(3s.) v. 2023 (41) : 1-8.
ISSN-0037-8712 IN PRESS
doi:10.5269/bspm. 52252

Applying the (1,2)-Pitchfork Domination and Its Inverse on Some Special Graphs

Mohammed A. Abdlhusein

Abstract

Let G be a finite graph, simple, undirected and with no isolated vertex. For any non-negative integers j and k, a dominating set D of $V(G)$ is called a pitchfork dominating set of G if every vertex in it dominates j vertices (at least) and k vertices (at most) from $V-D$. A set D^{-1} of $V-D$ is an inverse pitchfork dominating set if it is pitchfork dominating set. In this paper, pitchfork domination and inverse pitchfork domination are applied when $j=1$ and $k=2$ on some special graphs such as: tadpole graph, lollipop graph, lollipop flower graph, daisy graph and Barbell graph.

Key Words: Dominating set, inverse dominating set, pitchfork domination, pnverse pitchfork domination.

Contents

1 Introduction

2 Pitchfork Domination

1. Introduction

Let G be a graph with no isolated vertex has a vertex set V of order n and an edge set E of size m. The number of edges incident on vertex w is denoted by $\operatorname{deg}(w)$ and represent the degree of w. A vertex of degree 0 is called isolated and a vertex of degree 1 is a leaf. The vertex that adjacent with a leaf is a support vertex. The minimum and maximum degrees of vertices in G are denoted by $\delta(G)$ and $\Delta(G)$, respectively. For basic concepts and other graph theoretic terminologies not defined here, we refer to $[11,12,22]$. Also, we refer for basic concepts of domination to $[13,14,15,21]$. A set $D \subseteq V$ is a dominating set if every vertex in $V-D$ is adjacent to a vertex in D. A dominating set D is said to be a minimal if it has no proper dominating subset. The domination number $\gamma(G)$ is the cardinality of a minimum dominating set D of G. There are several models of domination, see for example [$6,7,9,10,18,19,20,23,25]$. Domination in graphs play a wide role in different kinds of fields in graph theory as labeled graph [8], topological graph [16], fuzzy graph [24] and other. The pitchfork domination and its inverse are introduced by Al-Harere and Abdlhusein $[1,2,3,4]$. They discuss several bounds and properties and gave an important information and applications of this model. A dominating set D of V is called a pitchfork dominating set if every vertex in it dominates j vertices (at least) and k vertices (at most) of $V-D$ for any non-negative integers j and k. A set D^{-1} of $V-D$ is an inverse pitchfork dominating set if it is pitchfork dominating set. The pitchfork domination number of G, denoted by $\gamma_{p f}(G)$ is the minimum cardinality over all pitchfork dominating sets in G. The inverse pitchfork domination number of G, denoted by $\gamma_{p f}^{-1}(G)$ is the minimum cardinality over all inverse pitchfork dominating sets in G. In this paper, pitchfork domination and its inverse are applied with their bounds and properties on some graphs.

Proposition 1.1. [5]: Let G be any graph with $\Delta(G) \leq 2$. Then, $\gamma(G)=\gamma_{p f}(G)$.
Theorem 1.2. [2] The cycle graph $C_{n} ;(n \geq 3)$ has an inverse pitchfork domination such that: $\gamma_{p f}^{-1}\left(C_{n}\right)=$ $\gamma_{p f}\left(C_{n}\right)=\left\lceil\frac{n}{3}\right\rceil$.

2010 Mathematics Subject Classification: 05C69.
Submitted February 19, 2020. Published August 18, 2020

Theorem 1.3. [2] The path graph $P_{n} ;(n \geq 2)$ has an inverse pitchfork domination such that:

$$
\gamma_{p f}^{-1}\left(P_{n}\right)=\left\{\begin{array}{lc}
\frac{n}{3}+1 & \text { if } n \equiv 0(\bmod 3) \\
\left\lceil\frac{n}{3}\right\rceil & \text { if } n \equiv 1,2(\bmod 3)
\end{array}\right.
$$

where $\gamma_{p f}^{-1}\left(P_{2}\right)=1$.
Proposition 1.4. [5] Let $G=K_{n}$ the complete graph with $n \geq 3$, then $\gamma_{p f}\left(K_{n}\right)=n-2$.
Proposition 1.5. [2] The complete graph K_{n} has an inverse pitchfork domination if and only if $n=3,4$ and $\gamma_{p f}^{-1}\left(K_{n}\right)=n-2$.

2. Pitchfork Domination

In this section, pitchfork domination is applied to discuss minimum pitchfork dominating set and its order for some graphs such as: tadpole graph, lollipop graph, daisy graph and Barbell graph.

Tadpole graph $T_{m, n}$ is formed by joining a vertex of its cycle C_{m} to a path P_{n} by an edge as in Fig 1. (see $[5,7,11,17])$.

Theorem 2.1. Let G be the tadpole graph $T_{m, n}$ where $(m \geq 3)$ and ($n \geq 2$). Then:

$$
\gamma_{p f}\left(T_{m, n}\right)= \begin{cases}\left\lceil\frac{m}{3}\right\rceil+\left\lceil\frac{n}{3}\right\rceil, & \text { if } m \equiv 0,2(\bmod 3) \text { or }(m \equiv 1 \wedge n \equiv 0(\bmod 3)) \\ \left\lceil\frac{m-1}{3}\right\rceil+\left\lceil\frac{n}{3}\right\rceil, & \text { if } m \equiv 1 \wedge n \equiv 1,2(\bmod 3)\end{cases}
$$

Proof: Since $T_{m, n}$ contains a cycle C_{m} joined by a bridge to a path P_{n}, then $V\left(T_{m, n}\right)=E\left(T_{m, n}\right)=m+n$ where $E\left(C_{m}\right)=m, E\left(P_{n}\right)=n-1$ and the bridge $u_{1} v_{n}$. The vertices of P_{n} can be labeled as: $\left\{v_{i} ; i=\right.$ $1,2, \ldots, n\}$. Also the vertices of C_{m} as: $\left\{u_{j} ; j=1,2, \ldots, m\right\}$ such that the vertex $u_{1} \in C_{m}$ adjacent with vertex $v_{n} \in P_{n}$ and $\operatorname{deg}\left(u_{1}\right)=3, \operatorname{deg}\left(v_{1}\right)=1$. Let the pitchfork dominating set $D=D_{1} \cup D_{2}$ where D_{1} is the pitchfork dominating set in C_{m} and D_{2} is the pitchfork dominating set in P_{n}. According to m we have two cases:
Case 1: There are two parts:
part i: If $m \equiv 0,2(\bmod 3)$, then let:

$$
\begin{aligned}
D_{1} & =\left\{\begin{array}{l}
\left\{u_{3 j} ; j=1,2, \ldots,\left\lceil\frac{m}{3}\right\rceil\right\} \text { if } m \equiv 0 . \\
\left\{u_{3 j} ; j=1,2, \ldots,\left\lceil\frac{m}{3}\right\rceil-1\right\} \cup\left\{u_{m}\right\} \text { if } m \equiv 2 . \\
D_{2}
\end{array}=\left\{\begin{array}{l}
\left\{v_{3 i-1} ; i=1,2, \ldots,\left\lceil\frac{n}{3}\right\rceil\right\} \text { if } n \equiv 0,2 . \\
\left\{v_{3 i-1} ; i=1,2, \ldots,\left\lceil\frac{n}{3}\right\rceil-1\right\} \cup\left\{v_{n}\right\} \text { if } n \equiv 1 .
\end{array}\right.\right.
\end{aligned}
$$

in this case if $u_{1} \in D_{1}$, then $u_{2} \in D_{1}$ or $u_{m} \in D_{1}$ or $v_{n} \in D_{2}$ to avoid that u_{1} dominates three vertices. Hence, let $u_{1} \notin D_{1}$ and dominated only by D_{1} when $n \equiv 0(\bmod 3)$, but it is also dominated by D_{2} when $n \equiv 1,2$. Hence, D is a pitchfork dominating set in $T_{m, n}$ and $\gamma_{p f}\left(T_{m, n}\right)=\left|D_{1}\right|+\left|D_{2}\right|=\left\lceil\frac{m}{3}\right\rceil+\left\lceil\frac{n}{3}\right\rceil$.
part ii: If $m \equiv 1 \wedge n \equiv 0(\bmod 3)$, then let: $D_{1}=\left\{u_{3 i-1} ; i=1,2, \ldots,\left\lceil\frac{m}{3}\right\rceil\right\}$ and $D_{2}=\left\{v_{3 i-1} ; i=\right.$ $\left.1,2, \ldots,\left\lceil\frac{n}{3}\right\rceil\right\}$. Then, $\gamma_{p f}\left(T_{m, n}\right)=\left|D_{1}\right|+\left|D_{2}\right|=\left\lceil\frac{m}{3}\right\rceil+\left\lceil\frac{n}{3}\right\rceil$.
Case 2: If $m \equiv 1 \wedge n \equiv 1,2(\bmod 3)$, then the vertex u_{1} is not dominated by D_{1} since it is dominated by the vertex $v_{n} \in D_{2}$, then: $D_{1}=\left\{u_{3 j} ; j=1,2, \ldots,\left\lceil\frac{m}{3}\right\rceil-1\right\}$ and $D_{2}=\left\{v_{3 i-1} ; i=1,2, \ldots,\left\lceil\frac{n}{3}\right\rceil\right\}$. Thus, D is a minimum pitchfork dominating set in $T_{m, n}$ and $\gamma_{p f}\left(T_{m, n}\right)=\left|D_{1}\right|+\left|D_{2}\right|=\left\lceil\frac{m-1}{3}\right\rceil+\left\lceil\frac{n}{3}\right\rceil$.

Figure 1: The tadpole graph

The lollipop graph $L_{m, n}$ is obtained by joining a vertex of K_{m} to P_{n} by edge as in Fig 2. (see [5,11,17]).

Figure 2: The lollipop graph
Proposition 2.2. The lollipop graph $L_{m, n}$ has pitchfork domination for $m \geq 3$ and $n \geq 2$ such that $\gamma_{p f}\left(L_{m, n}\right)=(m-2)+\left\lceil\frac{n}{3}\right\rceil$.

Proof: All vertices of K_{m} can be labeled as: $\left\{u_{i} ; i=1,2, \ldots, m\right\}$, so that the vertices of P_{n} as: $\left\{v_{j} ; j=\right.$ $1,2, \ldots, n\}$ where the vertex u_{1} is adjacent with a vertex v_{n}. If $u_{1} \in D$, then it will dominates two vertices of K_{m} and adjacent with v_{n} of P_{n}, then if $v_{n} \notin D$, the vertex u_{1} dominates three vertices which is contradiction, and if $v_{n} \in D$, then $\gamma_{p f}\left(L_{m, n}\right)$ may be increase. Therefore, let $u_{1} \in V-D$. Since $\gamma_{p f}\left(K_{m}\right)=(m-2)$ by Proposition 1.4 and $\gamma_{p f}\left(P_{n}\right)=\left\lceil\frac{n}{3}\right\rceil$ by Observation 1.1. Thus, $\gamma_{p f}\left(L_{m, n}\right)=$ $(m-2)+\left\lceil\frac{n}{3}\right\rceil$.

The daisy graph $D_{n_{1}, n_{2}}$ is formed by joined two cycles $C_{n_{1}}$ and $C_{n_{2}}$ by a common vertex as in Fig 3 . (see [5,11,13]).

Figure 3: The daisy graph
Theorem 2.3. Let G be the $\left(n_{1}, n_{2}\right)$-daisy graph $D_{n_{1}, n_{2}}$, then:

$$
\gamma_{p f}\left(D_{n_{1}, n_{2}}\right)= \begin{cases}\left\lceil\frac{n_{1}}{3}\right\rceil+\left\lceil\frac{n_{2}-1}{3}\right\rceil, & \text { if }\left\{n_{1} \equiv 0,2(\bmod 3)\right\} \text { or }\left\{n_{1} \equiv 1 \wedge n_{2}-1 \equiv 0(\bmod 3)\right\} \\ \left\lceil\frac{n_{1}-1}{3}\right\rceil+\left\lceil\frac{n_{2}-1}{3}\right\rceil, & \text { if } n_{1} \equiv 1 \wedge n_{2}-1 \equiv 1,2(\bmod 3)\end{cases}
$$

Proof: Suppose that $D_{n_{1}, n_{2}}$ has two cycles $C_{n_{1}}$ and $C_{n_{2}}$ with common vertex. Let us label the vertices of $C_{n_{1}}$ as: $\left\{v_{i} ; i=1,2, \ldots, n_{1}\right\}$ so that the vertices of $C_{n_{2}}$ as: $\left\{u_{j} ; j=1,2, \ldots, n_{2}-1\right\}$ such that $\left|V\left(C_{n_{1}}\right)\right| \geq\left|V\left(C_{n_{2}}\right)\right|$ where this two cycles common by the vertex $v_{n_{1}}$ of degree 4 which is adjacent with $v_{1}, v_{n_{1}-1}$ from $C_{n_{1}}$ and with $u_{1}, u_{n_{2}-1}$ from $C_{n_{2}}$. Let the pitchfork dominating set of $D_{n_{1}, n_{2}}$ is $D=D_{1} \cup D_{2}$ where D_{1} is pitchfork dominating set of $C_{n_{1}}$ and D_{2} is pitchfork dominating set of $C_{n_{2}}$. If we select $v_{n_{1}} \in D$, then it can be dominates at most two vertices and adjacent with two other vertices of D every one of them must be adjacent with one vertex from $V-D$. But this matter will increase $|D|$ (unless when $n_{1} \equiv 1 \wedge n_{2}-1 \equiv 0$). Hence, to avoid this matter let us select $v_{n_{1}} \in V-D$. Now, to choose D:
Case 1: If $n_{1} \equiv 0,2(\bmod 3)$. Let $D_{1}=\left\{v_{3 i-2} ; i=1,2, \ldots,\left\lceil\frac{n_{1}}{3}\right\rceil\right\}$ and

$$
D_{2}=\left\{\begin{array}{l}
\left\{u_{3 i-1} ; i=1,2, \ldots,\left\lceil\frac{n_{2}-1}{3}\right\rceil\right\} \text { if } n_{2}-1 \equiv 0,2 \\
\left\{u_{3 i-1} ; i=1,2, \ldots,\left\lceil\frac{n_{2}-1}{3}\right\rceil-1\right\} \cup\left\{u_{n_{2}-1}\right\} \text { if } n_{2}-1 \equiv 1 .
\end{array}\right.
$$

Then, $\gamma_{p f}\left(D_{n_{1}, n_{2}}\right)=\left|D_{1}\right|+\left|D_{2}\right|=\left\lceil\frac{n_{1}}{3}\right\rceil+\left\lceil\frac{n_{2}-1}{3}\right\rceil$.
Case 2: If $n_{1} \equiv 1(\bmod 3)$:
Part i: If $n_{1} \equiv 1 \wedge n_{2}-1 \equiv 0(\bmod 3)$, then let: $D_{1}=\left\{v_{3 i-2} ; i=1,2, \ldots,\left\lceil\frac{n_{1}}{3}\right\rceil-1\right\} \cup\left\{v_{n_{1}-1}\right\}$ and $D_{2}=\left\{u_{3 i-1} ; i=1,2, \ldots,\left\lceil\frac{n_{2}-1}{3}\right\rceil\right\}$. Hence, $\gamma_{p f}\left(D_{n_{1}, n_{2}}\right)=\left|D_{1}\right|+\left|D_{2}\right|=\left\lceil\frac{n_{1}}{3}\right\rceil+\left\lceil\frac{n_{2}-1}{3}\right\rceil$.
Part ii: If $n_{1} \equiv 1 \wedge n_{2}-1 \equiv 1,2(\bmod 3)$, then in this case, the vertex $v_{n_{1}}$ can be dominated by the vertex u_{1} or $u_{n_{2}-1}$ or together. Hence, the set D_{1} will dominates only $n_{1}-1$ vertices of cycle $C_{n_{1}}$, therefore $\left|D_{1}\right|$ will be decreasing and we can choose D_{1} and D_{2} as follows: $D_{1}=\left\{v_{3 i-1} ; i=1,2, \ldots,\left\lceil\frac{n_{1}}{3}\right\rceil-1\right\}$ and $D_{2}=\left\{u_{3 i-2} ; i=1,2, \ldots,\left\lceil\frac{n_{2}-1}{3}\right\rceil\right\}$. Hence, $\gamma_{p f}\left(D_{n_{1}, n_{2}}\right)=\left|D_{1}\right|+\left|D_{2}\right|=\left\lceil\frac{n_{1}-1}{3}\right\rceil+\left\lceil\frac{n_{2}-1}{3}\right\rceil$.

The Barbell graph $B_{n, n},(n \geq 3)$ contains two complete graphs K_{n} joined by edge as in Fig 4. (see [5,11,17]).

Figure 4: The Barbell graphs
Proposition 2.4. The Barbell graph $B_{n, n}$, $(n \geq 3)$ has pitchfork domination such that $\gamma_{p f}\left(B_{n, n}\right)=$ $2 n-4$.

Proof: Since $\gamma_{p f}\left(K_{n}\right)=n-2$ by Proposition 1.4 such that the bridge is incident on two vertices of D or $V-D$ together.

3. Inverse Pitchfork Domination

In this section, an inverse pitchfork domination is studied to discuss minimum inverse pitchfork dominating set and its order for the previous graphs.

Theorem 3.1. For the tadpole graph $T_{m, n} ; m \geq 3, n \geq 2$, we have:

$$
\gamma_{p f}^{-1}\left(T_{m, n}\right)= \begin{cases}\left\lceil\frac{m}{3}\right\rceil+\left\lceil\frac{n+1}{3}\right\rceil, & \text { if } n \equiv 0(\bmod 3) \\ \left\lceil\frac{m}{3}\right\rceil+\left\lceil\frac{n}{3}\right\rceil, & \text { if }(m \equiv 0,2 \wedge n \equiv 1,2) \text { or }(m \equiv 1 \wedge n \equiv 2) \\ \left\lceil\frac{m-1}{3}\right\rceil+\left\lceil\frac{n}{3}\right\rceil, & \text { if } m \equiv 1 \wedge n \equiv 1\end{cases}
$$

Proof: According to Theorem 2.1, $D=D_{1} \cup D_{2}$ where D_{1} is the pitchfork dominating set of C_{m} and D_{2} is the pitchfork dominating set of P_{n}. Let $D^{-1}=D_{1}^{-1} \cup D_{2}^{-1}$ where D_{1}^{-1} is an inverse pitchfork dominating set of C_{m} and D_{2}^{-1} is an inverse pitchfork dominating set of P_{n}. Then, we choose D^{-1} as: Case 1: If $m \equiv 0 \bmod 3$. Then, $D_{1}^{-1}=\left\{u_{3 j-1} ; j=1,2, \ldots,\left\lceil\frac{m}{3}\right\rceil\right\}$ where $\left|D_{1}^{-1}\right|=\left\lceil\frac{m}{3}\right\rceil$ and

$$
D_{2}^{-1}= \begin{cases}\left\{v_{3 i-2} ; i=1,2, \ldots,\left\lceil\frac{n}{3}\right\rceil\right\} \cup\left\{v_{n}\right\}, & \text { if } n \equiv 0 \\ \left\{v_{3 i-2} ; i=1,2, \ldots,\left\lceil\frac{n}{3}\right\rceil-1\right\} \cup\left\{v_{n-1}\right\}, & \text { if } n \equiv 1 \\ \left\{v_{3 i-2} ; i=1,2, \ldots,\left\lceil\frac{n}{3}\right\rceil\right\}, & \text { if } n \equiv 2\end{cases}
$$

Where

$$
\left|D_{2}^{-1}\right|= \begin{cases}\left\lceil\frac{n+1}{3}\right\rceil, & \text { if } n \equiv 0 \\ \left\lceil\frac{n}{3}\right\rceil, & \text { if } n \equiv 1,2\end{cases}
$$

Case 2: If $m \equiv 1 \bmod 3$, then

$$
D_{1}^{-1}= \begin{cases}\left\{u_{3 j-2} ; j=1,2, \ldots,\left\lceil\frac{m}{3}\right\rceil-1\right\} \cup\left\{u_{m-2}\right\}, & \text { if } n \equiv 0 \\ \left\{u_{3 j} ; j=1,2, \ldots,\left\lceil\frac{m}{3}\right\rceil-1\right\}, & \text { if } n \equiv 1 \\ \left\{u_{3 j-2} ; j=1,2, \ldots,\left\lceil\frac{m}{3}\right\rceil\right\}, & \text { if } n \equiv 2\end{cases}
$$

Where

$$
\left|D_{1}^{-1}\right|= \begin{cases}\left\lceil\frac{m}{3}\right\rceil, & \text { if } n \equiv 0,2 \\ \left\lceil\frac{m-1}{3}\right\rceil, & \text { if } n \equiv 1\end{cases}
$$

And

$$
D_{2}^{-1}= \begin{cases}\left\{v_{3 i-2} ; i=1,2, \ldots,\left\lceil\frac{n}{3}\right\rceil\right\} \cup\left\{v_{n}\right\}, & \text { if } n \equiv 0 \\ \left\{v_{3 i-2} ; i=1,2, \ldots,\left\lceil\frac{n}{3}\right\rceil\right\}, & \text { if } n \equiv 1,2\end{cases}
$$

Where

$$
\left|D_{2}^{-1}\right|= \begin{cases}\left\lceil\frac{n+1}{3}\right\rceil, & \text { if } n \equiv 0 \\ \left\lceil\frac{n}{3}\right\rceil, & \text { if } n \equiv 1,2\end{cases}
$$

Case 3: If $m \equiv 2 \bmod 3$, then $D_{1}^{-1}=\left\{u_{3 j-1} ; j=1,2, \ldots,\left\lceil\frac{m}{3}\right\rceil-1\right\} \cup\left\{u_{m-1}\right\}$ where $\left|D_{1}^{-1}\right|=\left\lceil\frac{m}{3}\right\rceil$ and

$$
D_{2}^{-1}= \begin{cases}\left\{v_{3 i-2} ; i=1,2, \ldots,\left\lceil\frac{n}{3}\right\rceil\right\} \cup\left\{v_{n}\right\}, & \text { if } n \equiv 0 \\ \left\{v_{3 i-2} ; i=1,2, \ldots,\left\lceil\frac{n}{3}\right\rceil-1\right\} \cup\left\{v_{n-1}\right\}, & \text { if } n \equiv 1 \\ \left\{v_{3 i-2} ; i=1,2, \ldots,\left\lceil\frac{n}{3}\right\rceil\right\}, & \text { if } n \equiv 2\end{cases}
$$

Where

$$
\left|D_{2}^{-1}\right|= \begin{cases}\left\lceil\frac{n+1}{3}\right\rceil, & \text { if } n \equiv 0 \\ \left\lceil\frac{n}{3}\right\rceil, & \text { if } n \equiv 1,2\end{cases}
$$

Theorem 3.2. The lollipop graph $L_{m, n} ; m \geq 3, n \geq 2$, has an inverse pitchfork domination if and only if $m=3,4$ such that:

$$
\gamma_{p f}^{-1}\left(L_{m, n}\right)= \begin{cases}\left\lceil\frac{n+1}{3}\right\rceil+(m-2), & \text { if } n \equiv 0(\bmod 3) \\ \left\lceil\frac{n}{3}\right\rceil+(m-2), & \text { if } n \equiv 1,2\end{cases}
$$

Proof: Let D is chosen as in Proposition 2.2 as $D=D_{1} \cup D_{2}$, where D_{1} is the pitchfork dominating set of K_{m} and D_{2} is a pitchfork dominating set of P_{n}. Therefore, let $D^{-1}=D_{1}^{-1} \cup D_{2}^{-1}$ where D_{1}^{-1} is an inverse pitchfork dominating set in K_{m} and D_{2}^{-1} is an inverse pitchfork dominating set in P_{n}, then D^{-1} chosen according to D as the following cases:
Case 1: If $m=3$, let $D_{1}=\left\{u_{2}\right\}$, then $D_{1}^{-1}=\left\{u_{3}\right\}$. Also, if

$$
D_{2}= \begin{cases}\left\{v_{3 i-1} ; i=1,2, \ldots,\left\lceil\frac{n}{3}\right\rceil\right\}, & \text { if } n \equiv 0,2(\bmod 3) \\ \left\{v_{3 i-1} ; i=1,2, \ldots,\left\lceil\frac{n}{3}\right\rceil-1\right\} \cup\left\{v_{n}\right\}, & \text { if } n \equiv 1(\bmod 3)\end{cases}
$$

Then,

$$
D_{2}^{-1}= \begin{cases}\left\{v_{3 i-2} ; i=1,2, \ldots,\left\lceil\frac{n}{3}\right\rceil\right\} \cup\left\{v_{n}\right\}, & \text { if } n \equiv 0(\bmod 3) \\ \left\{v_{3 i-2} ; i=1,2, \ldots,\lceil \rceil-1\right\} \cup\left\{v_{n-1}\right\}, & \text { if } n \equiv 1(\bmod 3) \\ \left\{v_{3 i-2} ; i=1,2, \ldots,\left\lceil\frac{n}{3}\right\rceil\right\}, & \text { if } n \equiv 2(\bmod 3)\end{cases}
$$

Case 2: If $m=4$, let $D_{1}=\left\{u_{2}, u_{3}\right\}$, then $D_{1}^{-1}=\left\{u_{1}, u_{4}\right\}$. Also, if

$$
D_{2}= \begin{cases}\left\{v_{3 i-1} ; i=1,2, \ldots,\left\lceil\frac{n}{3}\right\rceil\right\}, & \text { if } n \equiv 0,2(\bmod 3) \\ \left\{v_{3 i-1} ; i=1,2, \ldots,\left\lceil\frac{n}{3}\right\rceil-1\right\} \cup\left\{v_{n-1}\right\}, & \text { if } n \equiv 1(\bmod 3)\end{cases}
$$

Then,

$$
D_{2}^{-1}= \begin{cases}\left\{v_{3 i-2} ; i=1,2, \ldots,\left\lceil\frac{n}{3}\right\rceil\right\} \cup\left\{v_{n}\right\}, & \text { if } n \equiv 0(\bmod 3) \\ \left\{v_{3 i-2} ; i=1,2, \ldots,\left\lceil\frac{n}{3}\right\rceil\right\}, & \text { if } n \equiv 1,2(\bmod 3)\end{cases}
$$

Therefore,

$$
\begin{aligned}
& \gamma_{p f}^{-1}\left(L_{3, n}\right)= \begin{cases}\left\lceil\frac{n+1}{3}\right\rceil+1, & \text { if } n \equiv 0(\bmod 3) \\
\left\lceil\frac{n}{3}\right\rceil+1, & \text { if } n \equiv 1,2\end{cases} \\
& \gamma_{p f}^{-1}\left(L_{4, n}\right)= \begin{cases}\left\lceil\frac{n+1}{3}\right\rceil+2, & \text { if } n \equiv 0(\bmod 3) \\
\left\lceil\frac{n}{3}\right\rceil+2, & \text { if } n \equiv 1,2\end{cases}
\end{aligned}
$$

The lollipop flower $F_{m, n}$ is defined in [5] as a complete graph K_{m}, every vertex in which joins (by edge) with a path P_{n}, where $V\left(F_{m, n}\right)=m+m n$ so that $E\left(F_{m, n}\right)=\binom{m}{2}+m n$. See Fig 5 .

Figure 5: The lollipop flower graph
Theorem 3.3. [5] For $m \geq 3$ and $n \geq 2$,

$$
\gamma_{p f}\left(F_{m, n}\right)= \begin{cases}m\left\lceil\frac{n}{3}\right\rceil, & \text { if } n \equiv 1,2(\bmod 3) \\ m\left\lceil\frac{n}{3}\right\rceil+m-1, & \text { if } n \equiv 0(\bmod 3)\end{cases}
$$

Theorem 3.4. The lollipop flower graph $F_{m, n} ; m \geq 3, n \geq 2$ has an inverse pitchfork domination if and only if $m=3,4$ such that:

$$
\gamma_{p f}^{-1}\left(F_{m, n}\right)= \begin{cases}\frac{m n}{3}+m, & \text { if } n \equiv 0(\bmod 3) \\ m\left\lceil\frac{n}{3}\right\rceil+(m-2), & \text { if } n \equiv 1,2(\bmod 3)\end{cases}
$$

Proof: Let D is chosen as in Proposition 3.3 as $D=D_{k} \cup D_{p}$, where D_{k} is a pitchfork dominating set of K_{m} and D_{p} is a pitchfork dominating set of P_{n}^{i} where $D_{p}=\bigcup_{i=1}^{m} D_{i}$. Therefore, let $D^{-1}=D_{k}^{-1} \cup D_{p}^{-1}$ where D_{k}^{-1} is an inverse pitchfork dominating set in K_{m} and D_{p}^{-1} is an inverse pitchfork dominating set in P_{n}, then D^{-1} chosen according to D as:

$$
D_{k}= \begin{cases}\left\{u_{3}\right\}, & \text { if } m=3 \\ \left\{u_{3}, u_{4}\right\}, & \text { if } m=4\end{cases}
$$

Hence,

$$
D_{k}^{-1}= \begin{cases}\left\{u_{1}\right\}, & \text { if } m=3 \\ \left\{u_{1}, u_{2}\right\}, & \text { if } m=4\end{cases}
$$

Since

$$
D_{1}=D_{2}= \begin{cases}\left\{v_{3 i-1} ; i=1,2, \ldots,\left\lceil\frac{n}{3}\right\rceil\right\}, & \text { if } n \equiv 0,2(\bmod 3) \\ \left\{v_{3 i-1} ; i=1,2, \ldots,\left\lceil\frac{n}{3}\right\rceil-1\right\} \cup\left\{v_{n}\right\}, & \text { if } n \equiv 1(\bmod 3)\end{cases}
$$

Thus, D_{1}^{-1} and D_{2}^{-1} are formed as:

$$
D_{1}^{-1}=D_{2}^{-1}= \begin{cases}\left\{v_{3 i-2} ; i=1,2, \ldots,\left\lceil\frac{n}{3}\right\rceil\right\} \cup\left\{v_{n}\right\}, & \text { if } n \equiv 0(\bmod 3) \\ \left\{v_{3 i-1} ; i=1,2, \ldots,\left\lceil\frac{n}{3}\right\rceil-1\right\} \cup\left\{v_{n-1}\right\}, & \text { if } n \equiv 1(\bmod 3) \\ \left\{v_{3 i-2} ; i=1,2, \ldots,\left\lceil\frac{n}{3}\right\rceil\right\}, & \text { if } n \equiv 2(\bmod 3)\end{cases}
$$

Where

$$
\left|D_{1}^{-1}\right|=\left|D_{2}^{-1}\right|= \begin{cases}\left\lceil\frac{n}{3}\right\rceil+1, & \text { if } n \equiv 0 \\ \left\lceil\frac{n}{3}\right\rceil, & \text { if } n \equiv 1,2\end{cases}
$$

Now, we choose D_{3}^{-1} and D_{4}^{-1} according to Theorem 1.1 such that $\left|D_{3}^{-1}\right|=\left|D_{4}^{-1}\right|=\left\lceil\frac{n}{3}\right\rceil$. Therefore,

$$
\gamma_{p f}^{-1}\left(F_{m, n}\right)= \begin{cases}(m-2)+2\left(\left\lceil\frac{n}{3}\right\rceil+1\right)+(m-2)\left\lceil\frac{n}{3}\right\rceil, & \text { if } n \equiv 0(\bmod 3) \\ (m-2)+2\left\lceil\frac{n}{3}\right\rceil+(m-2)\left\lceil\frac{n}{3}\right\rceil, & \text { if } n \equiv 1,2(\bmod 3)\end{cases}
$$

which is the required identity after few simplification.

Theorem 3.5. Let G be the $\left(n_{1}, n_{2}\right)$-daisy graph $D_{n_{1}, n_{2}}$, then:

$$
\gamma_{p f}^{-1}\left(D_{n_{1}, n_{2}}\right)= \begin{cases}\left\lceil\frac{n_{1}}{3}\right\rceil+\left\lceil\frac{n_{2}}{3}\right\rceil, & \text { if } n_{1} \equiv 0,2 \wedge n_{2}-1 \equiv 0(\bmod 3) \\ \left\lceil\frac{n_{1}-1}{3}\right\rceil+\left\lceil\frac{n_{2}}{3}\right\rceil, & \text { if } n_{1} \equiv 1 \wedge n_{2}-1 \equiv 0(\bmod 3) \\ \left\lceil\frac{n_{1}}{3}\right\rceil+\left\lceil\frac{n_{2}-1}{3}\right\rceil, & \text { otherwise }\left(\text { i.e. } n_{1} \equiv 0,1,2 \wedge n_{2}-1 \equiv 1,2(\bmod 3)\right)\end{cases}
$$

Proof: Suppose that $D_{n_{1}, n_{2}}$ has two cycles $C_{n_{1}}$ and $C_{n_{2}}$ with a common vertex and let us label the vertices of $D_{n_{1}, n_{2}}$ and the pitchfork dominating set according to Theorem 2.3. An inverse pitchfork dominating set of $D_{n_{1}, n_{2}}$ is $D^{-1}=D_{1}^{-1} \cup D_{2}^{-1}$ where D_{1}^{-1} and D_{2}^{-1} is an inverse pitchfork dominating sets of $C_{n_{1}}$ and $C_{n_{2}}$ respectively, which are selecting as follows:

$$
D_{1}^{-1}= \begin{cases}\left\{v_{3 i-1} ; i=1,2, \ldots,\left\lceil\frac{n_{1}}{3}\right\rceil\right\}, & \text { if } n_{1} \equiv 0(\bmod 3) \\ \left\{v_{3 i-1} ; i=1,2, \ldots,\left\lceil\frac{n_{1}}{3}\right\rceil-1\right\}, & \text { if } n_{1} \equiv 1 \wedge n_{2}-1 \equiv 0(\bmod 3) \\ \left\{v_{3 i-2} ; i=1,2, \ldots,\left\lceil\frac{n_{1}}{3}\right\rceil-1\right\} \cup\left\{v_{n_{1}-1}\right\}, & \text { if } n_{1} \equiv 1 \wedge n_{2}-1 \equiv 1,2(\bmod 3) \\ \left\{v_{3 i-1} ; i=1,2, \ldots,\left\lceil\frac{n_{1}}{3}\right\rceil-1\right\} \cup\left\{v_{n_{1}}\right\}, & \text { if } n_{1} \equiv 2 \wedge n_{2}-1 \equiv 0(\bmod 3) \\ \left\{v_{3 i-2} ; i=1,2, \ldots,\left\lceil\frac{n_{1}}{3}\right\rceil-1\right\} \cup\left\{v_{n_{1}-2}\right\}, & \text { if } n_{1} \equiv 2 \wedge n_{2}-1 \equiv 1,2(\bmod 3)\end{cases}
$$

And

$$
D_{2}^{-1}= \begin{cases}\left\{u_{3 i-2} ; i=1,2, \ldots,\left\lceil\frac{n_{2}-1}{3}\right\rceil\right\} \cup\left\{u_{n_{2}-1}\right\}, & \text { if } n_{2}-1 \equiv 0(\bmod 3) \\ \left\{u_{3 i-1} ; i=1,2, \ldots,\left\lceil\frac{n_{2}-1}{3}\right\rceil-1\right\} \cup\left\{u_{n_{2}-1}\right\}, & \text { if } n_{2}-1 \equiv 1 \wedge n_{1} \equiv 0(\bmod 3) \\ \left\{u_{3 i-1} ; i=1,2, \ldots,\left\lceil\frac{n_{2}-1}{3}\right\rceil-1\right\} \cup\left\{u_{n_{2}-2}\right\}, & \text { if } n_{2}-1 \equiv 1 \wedge n_{1} \equiv 1,2(\bmod 3) \\ \left\{u_{3 i-2} ; i=1,2, \ldots,\left\lceil\frac{n_{2}-1}{3}\right\rceil\right\}, & \text { if } n_{2}-1 \equiv 2(\bmod 3)\end{cases}
$$

Where

$$
\left|D_{1}^{-1}\right|= \begin{cases}\left\lceil\frac{n_{1}-1}{3}\right\rceil, & \text { if } n_{1} \equiv 1 \wedge n_{2}-1 \equiv 0 \\ \left\lceil\frac{n_{1}}{3}\right\rceil, & \text { otherwise }\end{cases}
$$

And

$$
\left|D_{2}^{-1}\right|= \begin{cases}\left\lceil\frac{n_{2}}{3}\right\rceil, & \text { if } n_{2}-1 \equiv 0 \\ \left\lceil\frac{n_{2}-1}{3}\right\rceil, & \text { if } n_{2}-1 \equiv 1,2\end{cases}
$$

Therefore, D^{-1} is a minimum inverse pitchfork dominating set.

4. Acknowledgement

I'd like to extend my gratitude to the authors of all used references.

References

1. M. A. Abdlhusein and M. N. Al-Harere, Pitchfork domination and its inverse for complement graphs, Proceedings of IAM, 9, 1, 13-17, (2020).
2. M. A. Abdlhusein and M. N. Al-Harere, New parameter of inverse domination in graphs, Indian Journal of Pure and Applied Mathematicse, (accepted to appear)(2020).
3. M. A. Abdlhusein and M. N. Al-Harere, Some modified types of pitchfork domination and its inverse, Boletim da Sociedade Paranaense de Matemática, (accepted to appear) (2020).
4. M. A. Abdlhusein and M. N. Al-Harere, Doubly connected pitchfork domination and its inverse in graphs, TWMS J. App. Eng. Math., (accepted to appear) (2020).
5. M. N. Al-Harere and M. A. Abdlhusein, Pitchfork domination in graphs, Discrete Mathematics, Algorithms and Applications, 12, 2, 2050025, (2020).
6. M. N. Al-Harere and A. T. Breesam, Further results on bi-domination in graphs, AIP Conf. Proc., 2096, 1, 020013-020013-9, (2019).
7. M. N. Al-Harere and P. A. Khuda Bakhash, Tadpole domination in graphs, Baghdad Science Journal, 15, 4, 466-471, (2018).
8. M. N. Al-Harere and A. A. Omran, On binary operation graphs, Boletim da Sociedade Paranaense de Matemática, 38, 7, 59-67, (2020).
9. I. A. Alwan, A. A. Omran, Domination polynomial of the composition of complete graph and star graph, J. Phys.: Conf. Ser., 1591012048 , (2020).
10. A. Das, R. C. Laskar and N. J. Rad, On α-domination in graphs, Graphs and Combinatorics, 34, 1, 193-205, (2018).
11. Gallian J. A., A dynamic survey of graph labeling, the Electronic j. of combinatorics. (2019).
12. F. Harary, Graph Theory, Addison-Wesley, Reading Mass, (1969).
13. T. W. Haynes, M. A. Henning and P. Zhang, A survey of stratified domination in graphs, Discrete Mathematics, Netherlands 309, 5806-5819, (2009).
14. T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of domination in graphs, Marcel Dekker, Inc., New York, (1998).
15. T. W. Haynes, S. T. Hedetniemi and P.J. Slater, Domination in graphs -Advanced Topics Marcel Dekker Inc., (1998).
16. A. A. Jabor and A. A. Omran, Domination in discrete topology graph, AIP, third international conference of science (ICMS2019), 2183, 030006-1-030006-3, (2019).
17. R. M. J. Jothi and A. Amutha, An investigation on some classes of super strongly perfect graphs, Applied Mathematical Sciences, 7, 65, 5806-5819, (2013).
18. A. Khodkar, B. Samadi and H. R. Golmohammadi, (k, k, \not, k)-Domination in graphs, Journal of Combinatorial Mathematics and Combinatorial Computing, 98, 343-349, (2016).
19. C. Natarajan, S. K. Ayyaswamy and G. Sathiamoorthy, A note on hop domination number of some special families of graphs, International Journal of Pure and Applied Mathematics, 119, 12, 14165-14171, (2018).
20. A. A. Omran and T. Swadi, Some properties of frame domination in graphs, Journal of Engineering and Applied Sciences, 12, 8882-8885, (2017).
21. O. Ore, Theory of Graphs, American Mathematical Society, Provedence, R.I., (1962).
22. M. S. Rahman, Basic graph theory, Springer, India, (2017).
23. Y. B. Venkatakrishnan and V. Swaminathan, Bipartite theory on neighbourhood dominating and global dominating sets of a graph, Boletim da Sociedade Paranaense de Matemática, 32, 1, 175-180, (2014).
24. H. J. Yousif and A. A. Omran, The split anti fuzzy domination in anti fuzzy graphs, J. Phys.: Conf. Ser., 1591012054, (2020).
25. X. Zhang, Z. Shao and H. Yang, The $[a, b]$-domination and $[a, b]$-total domination of graphs, Journal of Mathematics Research, 9, 3, 38-45, (2017).
```
Mohammed A. Abdlhusein,
Department of Mathematics,
College of Education for Pure Sciences
University of Thi-Qar,
Iraq.
E-mail address: mmhd@utq.edu.iq
```

