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Applying the (1,2)-Pitchfork Domination and Its Inverse on Some Special Graphs

Mohammed A. Abdlhusein

abstract: Let G be a finite graph, simple, undirected and with no isolated vertex. For any non-negative
integers j and k, a dominating set D of V (G) is called a pitchfork dominating set of G if every vertex in
it dominates j vertices (at least) and k vertices (at most) from V − D. A set D−1 of V − D is an inverse
pitchfork dominating set if it is pitchfork dominating set. In this paper, pitchfork domination and inverse
pitchfork domination are applied when j = 1 and k = 2 on some special graphs such as: tadpole graph,
lollipop graph, lollipop flower graph , daisy graph and Barbell graph.

Key Words: Dominating set, inverse dominating set, pitchfork domination, pnverse pitchfork dom-
ination.
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1. Introduction

Let G be a graph with no isolated vertex has a vertex set V of order n and an edge set E of
size m. The number of edges incident on vertex w is denoted by deg(w) and represent the degree of
w. A vertex of degree 0 is called isolated and a vertex of degree 1 is a leaf. The vertex that adjacent
with a leaf is a support vertex. The minimum and maximum degrees of vertices in G are denoted by
δ(G) and ∆(G), respectively. For basic concepts and other graph theoretic terminologies not defined
here, we refer to [11,12,22]. Also, we refer for basic concepts of domination to [13,14,15,21]. A set
D ⊆ V is a dominating set if every vertex in V − D is adjacent to a vertex in D. A dominating set
D is said to be a minimal if it has no proper dominating subset. The domination number γ(G) is the
cardinality of a minimum dominating set D of G. There are several models of domination, see for example
[6,7,9,10,18,19,20,23,25]. Domination in graphs play a wide role in different kinds of fields in graph theory
as labeled graph [8], topological graph [16], fuzzy graph [24] and other. The pitchfork domination and its
inverse are introduced by Al-Harere and Abdlhusein [1,2,3,4]. They discuss several bounds and properties
and gave an important information and applications of this model. A dominating set D of V is called a
pitchfork dominating set if every vertex in it dominates j vertices (at least) and k vertices (at most) of
V − D for any non-negative integers j and k. A set D−1 of V − D is an inverse pitchfork dominating
set if it is pitchfork dominating set. The pitchfork domination number of G, denoted by γpf (G) is the
minimum cardinality over all pitchfork dominating sets in G. The inverse pitchfork domination number
of G, denoted by γ−1

pf (G) is the minimum cardinality over all inverse pitchfork dominating sets in G. In
this paper, pitchfork domination and its inverse are applied with their bounds and properties on some
graphs.

Proposition 1.1. [5]: Let G be any graph with ∆(G) ≤ 2. Then, γ(G) = γpf (G).

Theorem 1.2. [2] The cycle graph Cn; (n ≥ 3) has an inverse pitchfork domination such that: γ−1
pf (Cn) =

γpf (Cn) = ⌈ n
3 ⌉.
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Theorem 1.3. [2] The path graph Pn; (n ≥ 2) has an inverse pitchfork domination such that:

γ−1
pf (Pn) =

{

n
3 + 1 if n ≡ 0 (mod 3)
⌈ n

3 ⌉ if n ≡ 1, 2 (mod 3)

where γ−1
pf (P2) = 1.

Proposition 1.4. [5] Let G = Kn the complete graph with n ≥ 3 , then γpf (Kn) = n − 2 .

Proposition 1.5. [2] The complete graph Kn has an inverse pitchfork domination if and only if n = 3, 4
and γ−1

pf (Kn) = n − 2.

2. Pitchfork Domination

In this section, pitchfork domination is applied to discuss minimum pitchfork dominating set and its
order for some graphs such as: tadpole graph, lollipop graph, daisy graph and Barbell graph.

Tadpole graph Tm,n is formed by joining a vertex of its cycle Cm to a path Pn by an edge as in Fig
1. (see [5,7,11,17]).

Theorem 2.1. Let G be the tadpole graph Tm,n where (m ≥ 3) and (n ≥ 2). Then:

γpf (Tm,n) =

{

⌈ m
3 ⌉ + ⌈ n

3 ⌉, if m ≡ 0, 2 (mod 3) or (m ≡ 1 ∧ n ≡ 0 (mod 3))
⌈ m−1

3 ⌉ + ⌈ n
3 ⌉, if m ≡ 1 ∧ n ≡ 1, 2 (mod 3)

Proof: Since Tm,n contains a cycle Cm joined by a bridge to a path Pn, then V (Tm,n) = E(Tm,n) = m+n
where E(Cm) = m, E(Pn) = n − 1 and the bridge u1vn. The vertices of Pn can be labeled as: {vi; i =
1, 2, . . . , n}. Also the vertices of Cm as: {uj; j = 1, 2, . . . , m} such that the vertex u1 ∈ Cm adjacent with
vertex vn ∈ Pn and deg(u1) = 3, deg(v1) = 1. Let the pitchfork dominating set D = D1 ∪ D2 where D1

is the pitchfork dominating set in Cm and D2 is the pitchfork dominating set in Pn. According to m we
have two cases:
Case 1: There are two parts:
part i: If m ≡ 0, 2 (mod 3), then let:

D1 =

{

{u3j; j = 1, 2, . . . , ⌈ m
3 ⌉} if m ≡ 0.

{u3j; j = 1, 2, . . . , ⌈ m
3 ⌉ − 1} ∪ {um} if m ≡ 2.

D2 =

{

{v3i−1; i = 1, 2, . . . , ⌈ n
3 ⌉} if n ≡ 0, 2.

{v3i−1; i = 1, 2, . . . , ⌈ n
3 ⌉ − 1} ∪ {vn} if n ≡ 1.

in this case if u1 ∈ D1, then u2 ∈ D1 or um ∈ D1 or vn ∈ D2 to avoid that u1 dominates three vertices.
Hence, let u1 /∈ D1 and dominated only by D1 when n ≡ 0 (mod 3), but it is also dominated by D2 when
n ≡ 1, 2. Hence, D is a pitchfork dominating set in Tm,n and γpf (Tm,n) = |D1| + |D2| = ⌈ m

3 ⌉ + ⌈ n
3 ⌉.

part ii: If m ≡ 1 ∧ n ≡ 0 (mod 3), then let: D1 = {u3i−1; i = 1, 2, . . . , ⌈ m
3 ⌉} and D2 = {v3i−1; i =

1, 2, . . . , ⌈ n
3 ⌉}. Then, γpf (Tm,n) = |D1| + |D2| = ⌈ m

3 ⌉ + ⌈ n
3 ⌉.

Case 2: If m ≡ 1 ∧ n ≡ 1, 2 (mod 3), then the vertex u1 is not dominated by D1 since it is dominated by
the vertex vn ∈ D2, then: D1 = {u3j; j = 1, 2, . . . , ⌈ m

3 ⌉ − 1} and D2 = {v3i−1; i = 1, 2, . . . , ⌈ n
3 ⌉}. Thus,

D is a minimum pitchfork dominating set in Tm, n and γpf (Tm, n) = |D1| + |D2| = ⌈ m−1
3 ⌉ + ⌈ n

3 ⌉. �

Figure 1: The tadpole graph
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The lollipop graph Lm,n is obtained by joining a vertex of Km to Pn by edge as in Fig 2. (see
[5,11,17]).

Figure 2: The lollipop graph

Proposition 2.2. The lollipop graph Lm,n has pitchfork domination for m ≥ 3 and n ≥ 2 such that
γpf (Lm,n) = (m − 2) + ⌈ n

3 ⌉ .

Proof: All vertices of Km can be labeled as: {ui; i = 1, 2, . . . , m}, so that the vertices of Pn as: {vj ; j =
1, 2, . . . , n} where the vertex u1 is adjacent with a vertex vn. If u1 ∈ D, then it will dominates two
vertices of Km and adjacent with vn of Pn, then if vn /∈ D, the vertex u1 dominates three vertices which
is contradiction, and if vn ∈ D, then γpf (Lm,n) may be increase. Therefore, let u1 ∈ V − D. Since
γpf (Km) = (m − 2) by Proposition 1.4 and γpf (Pn) = ⌈ n

3 ⌉ by Observation 1.1. Thus, γpf (Lm,n) =
(m − 2) + ⌈ n

3 ⌉. �

The daisy graph Dn1,n2
is formed by joined two cycles Cn1

and Cn2
by a common vertex as in Fig 3.

(see [5,11,13]).

Figure 3: The daisy graph

Theorem 2.3. Let G be the (n1, n2)−daisy graph Dn1,n2
, then:

γpf (Dn1,n2
) =

{

⌈ n1

3 ⌉ + ⌈ n2−1
3 ⌉, if {n1 ≡ 0, 2 (mod 3)} or {n1 ≡ 1 ∧ n2 − 1 ≡ 0 (mod 3)}

⌈ n1−1
3 ⌉ + ⌈ n2−1

3 ⌉, if n1 ≡ 1 ∧ n2 − 1 ≡ 1, 2 (mod 3)

Proof: Suppose that Dn1,n2
has two cycles Cn1

and Cn2
with common vertex. Let us label the vertices

of Cn1
as: {vi; i = 1, 2, . . . , n1} so that the vertices of Cn2

as: {uj; j = 1, 2, . . . , n2 − 1} such that
|V (Cn1

)| ≥ |V (Cn2
)| where this two cycles common by the vertex vn1

of degree 4 which is adjacent
with v1, vn1−1 from Cn1

and with u1, un2−1 from Cn2
. Let the pitchfork dominating set of Dn1,n2

is
D = D1 ∪ D2 where D1 is pitchfork dominating set of Cn1

and D2 is pitchfork dominating set of Cn2
. If

we select vn1
∈ D , then it can be dominates at most two vertices and adjacent with two other vertices

of D every one of them must be adjacent with one vertex from V − D. But this matter will increase |D|
(unless when n1 ≡ 1 ∧ n2 − 1 ≡ 0). Hence, to avoid this matter let us select vn1

∈ V − D. Now, to choose
D:
Case 1: If n1 ≡ 0, 2 (mod 3). Let D1 = {v3i−2; i = 1, 2, . . . , ⌈ n1

3 ⌉} and

D2 =

{

{u3i−1; i = 1, 2, . . . , ⌈ n2−1
3 ⌉} if n2 − 1 ≡ 0, 2

{u3i−1; i = 1, 2, . . . , ⌈ n2−1
3 ⌉ − 1} ∪ {un2−1} if n2 − 1 ≡ 1.
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Then, γpf (Dn1,n2
) = |D1| + |D2| = ⌈ n1

3 ⌉ + ⌈ n2−1
3 ⌉.

Case 2: If n1 ≡ 1 (mod 3):
Part i: If n1 ≡ 1 ∧ n2 − 1 ≡ 0 (mod 3), then let: D1 = {v3i−2; i = 1, 2, . . . , ⌈ n1

3 ⌉ − 1} ∪ {vn1−1} and

D2 = {u3i−1; i = 1, 2, . . . , ⌈ n2−1
3 ⌉}. Hence, γpf (Dn1,n2

) = |D1| + |D2| = ⌈ n1

3 ⌉ + ⌈ n2−1
3 ⌉.

Part ii: If n1 ≡ 1∧n2 −1 ≡ 1, 2 (mod 3), then in this case, the vertex vn1
can be dominated by the vertex

u1 or un2−1 or together. Hence, the set D1 will dominates only n1 − 1 vertices of cycle Cn1
, therefore

|D1| will be decreasing and we can choose D1 and D2 as follows: D1 = {v3i−1; i = 1, 2, . . . , ⌈ n1

3 ⌉ − 1} and

D2 = {u3i−2; i = 1, 2, . . . , ⌈ n2−1
3 ⌉}. Hence, γpf (Dn1,n2

) = |D1| + |D2| = ⌈ n1−1
3 ⌉ + ⌈ n2−1

3 ⌉. �

The Barbell graph Bn,n, (n ≥ 3) contains two complete graphs Kn joined by edge as in Fig 4. (see
[5,11,17]).

Figure 4: The Barbell graphs

Proposition 2.4. The Barbell graph Bn, n, (n ≥ 3) has pitchfork domination such that γpf (Bn,n) =
2n − 4.

Proof: Since γpf (Kn) = n − 2 by Proposition 1.4 such that the bridge is incident on two vertices of D
or V − D together. �

3. Inverse Pitchfork Domination

In this section, an inverse pitchfork domination is studied to discuss minimum inverse pitchfork dom-
inating set and its order for the previous graphs.

Theorem 3.1. For the tadpole graph Tm, n; m ≥ 3, n ≥ 2, we have:

γ−1
pf (Tm, n) =







⌈ m
3 ⌉ + ⌈ n+1

3 ⌉, if n ≡ 0 (mod 3)
⌈ m

3 ⌉ + ⌈ n
3 ⌉, if (m ≡ 0, 2 ∧ n ≡ 1, 2) or (m ≡ 1 ∧ n ≡ 2)

⌈ m−1
3 ⌉ + ⌈ n

3 ⌉, if m ≡ 1 ∧ n ≡ 1

Proof: According to Theorem 2.1, D = D1 ∪ D2 where D1 is the pitchfork dominating set of Cm and
D2 is the pitchfork dominating set of Pn. Let D−1 = D−1

1 ∪ D−1
2 where D−1

1 is an inverse pitchfork
dominating set of Cm and D−1

2 is an inverse pitchfork dominating set of Pn. Then, we choose D−1 as:
Case 1: If m ≡ 0 mod 3. Then, D−1

1 = {u3j−1; j = 1, 2, . . . , ⌈ m
3 ⌉} where |D−1

1 | = ⌈ m
3 ⌉ and

D−1
2 =







{v3i−2; i = 1, 2, . . . , ⌈ n
3 ⌉} ∪ {vn}, if n ≡ 0

{v3i−2; i = 1, 2, . . . , ⌈ n
3 ⌉ − 1} ∪ {vn−1}, if n ≡ 1

{v3i−2; i = 1, 2, . . . , ⌈ n
3 ⌉}, if n ≡ 2

Where

|D−1
2 | =

{

⌈ n+1
3 ⌉, if n ≡ 0

⌈ n
3 ⌉, if n ≡ 1, 2

Case 2: If m ≡ 1 mod 3 , then

D−1
1 =







{u3j−2; j = 1, 2, . . . , ⌈ m
3 ⌉ − 1} ∪ {um−2}, if n ≡ 0

{u3j; j = 1, 2, . . . , ⌈ m
3 ⌉ − 1}, if n ≡ 1

{u3j−2; j = 1, 2, . . . , ⌈ m
3 ⌉}, if n ≡ 2
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Where

|D−1
1 | =

{

⌈ m
3 ⌉, if n ≡ 0, 2

⌈ m−1
3 ⌉, if n ≡ 1

And

D−1
2 =

{

{v3i−2; i = 1, 2, . . . , ⌈ n
3 ⌉} ∪ {vn}, if n ≡ 0

{v3i−2; i = 1, 2, . . . , ⌈ n
3 ⌉}, if n ≡ 1, 2

Where

|D−1
2 | =

{

⌈ n+1
3 ⌉, if n ≡ 0

⌈ n
3 ⌉, if n ≡ 1, 2

Case 3: If m ≡ 2 mod 3 , then D−1
1 = {u3j−1; j = 1, 2, . . . , ⌈ m

3 ⌉ − 1} ∪ {um−1} where |D−1
1 | = ⌈ m

3 ⌉ and

D−1
2 =







{v3i−2; i = 1, 2, . . . , ⌈ n
3 ⌉} ∪ {vn}, if n ≡ 0

{v3i−2; i = 1, 2, . . . , ⌈ n
3 ⌉ − 1} ∪ {vn−1}, if n ≡ 1

{v3i−2; i = 1, 2, . . . , ⌈ n
3 ⌉}, if n ≡ 2

Where

|D−1
2 | =

{

⌈ n+1
3 ⌉, if n ≡ 0

⌈ n
3 ⌉, if n ≡ 1, 2

�

Theorem 3.2. The lollipop graph Lm, n; m ≥ 3, n ≥ 2, has an inverse pitchfork domination if and only
if m = 3, 4 such that:

γ−1
pf (Lm, n) =

{

⌈ n+1
3 ⌉ + (m − 2), if n ≡ 0 (mod 3)

⌈ n
3 ⌉ + (m − 2), if n ≡ 1, 2

Proof: Let D is chosen as in Proposition 2.2 as D = D1 ∪ D2, where D1 is the pitchfork dominating set
of Km and D2 is a pitchfork dominating set of Pn. Therefore, let D−1 = D−1

1 ∪ D−1
2 where D−1

1 is an
inverse pitchfork dominating set in Km and D−1

2 is an inverse pitchfork dominating set in Pn, then D−1

chosen according to D as the following cases:
Case 1: If m = 3, let D1 = {u2} , then D−1

1 = {u3}. Also, if

D2 =

{

{v3i−1; i = 1, 2, . . . , ⌈ n
3 ⌉}, if n ≡ 0, 2 (mod 3)

{v3i−1; i = 1, 2, . . . , ⌈ n
3 ⌉ − 1} ∪ {vn}, if n ≡ 1 (mod 3)

Then,

D−1
2 =







{v3i−2; i = 1, 2, . . . , ⌈ n
3 ⌉} ∪ {vn}, if n ≡ 0 (mod 3)

{v3i−2; i = 1, 2, . . . , ⌈ n
3 ⌉ − 1} ∪ {vn−1}, if n ≡ 1 (mod 3)

{v3i−2; i = 1, 2, . . . , ⌈ n
3 ⌉}, if n ≡ 2 (mod 3)

Case 2: If m = 4, let D1 = {u2, u3} , then D−1
1 = {u1, u4}. Also, if

D2 =

{

{v3i−1; i = 1, 2, . . . , ⌈ n
3 ⌉}, if n ≡ 0, 2 (mod 3)

{v3i−1; i = 1, 2, . . . , ⌈ n
3 ⌉ − 1} ∪ {vn−1}, if n ≡ 1 (mod 3)

Then,

D−1
2 =

{

{v3i−2; i = 1, 2, . . . , ⌈ n
3 ⌉} ∪ {vn}, if n ≡ 0 (mod 3)

{v3i−2; i = 1, 2, . . . , ⌈ n
3 ⌉}, if n ≡ 1, 2 (mod 3)

Therefore,

γ−1
pf (L3,n) =

{

⌈ n+1
3 ⌉ + 1, if n ≡ 0 (mod 3)

⌈ n
3 ⌉ + 1, if n ≡ 1, 2

γ−1
pf (L4,n) =

{

⌈ n+1
3 ⌉ + 2, if n ≡ 0 (mod 3)

⌈ n
3 ⌉ + 2, if n ≡ 1, 2
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�

The lollipop flower Fm, n is defined in [5] as a complete graph Km, every vertex in which joins (by
edge) with a path Pn, where V (Fm, n) = m + mn so that E(Fm, n) =

(

m
2

)

+ mn. See Fig 5.

Figure 5: The lollipop flower graph

Theorem 3.3. [5] For m ≥ 3 and n ≥ 2,

γpf (Fm,n) =

{

m⌈ n
3 ⌉, if n ≡ 1, 2 (mod 3)

m ⌈ n
3 ⌉ + m − 1, if n ≡ 0 (mod 3)

Theorem 3.4. The lollipop flower graph Fm, n; m ≥ 3, n ≥ 2 has an inverse pitchfork domination if
and only if m = 3, 4 such that:

γ−1
pf (Fm, n) =

{

mn
3 + m, if n ≡ 0 (mod 3)

m⌈ n
3 ⌉ + (m − 2), if n ≡ 1, 2 (mod 3)

Proof: Let D is chosen as in Proposition 3.3 as D = Dk ∪ Dp, where Dk is a pitchfork dominating set of
Km and Dp is a pitchfork dominating set of P i

n where Dp =
⋃m

i=1 Di. Therefore, let D−1 = D−1
k ∪ D−1

p

where D−1
k is an inverse pitchfork dominating set in Km and D−1

p is an inverse pitchfork dominating set
in Pn, then D−1 chosen according to D as:

Dk =

{

{u3}, if m = 3
{u3, u4}, if m = 4

Hence,

D−1
k =

{

{u1}, if m = 3
{u1, u2}, if m = 4

Since

D1 = D2 =

{

{v3i−1; i = 1, 2, . . . , ⌈ n
3 ⌉}, if n ≡ 0, 2 (mod 3)

{v3i−1; i = 1, 2, . . . , ⌈ n
3 ⌉ − 1} ∪ {vn}, if n ≡ 1 (mod 3)

Thus, D−1
1 and D−1

2 are formed as:

D−1
1 = D−1

2 =







{v3i−2; i = 1, 2, . . . , ⌈ n
3 ⌉} ∪ {vn}, if n ≡ 0 (mod 3)

{v3i−1; i = 1, 2, . . . , ⌈ n
3 ⌉ − 1} ∪ {vn−1}, if n ≡ 1 (mod 3)

{v3i−2; i = 1, 2, . . . , ⌈ n
3 ⌉}, if n ≡ 2 (mod 3)

Where

|D−1
1 | = |D−1

2 | =

{

⌈ n
3 ⌉ + 1, if n ≡ 0

⌈ n
3 ⌉, if n ≡ 1, 2

Now, we choose D−1
3 and D−1

4 according to Theorem 1.1 such that |D−1
3 | = |D−1

4 | = ⌈ n
3 ⌉. Therefore,

γ−1
pf (Fm,n) =

{

(m − 2) + 2(⌈ n
3 ⌉ + 1) + (m − 2)⌈ n

3 ⌉, if n ≡ 0 (mod 3)
(m − 2) + 2⌈ n

3 ⌉ + (m − 2)⌈ n
3 ⌉, if n ≡ 1, 2 (mod 3)

which is the required identity after few simplification. �
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Theorem 3.5. Let G be the (n1, n2)−daisy graph Dn1, n2
, then:

γ−1
pf (Dn1, n2

) =







⌈ n1

3 ⌉ + ⌈ n2

3 ⌉, if n1 ≡ 0, 2 ∧ n2 − 1 ≡ 0 (mod 3)
⌈ n1−1

3 ⌉ + ⌈ n2

3 ⌉, if n1 ≡ 1 ∧ n2 − 1 ≡ 0 (mod 3)
⌈ n1

3 ⌉ + ⌈ n2−1
3 ⌉, otherwise (i.e. n1 ≡ 0, 1, 2 ∧ n2 − 1 ≡ 1, 2 (mod 3))

Proof: Suppose that Dn1, n2
has two cycles Cn1

and Cn2
with a common vertex and let us label the

vertices of Dn1, n2
and the pitchfork dominating set according to Theorem 2.3. An inverse pitchfork

dominating set of Dn1, n2
is D−1 = D−1

1 ∪ D−1
2 where D−1

1 and D−1
2 is an inverse pitchfork dominating

sets of Cn1
and Cn2

respectively, which are selecting as follows:

D−1
1 =























{v3i−1; i = 1, 2, . . . , ⌈ n1

3 ⌉}, if n1 ≡ 0 (mod 3)
{v3i−1; i = 1, 2, . . . , ⌈ n1

3 ⌉ − 1}, if n1 ≡ 1 ∧ n2 − 1 ≡ 0 (mod 3)
{v3i−2; i = 1, 2, . . . , ⌈ n1

3 ⌉ − 1} ∪ {vn1−1}, if n1 ≡ 1 ∧ n2 − 1 ≡ 1, 2 (mod 3)
{v3i−1; i = 1, 2, . . . , ⌈ n1

3 ⌉ − 1} ∪ {vn1
}, if n1 ≡ 2 ∧ n2 − 1 ≡ 0 (mod 3)

{v3i−2; i = 1, 2, . . . , ⌈ n1

3 ⌉ − 1} ∪ {vn1−2}, if n1 ≡ 2 ∧ n2 − 1 ≡ 1, 2 (mod 3)

And

D−1
2 =















{u3i−2; i = 1, 2, . . . , ⌈ n2−1
3 ⌉} ∪ {un2−1}, if n2 − 1 ≡ 0 (mod 3)

{u3i−1; i = 1, 2, . . . , ⌈ n2−1
3 ⌉ − 1} ∪ {un2−1}, if n2 − 1 ≡ 1 ∧ n1 ≡ 0 (mod 3)

{u3i−1; i = 1, 2, . . . , ⌈ n2−1
3 ⌉ − 1} ∪ {un2−2}, if n2 − 1 ≡ 1 ∧ n1 ≡ 1, 2 (mod 3)

{u3i−2; i = 1, 2, . . . , ⌈ n2−1
3 ⌉}, if n2 − 1 ≡ 2 (mod 3)

Where

|D−1
1 | =

{

⌈ n1−1
3 ⌉, if n1 ≡ 1 ∧ n2 − 1 ≡ 0

⌈ n1

3 ⌉, otherwise

And

|D−1
2 | =

{

⌈ n2

3 ⌉, if n2 − 1 ≡ 0
⌈ n2−1

3 ⌉, if n2 − 1 ≡ 1, 2

Therefore, D−1 is a minimum inverse pitchfork dominating set. �
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