On the Maximum Principle for the Discrete p-Laplacian with Sign-changing Weight

Hamza Chehabi, Omar Chakrone and Mohammed Chehabi
ABSTRACT: This work deals with the maximum principle for the discrete Neumann or Dirichlet problem

$$
-\Delta \varphi_{p}(\Delta u(k-1))=\lambda m(k)|u(k)|^{p-2} u(k)+h(k) \quad \text { in } \quad[1, n] .
$$

We study the existence and nonexistence of positive solution and its uniqueness.
Key Words: Difference equations, discrete p-Laplacian, variational methods, maximum principle, discrete Picone's identity.

Contents

1 Introduction
 1

2 Principal eigenvalues in the Neumann case
1
3 Principal eigenvalues in the Dirichlet case

1. Introduction

This paper is concerned with the Neumann or Dirichlet problem

$$
-\Delta \varphi_{p}(\Delta u(k-1))=\lambda m(k)|u(k)|^{p-2} u(k)+h(k) \quad \text { in } \quad[1, n]
$$

where n is an integer greater than or equal to $1,[1, n]$ is the discrete interval $\{1, \ldots, n\}, \Delta u(k):=$ $u(k+1)-u(k)$ is the forward difference operator, $\varphi_{p}(s)=|s|^{p-2} s, 1<p<\infty, h$ function defined on $[1, n]$ and m changes sign in $[1, n]$. The original form for the maximum principle concerns the continuous problem

$$
-\Delta_{p} u=\lambda m(x)|u|^{p-2} u+h(x) \text { in } \Omega, B u=0 \text { on } \partial \Omega,
$$

where Ω is a bounded domain in $\mathbb{R}^{N}, \Delta_{p} u:=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$ is the p-Laplacian and $B u=0$ represents either the Dirichlet or the Neumann homogeneous boundary conditions (see [7,1]).

The argument here uses a discrete forme of Picone's identity (see [5]). Some of our arguments are inspired by $[4,8]$. We study the existence and nonexistence of positive solution and its uniqueness depending on the sign of $\sum_{k=1}^{n} m(k)$ and on whether or not λ belongs to $] 0, \mu(m)$ [in the Neumann case, and depending whether or not λ belongs to $] \lambda_{-1}(m), \lambda_{1}(m)\left[\right.$ in the Dirichlet case, where $\mu(m), \lambda_{1}(m)$ and $\lambda_{-1}(m)$ are defined in (2.7) and (3.3).

2. Principal eigenvalues in the Neumann case

Consider the Neumann problem

$$
\left\{\begin{array}{l}
-\Delta \varphi_{p}(\Delta u(k-1))=\lambda m(k)|u(k)|^{p-2} u(k)+h(k) \quad \text { in } \quad[1, n] \tag{2.1}\\
\Delta u(0)=\Delta u(n)=0 .
\end{array}\right.
$$

Suppose that

$$
\begin{equation*}
\exists k_{1}, k_{2} \in[1, n] ; m\left(k_{1}\right) m\left(k_{2}\right)<0 . \tag{2.2}
\end{equation*}
$$

Also, without loss of generality, we can assume that

$$
\begin{equation*}
|m(k)|<1, \quad \forall k \in[1, n] . \tag{2.3}
\end{equation*}
$$

[^0]The class $W=\{u:[0, n+1] \rightarrow \mathbb{R} ; \Delta u(0)=\Delta u(n)=0\}$ is an n-dimensional space under the norm $\|u\|=\left(\sum_{k=1}^{n}|u(k)|^{p}\right)^{1 / p}$.

Solution of (2.1) (or of (2.6)) are exactly the solutions in the sense: $u \in W$ with

$$
\begin{equation*}
\sum_{k=1}^{n} \varphi_{p}(\Delta u(k-1)) \Delta v(k-1)=\lambda \sum_{k=1}^{n} m(k)|u(k)|^{p-2} u(k) v(k)+\sum_{k=1}^{n} h(k) v(k), \quad \forall v \in W \tag{2.4}
\end{equation*}
$$

Our purpose in this preliminary section is to collect some results relative to the principal eigenvalues of

$$
\left\{\begin{array}{l}
-\Delta \varphi_{p}(\Delta u(k-1))=\lambda m(k)|u(k)|^{p-2} u(k) \quad \text { in } \quad[1, n] \tag{2.5}\\
\Delta u(0)=\Delta u(n)=0
\end{array}\right.
$$

The fundamental tool is the following form of the maximum principle.
Proposition 2.1. (see [3]) Let u be a solution of

$$
\left\{\begin{array}{l}
-\Delta \varphi_{p}(\Delta u(k-1))+a_{0}(k)|u(k)|^{p-2} u(k)=h(k) \quad \text { in } \quad[1, n] \tag{2.6}\\
\Delta u(0)=\Delta u(n)=0
\end{array}\right.
$$

where $a_{0} \geq 0$ and $h \not \geqq 0$. Then $u>0$ in $[1, n]$.
Proof. Writing $u=u^{+}-u^{-}$with $u^{ \pm}=\max \{ \pm u, 0\}$ and taking $-u^{-}$as testing function in (2.6),

$$
-\sum_{k=1}^{n} \varphi_{p}(\Delta u(k-1)) \Delta u^{-}(k-1)+\sum_{k=1}^{n} a_{0}(k)\left|u^{-}(k)\right|^{p}=-\sum_{k=1}^{n} h(k) u^{-}(k)
$$

Distinguishing the cases of sign of $u(k-1)$ and $u(k)$, we prove that

$$
\sum_{k=1}^{n}\left|\Delta u^{-}(k-1)\right|^{p} \leq-\sum_{k=1}^{n} \varphi_{p}(\Delta u(k-1)) \Delta u^{-}(k-1)
$$

then

$$
\sum_{k=1}^{n}\left|\Delta u^{-}(k-1)\right|^{p}+\sum_{k=1}^{n} a_{0}(k)\left|u^{-}(k)\right|^{p} \leq-\sum_{k=1}^{n} h(k) u^{-}(k) \leq 0
$$

therefore $\sum_{k=1}^{n}\left|\Delta u^{-}(k-1)\right|^{p}=0$ and u^{-}is constant. If $u^{-} \not \equiv 0$, since $\sum_{k=1}^{n} h(k) u^{-}(k)=0$, then $h \equiv 0$ which is absurd. Thus $u \geq 0$.

On the other hand, if $u\left(k_{0}\right)=0$ for some $k_{0} \in[1, n]$, then $\Delta u\left(k_{0}\right)=u\left(k_{0}+1\right) \geq 0$ and $\Delta u\left(k_{0}-1\right)=$ $-u\left(k_{0}-1\right) \leq 0$, so $\varphi_{p}\left(\Delta u\left(k_{0}\right)\right) \geq 0$ and $\varphi_{p}\left(\Delta u\left(k_{0}-1\right)\right) \leq 0$. As $-\varphi_{p}\left(\Delta u\left(k_{0}\right)\right)+\varphi_{p}\left(\Delta u\left(k_{0}-1\right)\right)+$ $a_{0}\left(k_{0}\right)\left(u\left(k_{0}\right)\right)^{p-1}=h\left(k_{0}\right) \geq 0$, then $0 \leq \varphi_{p}\left(\Delta u\left(k_{0}\right)\right) \leq \varphi_{p}\left(\Delta u\left(k_{0}-1\right)\right) \leq 0$, from where $u\left(k_{0}+1\right)=$ $u\left(k_{0}-1\right)=0$ and so on, we prove $u \equiv 0$, which contradicts $h \not \equiv 0$.

Corollary 2.2. (see [3]) If $u \nsupseteq 0$ is a solution of (2.1) with $h \geq 0$, then $u>0$.

The following expression will play a central role in our approach:

$$
\begin{equation*}
\mu(m):=\inf \left\{\sum_{k=1}^{n}|\Delta u(k-1)|^{p}: u \in W \text { and } \sum_{k=1}^{n} m(k)|u(k)|^{p}=1\right\} \tag{2.7}
\end{equation*}
$$

Proposition 2.3. (see [3]) (i) Suppose that $\sum_{k=1}^{n} m(k)<0$. Then $\mu(m)>0$, every eigenfunction with $\mu(m)$ of (2.5) does not change sign in $[1, n]$ and does not vanish in $[1, n]$, and $\mu(m)$ is the unique nonzero principal eigenvalue of (2.5); moreover, the interval $] 0, \mu(m)[$ does not contain any eigenvalue of (2.5).
(ii) Suppose that $\sum_{k=1}^{n} m(k) \geq 0$. Then $\mu(m)=0$; moreover, if $\sum_{k=1}^{n} m(k)=0$, then 0 is the unique principal eigenvalue of (2.5).

Remark 2.4. If $\sum_{k=1}^{n} m(k)>0$, we apply the Propoition 2.3 to the weight $(-m)$, then $-\mu(-m)$ is the unique nonzero principal eigenvalue of (2.5).

Lemma 2.5. Assume that $\sum_{k=1}^{n} m(k)<0$. Then there exists a constant $c>0$ such that $\sum_{k=1}^{n}|\Delta u(k-1)|^{p} \geq$ $c \sum_{k=1}^{n}|u(k)|^{p}$ for all $u \in W$ with $\sum_{k=1}^{n} m(k)|u(k)|^{p}>0$.

Proof. Assume by contradiction that for each $j=1,2, \ldots$, there exists $u_{j} \in W$ with $\sum_{k=1}^{n} m(k)\left|u_{j}(k)\right|^{p}>0$ and $\sum_{k=1}^{n}\left|\Delta u_{j}(k-1)\right|^{p}<\frac{1}{j} \sum_{k=1}^{n}\left|u_{j}(k)\right|^{p}$, then $u_{j} \not \equiv 0$. One considers the normalisation $v_{j}=\frac{u_{j}}{\left\|u_{j}\right\|}$, for a subsequence $v_{j} \rightarrow v$ in $W,\|v\|=1$ and $\sum_{k=1}^{n}|\Delta v(k-1)|^{p}=0$, then v nontrivial constant and $\sum_{k=1}^{n} m(k)|v(k)|^{p} \geq 0$, which contradicts $\sum_{k=1}^{n} m(k)<0$.

Proposition 2.6. Suppose that $\sum_{k=1}^{n} m(k) \leq 0$. The principal eigenvalues 0 and $\mu(m)$ are simple.
Proof. If u is an eigenfunction associated to $\lambda=0$ of (2.5), then $\sum_{k=1}^{n}|\Delta u(k-1)|^{p}=0$ and u is nonzero constant. Now if u and v are two eigenfunctions associated to $\mu(m)>0$, then, using Proposition 2.3, by replacing if necessary u or v by $-u$ or $-v$, we can assume that $u>0$ and $v>0$. Applying Lemma 2.8 below with $\varphi=v$,

$$
\begin{equation*}
\mu(m) \sum_{k=1}^{n} m(k)|v(k)|^{p} \leq \sum_{k=1}^{n}|\Delta v(k-1)|^{p} . \tag{2.8}
\end{equation*}
$$

In fact, equality holds in (2.8) since v is an eigenfunction associated to $\mu(m)$. Consequently, by Lemma 2.8 below, v is multiple of u.

Proposition 2.7. (see [3]) Suppose that $\sum_{k=1}^{n} m(k) \leq 0$. If $\lambda \notin[0, \mu(m)]$, then problem (2.1) with $h \geq 0$ has no solution $u \ngtr 0$.
Lemma 2.8. (see [3]) Let (λ, u) be a solution of (2.1) with arbitrary h and $u>0$ in $[1, n]$. Then for any $\varphi \in W$, one has

$$
\begin{equation*}
\lambda \sum_{k=1}^{n} m(k)|\varphi(k)|^{p}+\sum_{k=1}^{n} \frac{h(k)|\varphi(k)|^{p}}{(u(k))^{p-1}} \leq \sum_{k=1}^{n}|\Delta| \varphi(k-1)| |^{p} . \tag{2.9}
\end{equation*}
$$

Moreover, equality holds in (2.9) if and only if $|\varphi|$ is a multiple of u.
Proposition 2.9. Suppose that $\sum_{k=1}^{n} m(k) \leq 0$. Then problem (2.1) with $h \ngtr 0$ does not admit any solution if $\lambda=0$ or $\lambda=\mu(m)$. It admits a unique solution if $0<\lambda<\mu(m)$ and the latter is strictly positive in $[1, n]$.

Proof. If $\lambda=0$, by taking $\varphi=1$ as testing function in (2.1), we get $\sum_{k=1}^{n} h(k)=0$, which contradicts $h \nsupseteq 0$. Reasoning by contradiction, suppose that (2.1) with $\lambda=\mu(m)$ has a solution u, we get $u>0$ in $[1, n]$. Indeed, if $u^{-} \not \equiv 0$, then taking $-u^{-}$as testing function in (2.1) and as $h \ngtr 0$,

$$
\begin{aligned}
\sum_{k=1}^{n}\left|\Delta u^{-}(k-1)\right|^{p} & \leq-\sum_{k=1}^{n} \varphi_{p}(\Delta u(k-1)) \Delta u^{-}(k-1) \\
& =\mu(m) \sum_{k=1}^{n} m(k)\left|u^{-}(k)\right|^{p}-\sum_{k=1}^{n} h(k) u^{-}(k) \\
& \leq \mu(m) \sum_{k=1}^{n} m(k)\left|u^{-}(k)\right|^{p}
\end{aligned}
$$

so u^{-}is a minimizer in the definition of $\mu(m)$ and $\sum_{k=1}^{n} h(k) u^{-}(k)=0$. Then by Lagrange multiplies, u^{-} solves (2.1), and consequently by Corollary $2.2, u^{-}>0$ in $[1, n]$, which contradicts $\sum_{k=1}^{n} h(k) u^{-}(k)=0$. Thus, $u \nsupseteq 0$. Applying once more Corollary 2.2, one gets $u>0$ in $[1, n]$. By Lemma 2.8, we have for a positive eigenfunction φ associated to $\mu(m)$ of (2.5),

$$
\mu(m) \sum_{k=1}^{n} m(k)(\varphi(k))^{p}+\sum_{k=1}^{n} \frac{h(k)(\varphi(k))^{p}}{(u(k))^{p-1}} \leq \sum_{k=1}^{n}|\Delta \varphi(k-1)|^{p}
$$

we deduce $\sum_{k=1}^{n} \frac{h(k)|\varphi(k)|^{p}}{(u(k))^{p-1}} \leq 0$, which is impossible since $\varphi>0$ in $[1, n]$ and $h \nsupseteq 0$.
Suppose that $\lambda \in] 0, \mu(m)\left[\right.$, then by Proposition 2.3, $\sum_{k=1}^{n} m(k)<0$. To prove the existence of a solution of (2.1), we consider the functional

$$
\phi(u)=\frac{1}{p} \sum_{k=1}^{n}|\Delta u(k-1)|^{p}-\frac{\lambda}{p} \sum_{k=1}^{n} m(k)|u(k)|^{p}-\sum_{k=1}^{n} h(k) u(k)
$$

We distinguish two cases. If $u \in W$ and $\sum_{k=1}^{n} m(k)|u(k)|^{p}>0$, by definition of $\mu(m)$ and Lemma 2.5,

$$
\begin{aligned}
\phi(u) & \geq \frac{1}{p}\left(1-\frac{\lambda}{\mu(m)}\right) \sum_{k=1}^{n}|\Delta u(k-1)|^{p}-\sum_{k=1}^{n} h(k) u(k) \\
& \geq c_{1} \sum_{k=1}^{n}|u(k)|^{p}-\sum_{k=1}^{n} h(k) u(k)
\end{aligned}
$$

for some constant $c_{1}>0$. If $u \in W$ and $\sum_{k=1}^{n} m(k)|u(k)|^{p} \leq 0$, one has, using $\lambda>0$ and Lemma 2.10 below,

$$
\phi(u) \geq c_{2} \sum_{k=1}^{n}|u(k)|^{p}-\sum_{k=1}^{n} h(k) u(k)
$$

for some constant $c_{2}>0$. So ϕ is coercive on W and has a mininum, thus there exists a solution u of (2.1). Taking $-u^{-}$as testing function,

$$
\begin{aligned}
\sum_{k=1}^{n}\left|\Delta u^{-}(k-1)\right|^{p} & \leq-\sum_{k=1}^{n} \varphi_{p}(\Delta u(k-1)) \Delta u^{-}(k-1) \\
& =\lambda \sum_{k=1}^{n} m(k)\left|u^{-}(k)\right|^{p}-\sum_{k=1}^{n} h(k) u^{-}(k)
\end{aligned}
$$

so $\sum_{k=1}^{n} m(k)\left|u^{-}(k)\right|^{p} \geq 0$, and

$$
\begin{aligned}
\sum_{k=1}^{n}\left|\Delta u^{-}(k-1)\right|^{p} & \leq \mu(m) \sum_{k=1}^{n} m(k)\left|u^{-}(k)\right|^{p}-\sum_{k=1}^{n} h(k) u^{-}(k) \\
& \leq \mu(m) \sum_{k=1}^{n} m(k)\left|u^{-}(k)\right|^{p}
\end{aligned}
$$

If $u^{-} \not \equiv 0$, then u^{-}is an eigenfunction associated to $\mu(m)$, consequently $u^{-}>0$ and $\sum_{k=1}^{n} h(k) u^{-}(k)=$ 0 , which contradicts $h \nsupseteq 0$, then $u \geq 0$ and applying Corollary 2.2, one gets $u>0$ in $[1, n]$. We will now prove unicity, suppose that v is a solution of (2.1). Applying Lemma 2.8 with $\varphi=v>0$,

$$
\begin{align*}
\lambda \sum_{k=1}^{n} m(k) v(k)^{p}+\sum_{k=1}^{n} \frac{h(k) v(k)^{p}}{(u(k))^{p-1}} & \leq \sum_{k=1}^{n}|\Delta v(k-1)|^{p} \tag{2.10}\\
& =\lambda \sum_{k=1}^{n} m(k) v(k)^{p}+\sum_{k=1}^{n} h(k) v(k)
\end{align*}
$$

one gets, $\sum_{k=1}^{n} h(k) v(k)\left(1-\left(\frac{v(k)}{u(k)}\right)^{p-1}\right) \geq 0$.
Interchanging u and v, we get $\sum_{k=1}^{n} h(k) u(k)\left(1-\left(\frac{u(k)}{v(k)}\right)^{p-1}\right) \geq 0$, and adding, we obtain

$$
\begin{equation*}
\sum_{k=1}^{n} h(k)\left[v(k)\left(1-\left(\frac{v(k)}{u(k)}\right)^{p-1}\right)+u(k)\left(1-\left(\frac{u(k)}{v(k)}\right)^{p-1}\right)\right] \geq 0 \tag{2.11}
\end{equation*}
$$

Let $A(k)=v(k)\left(1-\left(\frac{v(k)}{u(k)}\right)^{p-1}\right)+u(k)\left(1-\left(\frac{u(k)}{v(k)}\right)^{p-1}\right)$ for $k \in[1, n]$, we get

$$
A(k)=\frac{(u(k))^{p}}{(v(k))^{p-1}}\left[\left(\left(\frac{v(k)}{u(k)}\right)^{p}-1\right)\left(1-\left(\frac{v(k)}{u(k)}\right)^{p-1}\right)\right] \leq 0
$$

which implies that equality holds in (2.11). It follows that equality also holds in (2.10). Lemma 2.8 gives that $v=c u$, for some constant c. Replacing in (2.1) and using the fact that $h \not \equiv 0$, we get $c=1$ and $v=u$.

Lemma 2.10. Assume that $\sum_{k=1}^{n} m(k) \neq 0$ and let $\lambda>0$. Then there exists a constant $c>0$ such that

$$
\sum_{k=1}^{n}|\Delta u(k-1)|^{p}-\lambda \sum_{k=1}^{n} m(k)|u(k)|^{p} \geq c \sum_{k=1}^{n}|u(k)|^{p}
$$

for all $u \in W$ and $\sum_{k=1}^{n} m(k)|u(k)|^{p} \leq 0$.
Proof. Assume by contradiction that for each $j=1,2, \ldots$, there exists $u_{j} \in W$ such that $\sum_{k=1}^{n} m(k)\left|u_{j}(k)\right|^{p} \leq$ 0 and $\sum_{k=1}^{n}\left|\Delta u_{j}(k-1)\right|^{p}-\lambda \sum_{k=1}^{n} m(k)\left|u_{j}(k)\right|^{p}<\frac{1}{j} \sum_{k=1}^{n}\left|u_{j}(k)\right|^{p}$, then $u_{j} \not \equiv 0$. Considering $v_{j}=\frac{u_{j}}{\left\|u_{j}\right\|}$, one has

$$
\sum_{k=1}^{n}\left|\Delta v_{j}(k-1)\right|^{p} \leq \sum_{k=1}^{n}\left|\Delta v_{j}(k-1)\right|^{p}-\lambda \sum_{k=1}^{n} m(k)\left|v_{j}(k)\right|^{p} \rightarrow 0
$$

It follows that for a subsequence, v_{k} converges in W to a nonzero function v such that $\sum_{k=1}^{n}|\Delta v(k-1)|^{p}=0$, then v is a nonzero constant and $-\lambda \sum_{k=1}^{n} m(k)|v(k)|^{p}=0$. This contradicts $\sum_{k=1}^{n} m(k) \neq 0$.

3. Principal eigenvalues in the Dirichlet case

Consider the Dirichlet problem

$$
\left\{\begin{array}{l}
-\Delta \varphi_{p}(\Delta u(k-1))=\lambda m(k)|u(k)|^{p-2} u(k)+h(k) \quad \text { in } \quad[1, n] \tag{3.1}\\
u(0)=u(n+1)=0
\end{array}\right.
$$

m and h are as before with (2.2) and (2.3). There are two principal eigenvalues : $\lambda_{1}(m)>0$ and $\lambda_{-1}(m)=-\lambda_{1}(-m)$ of the problem

$$
\left\{\begin{array}{l}
-\Delta \varphi_{p}(\Delta u(k-1))=\lambda m(k)|u(k)|^{p-2} u(k) \quad \text { in } \quad[1, n] \tag{3.2}\\
u(0)=u(n+1)=0
\end{array}\right.
$$

where

$$
\begin{equation*}
\lambda_{1}(m)=\inf \left\{\sum_{k=1}^{n+1}|\Delta u(k-1)|^{p}: u \in W_{0}, \sum_{k=1}^{n} m(k)|u(k)|^{p}=1\right\} \tag{3.3}
\end{equation*}
$$

and $W_{0}=\{u:[0, n+1] \rightarrow \mathbb{R} ; u(0)=u(n+1)=0\}$ is an n-dimensional Banach space under the norm

$$
\|u\|=\left(\sum_{k=1}^{n+1}|\Delta u(k-1)|^{p}\right)^{\frac{1}{p}}
$$

These eigenvalues are simple and the corresponding eigenfunctions can be taken strictly positive in $[1, \mathrm{n}]$ (see [2]).

Remark 3.1. The norms $\left(\sum_{k=1}^{n+1}|\Delta u(k-1)|^{p}\right)^{\frac{1}{p}}$ and $\left(\sum_{k=1}^{n}|u(k)|^{p}\right)^{1 / p}$ are equivalent in W_{0}, so there exists a constant $c>0$ such that $\sum_{k=1}^{n+1}|\Delta u(k-1)|^{p} \geq c \sum_{k=1}^{n}|u(k)|^{p}$ for all $u \in W_{0}$.

Proposition 3.2. Let u be a solution of

$$
\left\{\begin{array}{l}
-\Delta \varphi_{p}(\Delta u(k-1))+a_{0}(k)|u(k)|^{p-2} u(k)=h(k) \quad \text { in } \quad[1, n] \tag{3.4}\\
u(0)=u(n+1)=0,
\end{array}\right.
$$

where $a_{0} \geq 0$ and $h \nsupseteq 0$. Then $u>0$ in $[1, n]$.
Proof. As in the proposition 2.1, writing $u=u^{+}-u^{-}$and taking $-u^{-}$as testing function in (3.4), we obtain

$$
\sum_{k=1}^{n+1}\left|\Delta u^{-}(k-1)\right|^{p}+\sum_{k=1}^{n+1} a_{0}(k)\left|u^{-}(k)\right|^{p} \leq-\sum_{k=1}^{n+1} h(k) u^{-}(k) \leq 0
$$

therefore $\sum_{k=1}^{n+1}\left|\Delta u^{-}(k-1)\right|^{p}=0$ and $u^{-}=0$, thus $u \geq 0$.
On the other hand, if $u\left(k_{0}\right)=0$ for some $k_{0} \in[1, n]$, then as in Proposition 2.1, we obtain $u\left(k_{0}+1\right)=$ $u\left(k_{0}-1\right)=0$ and so on, we prove $u \equiv 0$, which contradicts $h \not \equiv 0$.

Remark 3.3. The corollary 2.2 and Lemma 2.8 remain true in the Dirichlet case.
Proposition 3.4. If $\lambda \notin\left[\lambda_{-1}(m), \lambda_{1}(m)\right]$, then problem (3.1) with $h \geq 0$ has no solution $u \nexists 0$.
Proof. As in Proposition 2.7, assume that there exists a solution $u \nsupseteq 0$ of (3.1) for some $\lambda \in \mathbb{R}$ and some $h \geq 0$. We get

$$
\lambda \sum_{k=1}^{n+1} m(k)|v(k)|^{p} \leq \sum_{k=1}^{n+1}|\Delta v(k-1)|^{p}
$$

for all $v \in W_{0}$ with $v \geq 0$. This implies $\lambda \leq \lambda_{1}(m)$, as well as $-\lambda \leq \lambda_{1}(-m)=-\lambda_{-1}(m)$, thus $\lambda \in\left[\lambda_{-1}(m), \lambda_{1}(m)\right]$.

Proposition 3.5. Problem (3.1) with $h \ngtr 0$ does not have any solution if $\lambda=\lambda_{-1}(m)$ or $\lambda=\lambda_{1}(m)$. It admits a unique solution if, $\lambda_{-1}(m)<\lambda<\lambda_{1}(m)$ and the latter is strictly positive in $[1, n]$.

Proof. The proof of this proposition follows almost the same lines as that of Proposition 2.9. Reasoning by contradiction, suppose that (3.1) with $\lambda=\lambda_{1}(m)$ has a solution u, we get $u>0$ in $[1, n]$. By Lemma 2.8, we have for an eigenfunction φ associated to $\lambda_{1}(m)$ of (3.2), $\varphi>0$ (see [2]),

$$
\lambda_{1}(m) \sum_{k=1}^{n+1} m(k)(\varphi(k))^{p}+\sum_{k=1}^{n+1} \frac{h(k)(\varphi(k))^{p}}{(u(k))^{p-1}} \leq \sum_{k=1}^{n+1}|\Delta \varphi(k-1)|^{p},
$$

we deduce $\sum_{k=1}^{n+1} \frac{h(k)|\varphi(k)|^{p}}{(u(k))^{p-1}} \leq 0$, which is impossible since $h \nsupseteq 0$.
Suppose that $\lambda \in\left[0, \lambda_{1}(m)[\right.$, we consider the functional

$$
\phi(u)=\frac{1}{p} \sum_{k=1}^{n+1}|\Delta u(k-1)|^{p}-\frac{\lambda}{p} \sum_{k=1}^{n} m(k)|u(k)|^{p}-\sum_{k=1}^{n} h(k) u(k)
$$

By definition of $\lambda_{1}(m)$ and Remark 3.1,

$$
\begin{aligned}
\phi(u) & \geq \frac{1}{p}\left(1-\frac{\lambda}{\lambda_{1}(m)}\right) \sum_{k=1}^{n+1}|\Delta u(k-1)|^{p}-\sum_{k=1}^{n} h(k) u(k) \\
& \geq c \sum_{k=1}^{n}|u(k)|^{p}-\sum_{k=1}^{n} h(k) u(k),
\end{aligned}
$$

for some constant $c>0$ and for all $u \in W_{0}$. Then ϕ is coercive on W_{0}, so it has a mininum, thus there exists a solution u of (3.1). One gets $u>0$ in $[1, n]$. The unicity is proved as in Proposition 2.9. The cases $\lambda=\lambda_{-1}(m)$ or $\left.\lambda \in\right] \lambda_{-1}(m), 0[$ can be treated in the same way with the weight $(-m)$.

References

1. A.Anane, O.Chakrone, N,Moradi, Maximum and Anti-Maximum principles for the p-Laplacian with a Nonlinear Boundary condition, Electronic Journal of Differential Equations, Conference 14 (2006) 95-107.
2. M.Chehabi, O.Chakrone, Properties of the First Eigenvalue with Sign-changing Weight of the Discrete p-Laplacian and Applications, Bol. Soc. Paran. Mat. (3s.) v. 362 (2018) 151-167.
3. H.Chehabi, O Chakrone, M.Chehabi, On the antimaximum principle for the discrete p-Laplacian with sign-changing weight, Applied Mathematics and Computation 342 (2019) 112-117.
4. Y. Huang, On eigenvalue problems for the p-Laplacian with Neumann boundary conditions, Proc. Amer. Math. Soc. 109 (1990) 177-184.
5. W. Allegretto, Y. Huang, A Picone's identity for the p-Laplacian and applications, Nonlinear Anal. T.M.A. 32 (1998) 819-830.
6. R. L. Frank, R. Seiringer, Non-linear ground state representations and sharp Hardy inequalities, J. Funct. Anal. 255 (2008), 3407-3430.
7. T. Godoy, J.P. Gossez, S. Paczka, On the antimaximum principle for the p-Laplacian with indefinite weight, Nonlinear Analysis. 51 (2002) 449-467.
8. T. Godoy, J.P. Gossez, S. Paczka, Antimaximum principle for elliptic problems with weight, Electr.J. Differential Equations 1999 (1999) 1-15.
H. Chehabi,

Department of Mathematics and Computer, Laboratory Nonlinear Analysis,
Faculty of Science, University Mohammed 1st, Oujda,
Morocco.
E-mail address: chehabi.hamza@gmail.com
and
O. Chakrone,

Department of Mathematics and Computer, Laboratory Nonlinear Analysis,
Faculty of Science, University Mohammed 1st, Oujda,
Morocco.
E-mail address: chakrone@yahoo.fr
and
M. Chehabi,

Department of Mathematics and Computer, Laboratory Nonlinear Analysis,
Faculty of Science, University Mohammed 1st, Oujda,
Morocco.
E-mail address: chehbmed@gmail.com

[^0]: 2010 Mathematics Subject Classification: 35-XX, 39-XX.
 Submitted January 14, 2020. Published October 12, 2020

