

+

t∫

0

∫

Ω

F ε∇Tk(uε − gε)dxds

t∫

0

∫

Ω

Gε∇Tk(uε − gε)dxds (5.10)

+

∫

Ω

T k(uε
0)dx,

for almost every t in (0, T ), and where T k(r) =
r∫
0

Tk(s)ds. Using assumptions (4.1)-(4.2) and the

definition of T k(r) in (5.10), to obtain
∫

Ω

T k(uε − gε)(t)dx + α

∫

Ek

|∇uε|p(x)
dxds (5.11)

≤ k ‖µε‖L1(Q) + k ‖B (uε)‖L1(Q) + β

∫

Ek

b (t, x) |∇gε|dxdt

+β

∫

Ek

|∇uε| |∇gε| dxds+ k ‖uε
0‖L1(Q) ,
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where Ek = {(x, t) ∈ Q : |uε − gε| ≤ k}, using young’s inequality, we get

∫

Ω

T k(uε − gε)(t)dx +

(
α− β

p+ − 1

p+

) ∫

Ek

|∇uε|
p(x)

dxds

≤ k ‖µε‖L1(Q) + k ‖B (uε)‖L1(Q) + β ‖b‖Lp′(.)(Q) ‖∇gε‖Lp(.)(Q)

+
β

p+

∫

Ek

|∇gε|
p(x)

dxdt + k ‖uε
0‖L1(Q) . (5.12)

Also, to obtain

k

∫

{(x,t)∈Q:|uε−gε|>k}

|B(uε)| dxdt ≤ k ‖µε‖L1(Q)

+β ‖b‖Lp′(.)(Q) ‖∇gε‖Lp(.)(Q) (5.13)

+
β

p+

∫

Ek

|∇gε|
p(x)

dxdt+ k ‖uε
0‖L1(Q) .

Now, let T1(s − Tk(s)) = Tk,1(s) and take Tk,1(uε − gε) as test function in (5.7). Reasoning as
above, using that ∇Tk,1(s) = ∇sχ{k≤|s|≤k+1} and appling young’s inequality, we obtain

∫

{k≤|uε−gε|≤k+1}

|∇(uε − gε)|
p(x)

dxdt

≤ Ck

∫

|uε
0|>k

|uε
0| dx+ Ck

∫

|uε−gε|>k

|B(uε)| dxdt

+Ck

∫

|uε−gε|>k

|fε| dxdt+ C(

∫

|uε−gε|>k

|F ε|
p′(x)

dxdt

+

∫

|uε−gε|>k

|Gε|
p′(x)

dxdt) ≤ C,

inequality (2.3) implies that

T∫

0

χ{k≤|uε−gε|≤k+1} min
{

‖∇(uε − gε)‖p−
Lp(x)(Ω)

, ‖∇(uε − gε)‖p+
Lp(x)(Ω)

}

≤

∫

{k≤|uε−gε|≤k+1}

|∇(uε − gε)|
p(x)

dxdt ≤ C. (5.14)

From the estimation (5.12), (5.14) and the properites of T k and uε
0, we have

uε − gε is bounded in L∞
(
]0, T [;L1 (Ω)

)
, (5.15)

and
uε − gε is bounded in Lp−(]0, T [ ;W

1,p(x)
0 (Ω)), (5.16)

by Lemma 2.1 in [8] and by (5.12), (5.14) and si 2 −
1

N + 1
< p(.) < N , we obtain

vε = uε − gε is bounded in Lq−(]0, T [ ;W
1,q(x)
0 (Ω)), (5.17)
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for all continuous variable exponents q ∈ C(Ω) satisfying

1 ≤ q(x) <
N(p(x) − 1) + p(x)

N + 1
,

for all x ∈ Ω. And
Tk (uε − gε) is bounded in Lp−

(
]0, T [;W

1,p(.)
0 (Ω)

)
, (5.18)

and by (5.13), to obtain
B(uε) is bounded in L1

(
]0, T [;L1 (Ω)

)
, (5.19)

independently of ε.
Proceeding as in [2], [3] that for any S ∈ W 2,∞(R) such that S′ is compact (supp S′ ⊂ [−k, k])

S (uε − gε) is bounded in Lp−
(

]0, T [;W
1,p(.)
0 (Ω)

)
, (5.20)

and
(S (uε − gε))t is bounded in L1 (Q) + L(p−)′

(
]0, T [;W−1,p′(.) (Ω)

)
. (5.21)

In fact, as a consequence of (5.18), by Stampacchia’s Theorem, we obtain (5.20). To show that
(5.21) holds true, we multiply the equation (5.7) by S′(uε − gε) to obtain

(S (uε − gε))t = div(S′ (uε − gε)A(x, t,∇uε)) (5.22)

−A(x, t,∇uε)∇ (S′ (uε − gε))

−B (uε)S′ (uε − gε) + fεS′ (uε − gε)

+F εS′ (uε − gε) − div (GεS′ (uε − gε))

+Gε∇ (S (uε − gε)) in D
′ (Q) .

Since supp(S′) and supp(S′′) are both included in [−k; k]; uε may be replaced by (Tk(vε) + gε) in
{|uε − gε| ≤ k}, where vε = uε − gε. To have

|S′ (uε − gε)A(x, t,∇uε)|

≤ β ‖S′‖L∞

[
b(x, t) + |Tk(vε) + gε|p(x)−1

]
. (5.23)

As a consequence, each term in the right hand side of (5.22) is bounded either in

L(p−)′
(

]0, T [;W−1,p′(.) (Ω)
)

or in L1(Q), and obtain (5.21).

Now an estimate on a sort of energy at infinity of the approximating solutions. For any integer
n ≥ 1, consider the Lipschitz continuous function θn defined through θn (s) = Tn+1 (s) − Tn (s).
Remark that ||θn||L∞ ≤ 1 for any n ≥ 1 and that θn (s) → 0, for any s when n tends to infinity.
Using the admissible test function θn(uε − gε) in (5.7) leads to

∫

Ω

θ̃n (uε − gε) (t) dx +

∫

Q

A(x, t,∇uε)∇ (θn(uε − gε)) dxdt

+

∫

Q

B (uε) θn(uε − gε)dxdt

+

∫

Q

F ε∇ (θn(uε − gε)) dxdt (5.24)

+

∫

Q

Gε∇ (θn(uε − gε)) dxdt

+

∫

Ω

θ̃n (uε
0) dx,
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for almost every t in ]0, T [ and where θ̃n(r) =
r∫
0

θn(s)ds ≥ 0. Hence, dropping a nonnegative term

∫

{n≤|uε−gε|≤n+1}

A(x, t,∇uε)∇uεdxdt (5.25)

≤

∫

{n≤|uε−gε|≤n+1}

A(x, t,∇uε)∇gεdxdt−

∫

Q

B (uε) θn(uε − gε)dxdt

+

∫

Q

fεθn(uε − gε)dxdt +

∫

Q

F ε∇ (θn(uε − gε)) dxdt

+

∫

Q

Gε∇ (θn(uε − gε)) dxdt +

∫

Ω

θ̃n (uε
0) dx

≤ β

∫

{n≤|uε−gε|≤n+1}

[
|b(x, t)| |∇gε| + |∇vε + ∇gε|

p(x)−1
|∇gε|

]
dxdt

+

∫

Q

|B (uε)| θn(uε − gε)dxdt +

∫

Q

|fε| θn(uε − gε)dx

+

∫

Q

F ε∇ (θn(uε − gε)) dxdt+

∫

Q

Gε∇ (θn(uε − gε)) dxdt

+

∫

Ω

θ̃n (uε
0) dx.

Using assumption (5.2), (5.25) and applying Young’s inequality, to obtain

α

2

∫

{n≤|uε−gε|≤n+1}

|∇uε|p(x)dxdt (5.26)

≤ C




∫

{|uε−gε|≥n}

p+ − 1

p+
|b|

p′(x)

+
C1

p(x)(
α

2
p′(x))

p(x)

p′(x)

|∇gε|
p(x)

+ |Gε|
p′(x)

+ |F ε|
p′(x)



dxdt

+

∫

{|uε−gε|≥n}

|B (uε)| dxdt+

∫

{|uε−gε|≥n}

|fε|dxdt

+

∫

{|uε
0|≥n}

|uε
0|dx.

• Step 3 Arguing again as in [ [2], [3], [4]] estimate (5.20) and (5.21) implies that, for a subsequence
still indexed by ε,

uε − gε converges a.e where to u− g in Q, (5.27)

using (5.7), (5.18) and (5.23), we get

uε converge almost every where to u in Q, (5.28)
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Tk(uε − gε) converge weakly to Tk(u − g)

in Lp−
(

]0, T [ ,W
1,p(.)
0 (Ω)

)
, (5.29)

χ{|uε−gε|≤k}A(t, x,∇uε) ⇀ ηk weakly in
(
Lp′(.) (Q)

)N

, (5.30)

as ε tends to 0 for any k > 0 and any n ≥ 1 and where for any k > 0, ηk belongs to
(
Lp′(.) (Q)

)N

.

Since B(uε) is a continuous incrassing function, from the monotone convergence theorem, by (5.18)
and (5.28), to obtain that

B(uε) converge weakly to B(u) in L1(Q). (5.31)

Now establish that u− g belongs to L∞
(
]0, T [ ;L1 (Ω)

)
. Indeed using (5.12) and

∣∣T k (s)
∣∣ ≥ |s| − 1

leads to
∫

Ω

|uε − gε| (t)dx ≤ meas(Ω) + k ‖µε‖L1(Q) + k ‖B (uε)‖L1(Q)

+

(
1

p−
+

1

p′−

)
‖b‖Lp′(.)(Q) ‖∇gε‖Lp(.)(Q)

+

(
1

p−
+

1

p′−

)
‖∇gε‖Lp(.)(Q) ‖∇uε‖Lp(.)(Q)

+k ‖uε
0‖L1(Ω) .

Using (5.27) and (5.1)-(5.6) , to have u − g belongs to L∞
(
]0, T [ ;L1 (Ω)

)
. Now in a position to

exploit (5.26). Since uε − gε is bounded in L∞
(
]0, T [ ;L1 (Ω)

)
, we get

lim
n→+∞

(
sup

ε
meas {|uε − gε| ≥ n}

)
= 0, (5.32)

using the equi-integrability of the sequences |∇gε|p(x)
, |Gε|p

′(x)
, |F ε|p

′(x)
, |fε|, |B (uε)| and |uε

0|
in L1 (Ω), we deduce that

lim
n→+∞


sup

ε

∫

{n≤|uε−gε|≤n+1}

|∇uε|p(x)dxdt


 = 0. (5.33)

• Step 4 The specific time regularization of Tk(u) (for fixed k ≥ 0) is defined as follows. Let (vµ
0 )µ

be a sequence in L∞ (Ω) ∩ W
1,p(.)
0 (Ω) such that ‖vµ

0 ‖
L∞(Ω) ≤ k, ∀µ > 0, and v

µ
0 → Tk(u0) a.e in

Ω with 1
µ

‖vµ
0 ‖Lp(.)(Ω) → 0 as µ → +∞.

For fixed k ≥ 0 and µ > 0, let us consider the unique solution

Tk(u)µ ∈ L∞ (Ω) ∩ Lp−
(

]0, T [;W
1,p(.)
0 (Ω)

)

of the monotone problem

∂Tk(u)µ

∂t
+ µ (Tk(u)µ − Tk(u)) = 0 in D

′ (Q) , (5.34)

Tk(u)µ(t = 0) = v
µ
0 . (5.35)
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The behavior of Tk(u)µ as µ → +∞ is investigated in [14] and we just recall here that (5.34)-(5.35)
imply that

Tk(u)µ → Tk(u) strongly in Lp−
(

]0, T [;W
1,p(.)
0 (Ω)

)

a.e in, Q as µ → +∞, (5.36)

with ‖Tk(u)µ‖
L∞(Ω) ≤ k, for any µ, and

∂Tk(u)µ

∂t
∈ L(p−)′

(
]0, T [;W−1,p′(.) (Ω)

)
.

The main estimate is the following

Lemma 5.2. Let vε = uε − gε. Let S be an increasing C∞ (R) − function such that S(r) = r for
r ≤ k, and suppS′ is compact. Then

lim inf
µ→+∞

lim
ε→0

T∫

0

〈
∂vε

∂t
, S′(vε) (Tk(vε)µ − Tk(v))

〉
dt ≥ 0,

where here 〈., .〉 denotes the duality pairing between L1(Ω) +W−1,p′(.) (Ω) and L∞ (Ω) ∩ V (Ω).

Proof. See [4], Lemma 1. �

• Step 5 Here to prove that the weak limit ηk and to prove the weak L1 convergence of the ”truncted”
energy A (x, t,∇Tk(vε)) as ε tends to 0. In order to show this result recall the Lemma below.

Lemma 5.3. The subsequence of uε defined in step 3 satisfies

lim sup
ε→0

∫

Q

A (x, t,∇uε) ∇Tk(vε)dxdt ≤

∫

Q

ηk∇Tk(v)dxdt, (5.37)

lim
ε→0

∫

Q

[
A

(
x, t,∇uε

χ{|vε|≤k}

)
− A

(
x, t,∇uχ{|v|≤k}

)]
(5.38)

×
[
∇uε

χ{|vε|≤k}
− ∇uχ{|v|≤k}

]
dxdt = 0

ηk = A

(
x, t,∇uχ{|v|≤k}

)
a.e in Q, for any k ≥ 0, as ε tends to 0.

A (x, t,∇uε) ∇Tk(vε) → A (x, t,∇u) ∇Tk(v)

weakly in L1 (Q) . (5.39)

Proof. For k ≥ 0, to consider the test function S′
n(vε)

(
Tk(uε) − (Tk(u))µ

)
in (5.7), and use the
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definition (4.12) of S′
n and we definie W ε

µ = Tk(uε) − (Tk(u))µ, to get

T∫

0

〈
(uε − gε)t , S

′
n(vε)W ε

µ

〉
dt+

∫

Q

S′
n(vε)A(x, t,∇uε)∇W ε

µdxdt

+

∫

Q

S′′
n(vε)A(x, t,∇uε)∇vεW ε

µdxdt

+

∫

Q

B(uε)S′
n(vε)W ε

µdxdt (5.40)

+

∫

Q

F εS′
n(vε)∇W ε

µdxdt

+

∫

Q

F εS′′
n(vε)W ε

µ∇vεdxdt

+

∫

Q

GεS′
n(vε)∇W ε

µdxdt

+

∫

Q

GεS′′
n(vε)W ε

µ∇vεdxdt.

Now pass to the limit in (5.40) as ε → 0, µ → +∞, n → +∞ for k fixed real number. In order to
perform this task, to prove below the following results for any k ≥ 0

lim inf
µ→+∞

lim
ε→0

T∫

0

〈
(uε − gε)t , S

′
n(vε)W ε

µ

〉
dt ≥ 0 for any n ≥ k, (5.41)

lim
n→+∞

lim
µ→+∞

lim
ε→0

∫

Q

S′′
n(vε)A(x, t,∇uε)∇vεW ε

µdxdt = 0, (5.42)

lim
µ→+∞

lim
ε→0

∫

Q

B(uε)S′
n(vε)W ε

µdxdt = 0, for any n ≥ 1, (5.43)

lim
µ→+∞

lim
ε→0

∫

Q

fεS′
n(vε)W ε

µdxdt = 0, for any n ≥ 1, (5.44)

lim
µ→+∞

lim
ε→0

∫

Q

F εS′
n(vε)∇W ε

µdxdt = 0, for any n ≥ 1, (5.45)

lim
µ→+∞

lim
ε→0

∫

Q

F εS′′
n(vε)W ε

µ∇vεdxdt = 0, for any n ≥ 1, (5.46)

lim
µ→+∞

lim
ε→0

∫

Q

GεS′
n(vε)∇W ε

µdxdt = 0, for any n ≥ 1, (5.47)

lim
µ→+∞

lim
ε→0

∫

Q

GεS′′
n(vε)W ε

µ∇vεdxdt = 0, for any n ≥ 1. (5.48)
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Proof of (91). In view of the definition W ε
µ, we apply lemma (5.2) with S = Sn for fixed n ≥ k. As

a consequence, (5.41) hold true. �

Proof of (92). For n ≥ 1, we have supp(S′′
n) ⊂ [−(n+ 1),−n] ∪ [n, n+ 1] ,

∥∥W ε
µ

∥∥
L∞(Q)

≤ 2k and

‖S′′
n‖L∞(R) ≤ 1. Using assumptions (4.2) and applying Young’s inequality, we get

∣∣∣∣∣∣

∫

Q

S′′
n(vε)A (x, t,∇uε) ∇vεW ε

µdxdt

∣∣∣∣∣∣
(5.49)

≤ C3

∫

{n≤|vε|≤n+1}

A (x, t,∇uε) ∇uεdxdt

+C4

∫

{n≤|vε|}

(
|b(x, t)|p

′(x) + |∇gε|p(x)
)
dxdt,

for n ≥ 1, using assumptions (5.33)-(5.32) and the equi-integrability of the sequences |∇gε|
p(x)

in
L1(Q), permits to pass to the limit as n tends to +∞ in (5.49) and to etablish (5.42) �

Proof of (93). For n ≥ 1 and in view (5.31). Lebesgue’s convergence theorem implies that for any
µ > 0 and n ≥ 1

lim
ε→0

∫

Q

B(uε)S′
n(vε)W ε

µ dxdt

=

∫

Q

B(u)S′
n(v)(Tk(v) − Tk (v)µ)dxdt. (5.50)

Appealing now to (5.36) and passing to the limit as µ → +∞ in (5.50) allows to conclude that
(5.43) holds true. �

Proof of (94). By (5.3), (5.27) and Lebesgue’s convergence theorem implies that for any µ > 0 and
n ≥ 1, it is possible to pass to the limit for ε → 0

lim
ε→0

∫

Q

fεS′
n(vε)W ε

µ dxdt =

∫

Q

fS′
n(v)(Tk(v) − Tk (v)µ)dxdt,

using (5.36) permits to the limit as µ tends to +∞ in the above equality to obtain (5.44). �

Proof of (95). By (5.4), we have

F εS′
n(vε) → FS′

n(v) a.e. in Q, and

|F εS′
n(vε)| ≤ (n+ 1) ‖F ε‖Lp′(.)(Q) a.e. in Q.

Let us recal the main properrties of W ε
µ . For µ > 0, W ε

µ converges to (Tk(v) − Tk (v)µ) weakly in

Lp−

(]0, T [;W 1,p
0 (Ω)) as ε → 0. Taking into account that

∥∥W ε
µ

∥∥
L∞(Q)

≤ 2k for any ε > 0, µ > 0, (5.51)
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to be able to deduce that

W ε
µ → (Tk(v) − Tk (v)µ) a.e. in Q and

L∞(Q) weakly-* as ε → 0, (5.52)

also to deduce that

lim
ε→0

∫

Q

F εS′
n(vε)∇W ε

µdxdt =

∫

Q

FS′
n(v)∇(Tk(v) − Tk (v)µ)dxdt, (5.53)

and the strong convergence of Tk(v)µ to Tk(v) in Lp−

(]0, T [;W 1,p
0 (Ω)) as µ → +∞, as consequece

(5.45) holds true. �

Proof of (96). For n ≥ 1 and from (5.4), (5.29), it follows that

lim
µ→+∞

lim
ε→0

∫

Q

F εS′′
n(vε)∇vεW ε

µdxdt

= lim
µ→+∞

∫

Q

FS′′
n(v)∇v(Tk(v) − Tk (v)µ)dxdt = 0.

�

Proof of (97). Using (5.29) and (5.5) lead to GεS′
n(vε) tends to GS′

n(v) strongly in
(
Lp′(.) (Q)

)N

as ε → 0. We deduce that

lim
ε→0

∫

Q

GεS′
n(vε)∇W ε

µdxdt =

∫

Q

GS′
n(v)∇(Tk(v) − Tk (v)µ)dxdt,

for µ > 0, by (5.52) and the strong convergence of Tk(v)µ to Tk(v) in Lp−

(]0, T [;W 1,p
0 (Ω)) as

µ → +∞ allows to conclude (5.47). �

Proof of (98). From (5.5) and (5.29), it follows that

lim
ε→0

∫

Q

Gε∇S′
n(vε)W ε

µdxdt =

∫

Q

G∇S′
n(v)(Tk(v) − Tk (v)µ)dxdt

= 0, for n ≥ 1.

�

Now turn back to the proof of Lemma (5.3), due to (5.41)-(5.48), in a position to pass to the
limit-sup when ε → 0, then to the limit-sup when µ → +∞ and to the limit as n → +∞ in (5.40).
Using the definition of W ε

µ, we deduce that for k ≥ 0,

lim
n→+∞

lim sup
µ→+∞

lim sup
ε→0

∫

Q

A(x, t,∇uε)S′
n(vε)

∇ (Tk(vε) − Tk(v)µ) dxdt ≤ 0.
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Since A(x, t,∇uε)S′
n(vε)∇Tk(vε) = A(x, t,∇uε)∇Tk(vε) for k ≤ n, the above inequality implies

that for k ≤ n,

lim sup
ε→0

∫

Q

A(x, t,∇uε)∇Tk(vε)dxdt (5.54)

≤ lim
n→+∞

lim sup
µ→+∞

lim sup
ε→0

∫

Q

A(x, t,∇uε)S′
n(vε)∇Tk(v)µdxdt.

Due to (5.30), A(x, t,∇uε)S′
n(vε) → ηn+1S

′
n(v) weakly in

(
Lp′(.) (Q)

)N

as ε → 0 and the strong

convergence of Tk(v)µ to Tk(v) in Lp−

(]0, T [;W 1,p
0 (Ω)) as µ → +∞, we get

lim
µ→+∞

lim
ε→0

∫

Q

A(x, t,∇uε)S′
n(vε)∇Tk(v)µdxdt (5.55)

=

∫

Q

S′
n(v)ηn+1∇Tk(v)dxdt =

∫

Q

ηn+1∇Tk(v)dxdt,

for k ≤ n, since S′
n(s) = 1 for |s| ≤ n. Now for k ≤ n, we have

S′
n(vε)A(x, t,∇uε)χ{|vε|≤k}

= A(x, t,∇uε)χ{|vε|≤k}
a.e in Q.

Letting ε → 0, to obtain

ηn+1χ{|v|≤k} = ηkχ{|v|≤k} a.e in Q− {|v| = k} for k ≤ n.

Recalling (5.54) and (5.55) allows to conclude that (5.37) holds true. �

Proof of (88). Let k ≥ 0 be fixed. We use the monotone character (4.3) of A(x, t, ξ) with respest
to ξ, to obtain

Iε =

∫

Q

(
A(x, t,∇uεχ{|vε|≤k}) − A(x, t,∇uχ{|v|≤k})

)
(5.56)

(
∇uεχ{|vε|≤k} − ∇uχ{|v|≤k}

)
dxdt ≥ 0.

Inequality (5.56) is split into Iε = Iε
1 + Iε

2 + Iε
3 where

Iε
1 =

∫

Q

A(x, t,∇uεχ{|vε|≤k})∇uεχ{|vε|≤k}dxdt,

Iε
2 = −

∫

Q

A(x, t,∇uεχ{|vε|≤k})∇uχ{|v|≤k}dxdt,

Iε
3 = −

∫

Q

A(x, t,∇uχ{|v|≤k})
(

∇uεχ{|vε|≤k} − ∇uχ{|v|≤k}

)
dxdt.

To pass to the limit-sup as ε → 0 in Iε
1 , Iε

2 and Iε
3 . Let us remark that vε = uε − gε and

∇uεχ{|vε|≤k} =
(

∇Tk(vε) − gεχ{|vε|≤k}

)
a.e in Q, assume that k is such that χ{|vε|≤k} almost

everywhere converges to χ{|v|≤k}( in fact this is true for almost every k, see Lemma 3.2 in [6]).
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Using (5.37), we obtain

lim
ε→0

Iε
1 = lim

ε→0

∫

Q

A(x, t,∇uε)∇Tk(vε)dxdt

+ lim
ε→0

∫

Q

A(x, t,∇uεχ{|vε|≤k})∇gεdxdt

≤

∫

Q

ηk∇Tk(v)dxdt +

∫

Q

ηk∇gχ{|v|≤k}dxdt. (5.57)

In view of (5.29) and (5.30),

lim
ε→0

Iε
2 = − lim

ε→0

∫

Q

A(x, t,∇uεχ{|vε|≤k}) (∇Tk(v) + ∇g) dxdt

= −

∫

Q

ηk (∇Tk(v) + ∇g) dxdt. (5.58)

As a consequence of (5.6) and (5.29), for all k > 0

lim
ε→0

Iε
3 = −

∫

Q

A(x, t,∇uχ{|v|≤k}) (5.59)

(
∇Tk(vε) + ∇gεχ{|vε|≤k} − ∇Tk(v) + ∇gχ{|v|≤k}

)
dxdt = 0.

Taking the limit-sup as ε → 0 in (5.56) and using (5.57), (5.58) and (5.59) show that (5.38) holds
true. �

Proof of (89). Using (5.38) and the usual Minty argument applies it follows that (5.39) holds true.
�

• Step 6: In this step to prove that u satisfies (4.8)-(4.10). To this end, remark that vε = uε − gε

and for fixed n ≤ 0 one has

∫

{n≤|uε−gε|≤n+1}

A(x, t,∇uε)∇uεdxdt

=

∫

Q

A(x, t,∇uε)∇Tn+1(vε)dxdt−

∫

Q

A(x, t,∇uε)∇Tn(vε)dxdt

+

∫

Q

A(x, t,∇uε)χ{|vε|≤n+1}∇gεdxdt

−

∫

Q

A(x, t,∇uε)χ{|vε|≤n}∇gεdxdt.

According to (5.30) and (5.39) one is at liberty to pass to the limit as ε tends to 0 for fixed n ≥ 1,
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to obtain

lim
ε→0

∫

{n≤|uε−gε|≤n+1}

A(x, t,∇uε)∇uεdxdt (5.60)

=

∫

Q

A(x, t,∇u)∇Tn+1(v)dxdt −

∫

Q

A(x, t,∇u)∇Tn(v)dxdt

+

∫

Q

A(x, t,∇u)χ{|v|≤n+1}∇gdxdt

−

∫

Q

A(x, t,∇u)χ{|v|≤n}∇gdxdt

=

∫

{n≤|uε−gε|≤n+1}

A(x, t,∇u)∇udxdt.

Taking the limit as n tends to +∞ in (5.60) and using the estimate (5.33) , that u satisfies (4.8).
Let S be a function in W 2,∞(R) such that S′ has a compact. Let k be a positive real number such
that supp(S′) ⊂ [−k, k]. Pontwise multiplication of that approximate equation (5.7) by S′(uε − gε)
leads to

(S(uε − gε))t − div(S′(uε − gε)A(x, t,∇uε)) (5.61)

+S′′(uε − gε)A(x, t,∇uε)∇(uε − gε) + B(uε)S′(uε − gε)

= fεS′(uε − gε) + F εS′(uε − gε) − div(S′(uε − gε)Gε)

+S′′(uε − gε)Gε∇(uε − gε) in D
′(Q).

In what follows to pass to the limit as ε tends to 0 in each term of (5.61). Since S is bounded, and
S(uε − gε) converges to S(u− g) a.e in Q and in L∞(Q) ∗ −weak, then (S(uε − gε))t converges to
(S(uε − gε))t in D′(Q) as ε tends to 0. Since supp(S′) ⊂ [−k, k], we have S′(uε − gε)A(x, t,∇uε) =
S′(uε −gε)A(x, t,∇uε)χ{|vε|≤k} a.e in Q. The pointwise convergence of uε to u as ε tends to 0, the
bounded character of S and (5.39) of Lemma(5.3) imply that S′(uε − gε)A(x, t,∇uε) converges to

S′(u − g)A(x, t,∇u) weakly in
(
Lp′(.)(Q)

)N

as ε tends to 0, because S′(u − g) = 0 for |u− g| ≥ k

a.e in Q. The pointwise convergence of uε − gε to u − g, the bounded character of S′, S′′ and
(5.39) of Lemma (5.3) allow to conclude that

S′′(uε − gε)A(x, t,∇uε)∇Tk(uε − gε)

→ S′′(u− g)A(x, t,∇u)∇Tk(u − g) weakly in L1(Q)

as ε → 0. The use of (5.31) to obtain that B(uε)S′(uε−gε) converges to B(u)S′(u−g) in L1(Q), and
we use (5.3), (5.4), (5.5), (5.6) and (5.29) and we obtain that fεS′(uε − gε) converges to fS′(u− g)

in L1(Q), the term F εS′(uε − gε) converges to FS′(u − g) weakly in
(
Lp′(.)(Q)

)N

and the term

GεS′(uε − gε) converges to GS′(u − g) strongly in
(
Lp′(.)(Q)

)N

and S′′(uε − gε)Gε∇(uε − gε)

converges to S′′(u − g)G∇(u − g) weakly in L1(Q). As a consequence of the above convergence
result, the position to pass to the limit as ε tends to 0 in equation (5.61) and to conclude that u
satisfies (4.9). It remains to show that S(u − g) satisfies the initial condition (4.10). To this end,
firstly remark that, S being bounded, S(uε − gε) is bounded in L∞(Q). Secondly, (5.61) and the

above considerations on the behavior of the terms of this equation show that ∂S(uε−gε)
∂t

is bounded

in L1(Q) +L(p−)′

(]0, T [;W−1,p′(.)(Ω)). As a consequence, an Aubin’s type Lemma ( [21], Corollary
4) implies that S(uε − gε) lies in a compact set of C0(]0, T [;L1(Ω)). It follows that, on one hand,
S(uε − gε)(t = 0) converges to S(u − g)(t = 0) strongly in L1(Ω). Due to (5.1), to conclude that
(4.10) holds true. As a conclusion of Step 3 and Step 6, the proof of Theorem (5.1) is complete.
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