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abstract: This work deals with the maximum principle for the discrete Neumann or Dirichlet problem

−∆ϕ
p
(∆u(k − 1)) = λm(k)|u(k)|p−2u(k) + h(k) in [1, n].

We study the existence and nonexistence of positive solution and its uniqueness.
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1. Introduction

This paper is concerned with the Neumann or Dirichlet problem

−∆ϕp(∆u(k − 1)) = λm(k)|u(k)|p−2u(k) + h(k) in [1, n],

where n is an integer greater than or equal to 1, [1, n] is the discrete interval {1, ..., n}, ∆u(k) :=

u(k + 1) − u(k) is the forward difference operator, ϕp(s) = |s|
p−2

s, 1 < p < ∞, h function defined on
[1, n] and m changes sign in [1, n]. The original form for the maximum principle concerns the continuous
problem

−∆pu = λm(x) |u|
p−2

u + h(x) in Ω, Bu = 0 on ∂Ω,

where Ω is a bounded domain in RN , ∆pu := div(|∇u|
p−2

∇u) is the p-Laplacian and Bu = 0
represents either the Dirichlet or the Neumann homogeneous boundary conditions (see [7,1]).

The argument here uses a discrete forme of Picone’s identity (see [5]). Some of our arguments
are inspired by [4,8]. We study the existence and nonexistence of positive solution and its uniqueness

depending on the sign of
n
∑

k=1

m(k) and on whether or not λ belongs to ]0, µ(m)[ in the Neumann case,

and depending whether or not λ belongs to ]λ−1(m), λ1(m)[ in the Dirichlet case, where µ(m), λ1(m)
and λ−1(m) are defined in (2.7) and (3.3).

2. Principal eigenvalues in the Neumann case

Consider the Neumann problem
{

−∆ϕp(∆u(k − 1)) = λm(k)|u(k)|p−2u(k) + h(k) in [1, n],
∆u(0) = ∆u(n) = 0.

(2.1)

Suppose that
∃k1, k2 ∈ [1, n] ; m(k1)m(k2) < 0. (2.2)

Also, without loss of generality, we can assume that

|m(k)| < 1, ∀k ∈ [1, n]. (2.3)
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The class W = {u : [0, n + 1] → R ; ∆u(0) = ∆u(n) = 0} is an n-dimensional space under the norm

‖u‖ =

(

n
∑

k=1

|u(k)|p
)1/p

.

Solution of (2.1) (or of (2.6)) are exactly the solutions in the sense: u ∈ W with

n
∑

k=1

ϕp(∆u(k − 1))∆v(k − 1) = λ

n
∑

k=1

m(k)|u(k)|p−2u(k)v(k) +

n
∑

k=1

h(k)v(k), ∀v ∈ W . (2.4)

Our purpose in this preliminary section is to collect some results relative to the principal eigenvalues of

{

−∆ϕp(∆u(k − 1)) = λm(k)|u(k)|p−2u(k) in [1, n],
∆u(0) = ∆u(n) = 0.

(2.5)

The fundamental tool is the following form of the maximum principle.

Proposition 2.1. (see [3]) Let u be a solution of

{

−∆ϕp(∆u(k − 1)) + a0(k)|u(k)|p−2u(k) = h(k) in [1, n],
∆u(0) = ∆u(n) = 0,

(2.6)

where a0 ≥ 0 and h � 0. Then u > 0 in [1, n].

Proof. Writing u = u+ − u− with u± = max{±u, 0} and taking −u− as testing function in (2.6),

−
n
∑

k=1

ϕp(∆u(k − 1))∆u−(k − 1) +
n
∑

k=1

a0(k)|u−(k)|p = −
n
∑

k=1

h(k)u−(k).

Distinguishing the cases of sign of u(k − 1) and u(k), we prove that

n
∑

k=1

|∆u−(k − 1)|p ≤ −

n
∑

k=1

ϕp(∆u(k − 1))∆u−(k − 1),

then
n
∑

k=1

|∆u−(k − 1)|p +

n
∑

k=1

a0(k)|u−(k)|p ≤ −

n
∑

k=1

h(k)u−(k) ≤ 0,

therefore
n
∑

k=1

|∆u−(k − 1)|p = 0 and u− is constant. If u− 6≡ 0, since
n
∑

k=1

h(k)u−(k) = 0, then h ≡ 0

which is absurd. Thus u ≥ 0.
On the other hand, if u(k0) = 0 for some k0 ∈ [1, n], then ∆u(k0) = u(k0 + 1) ≥ 0 and ∆u(k0 − 1) =

−u(k0 − 1) ≤ 0, so ϕp(∆u(k0)) ≥ 0 and ϕp(∆u(k0 − 1)) ≤ 0. As −ϕp(∆u(k0)) + ϕp(∆u(k0 − 1)) +
a0(k0)(u(k0))p−1 = h(k0) ≥ 0, then 0 ≤ ϕp(∆u(k0)) ≤ ϕp(∆u(k0 − 1)) ≤ 0, from where u(k0 + 1) =
u(k0 − 1) = 0 and so on, we prove u ≡ 0, which contradicts h 6≡ 0. �

Corollary 2.2. (see [3]) If u � 0 is a solution of (2.1) with h ≥ 0, then u > 0.

The following expression will play a central role in our approach:

µ(m) := inf

{

n
∑

k=1

|∆u(k − 1)|p : u ∈ W and

n
∑

k=1

m(k)|u(k)|p = 1

}

. (2.7)
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Proposition 2.3. (see [3]) (i) Suppose that
n
∑

k=1

m(k) < 0. Then µ(m) > 0, every eigenfunction with

µ(m) of (2.5) does not change sign in [1, n] and does not vanish in [1, n], and µ(m) is the unique nonzero
principal eigenvalue of (2.5); moreover, the interval ]0, µ(m)[ does not contain any eigenvalue of (2.5).

(ii) Suppose that
n
∑

k=1

m(k) ≥ 0. Then µ(m) = 0; moreover, if
n
∑

k=1

m(k) = 0, then 0 is the unique

principal eigenvalue of (2.5).

Remark 2.4. If
n
∑

k=1

m(k) > 0, we apply the Propoition 2.3 to the weight (−m), then −µ(−m) is the

unique nonzero principal eigenvalue of (2.5).

Lemma 2.5. Assume that
n
∑

k=1

m(k) < 0. Then there exists a constant c > 0 such that
n
∑

k=1

|∆u(k −1)|p ≥

c
n
∑

k=1

|u(k)|p for all u ∈ W with
n
∑

k=1

m(k)|u(k)|p > 0.

Proof. Assume by contradiction that for each j = 1, 2, ..., there exists uj ∈ W with
n
∑

k=1

m(k)|uj(k)|p > 0

and
n
∑

k=1

|∆uj(k − 1)|p <
1

j

n
∑

k=1

|uj(k)|p, then uj 6≡ 0. One considers the normalisation vj =
uj

‖uj‖
,

for a subsequence vj → v in W , ‖v‖ = 1 and
n
∑

k=1

|∆v(k − 1)|p = 0, then v nontrivial constant and

n
∑

k=1

m(k)|v(k)|p ≥ 0, which contradicts
n
∑

k=1

m(k) < 0. �

Proposition 2.6. Suppose that
n
∑

k=1

m(k) ≤ 0. The principal eigenvalues 0 and µ(m) are simple.

Proof. If u is an eigenfunction associated to λ = 0 of (2.5), then
n
∑

k=1

|∆u(k − 1)|p = 0 and u is nonzero

constant. Now if u and v are two eigenfunctions associated to µ(m) > 0, then, using Proposition 2.3, by
replacing if necessary u or v by −u or −v, we can assume that u > 0 and v > 0. Applying Lemma 2.8
below with ϕ = v,

µ(m)

n
∑

k=1

m(k)|v(k)|p ≤

n
∑

k=1

|∆v(k − 1)|p. (2.8)

In fact, equality holds in (2.8) since v is an eigenfunction associated to µ(m). Consequently, by Lemma
2.8 below, v is multiple of u. �

Proposition 2.7. (see [3]) Suppose that
n
∑

k=1

m(k) ≤ 0. If λ 6∈ [0, µ(m)], then problem (2.1) with h ≥ 0

has no solution u � 0.

Lemma 2.8. (see [3]) Let (λ, u) be a solution of (2.1) with arbitrary h and u > 0 in [1, n]. Then for
any ϕ ∈ W , one has

λ

n
∑

k=1

m(k)|ϕ(k)|p +

n
∑

k=1

h(k)|ϕ(k)|p

(u(k))p−1
≤

n
∑

k=1

|∆|ϕ(k − 1)||p. (2.9)

Moreover, equality holds in (2.9) if and only if |ϕ| is a multiple of u.

Proposition 2.9. Suppose that
n
∑

k=1

m(k) ≤ 0. Then problem (2.1) with h � 0 does not admit any

solution if λ = 0 or λ = µ(m). It admits a unique solution if 0 < λ < µ(m) and the latter is strictly
positive in [1, n].
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Proof. If λ = 0, by taking ϕ = 1 as testing function in (2.1), we get
n
∑

k=1

h(k) = 0, which contradicts

h � 0. Reasoning by contradiction, suppose that (2.1) with λ = µ(m) has a solution u, we get u > 0 in
[1, n]. Indeed, if u− 6≡ 0, then taking −u− as testing function in (2.1) and as h 	 0,

n
∑

k=1

|∆u−(k − 1)|p ≤ −
n
∑

k=1

ϕp(∆u(k − 1))∆u−(k − 1)

= µ(m)
n
∑

k=1

m(k)|u−(k)|p −
n
∑

k=1

h(k)u−(k)

≤ µ(m)
n
∑

k=1

m(k)|u−(k)|p,

so u− is a minimizer in the definition of µ(m) and
n
∑

k=1

h(k)u−(k) = 0. Then by Lagrange multiplies, u−

solves (2.1), and consequently by Corollary 2.2, u− > 0 in [1, n], which contradicts
n
∑

k=1

h(k)u−(k) = 0.

Thus, u � 0. Applying once more Corollary 2.2, one gets u > 0 in [1, n]. By Lemma 2.8, we have for a
positive eigenfunction ϕ associated to µ(m) of (2.5),

µ(m)

n
∑

k=1

m(k) (ϕ(k))
p

+

n
∑

k=1

h(k) (ϕ(k))
p

(u(k))p−1
≤

n
∑

k=1

|∆ϕ(k − 1)|p,

we deduce
n
∑

k=1

h(k)|ϕ(k)|p

(u(k))p−1
≤ 0, which is impossible since ϕ > 0 in [1, n] and h � 0.

Suppose that λ ∈]0, µ(m)[, then by Proposition 2.3,
n
∑

k=1

m(k) < 0. To prove the existence of a solution

of (2.1), we consider the functional

φ(u) =
1

p

n
∑

k=1

|∆u(k − 1)|p −
λ

p

n
∑

k=1

m(k)|u(k)|p −

n
∑

k=1

h(k)u(k).

We distinguish two cases. If u ∈ W and
n
∑

k=1

m(k)|u(k)|p > 0, by definition of µ(m) and Lemma 2.5,

φ(u) ≥
1

p

(

1 −
λ

µ(m)

)

n
∑

k=1

|∆u(k − 1)|p −
n
∑

k=1

h(k)u(k)

≥ c1

n
∑

k=1

|u(k)|p −
n
∑

k=1

h(k)u(k),

for some constant c1 > 0. If u ∈ W and
n
∑

k=1

m(k)|u(k)|p ≤ 0, one has, using λ > 0 and Lemma 2.10

below,

φ(u) ≥ c2

n
∑

k=1

|u(k)|p −

n
∑

k=1

h(k)u(k),

for some constant c2 > 0. So φ is coercive on W and has a mininum, thus there exists a solution u of
(2.1). Taking −u− as testing function,

n
∑

k=1

|∆u−(k − 1)|p ≤ −
n
∑

k=1

ϕp(∆u(k − 1))∆u−(k − 1)

= λ
n
∑

k=1

m(k)|u−(k)|p −
n
∑

k=1

h(k)u−(k),

so
n
∑

k=1

m(k)|u−(k)|p ≥ 0, and
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n
∑

k=1

|∆u−(k − 1)|p ≤ µ(m)
n
∑

k=1

m(k)|u−(k)|p −
n
∑

k=1

h(k)u−(k)

≤ µ(m)
n
∑

k=1

m(k)|u−(k)|p.

If u− 6≡ 0, then u− is an eigenfunction associated to µ(m), consequently u− > 0 and
n
∑

k=1

h(k)u−(k) =

0, which contradicts h � 0, then u ≥ 0 and applying Corollary 2.2, one gets u > 0 in [1, n]. We will now
prove unicity, suppose that v is a solution of (2.1). Applying Lemma 2.8 with ϕ = v > 0,

λ
n
∑

k=1

m(k)v(k)p +
n
∑

k=1

h(k)v(k)p

(u(k))p−1
≤

n
∑

k=1

|∆v(k − 1)|p

= λ
n
∑

k=1

m(k)v(k)p +
n
∑

k=1

h(k)v(k),
(2.10)

one gets,
n
∑

k=1

h(k)v(k)

(

1 −

(

v(k)

u(k)

)p−1
)

≥ 0.

Interchanging u and v, we get
n
∑

k=1

h(k)u(k)

(

1 −

(

u(k)

v(k)

)p−1
)

≥ 0, and adding, we obtain

n
∑

k=1

h(k)

[

v(k)

(

1 −

(

v(k)

u(k)

)p−1
)

+ u(k)

(

1 −

(

u(k)

v(k)

)p−1
)]

≥ 0. (2.11)

Let A(k) = v(k)

(

1 −

(

v(k)

u(k)

)p−1
)

+ u(k)

(

1 −

(

u(k)

v(k)

)p−1
)

for k ∈ [1, n], we get

A(k) =
(u(k))p

(v(k))p−1

[

((

v(k)

u(k)

)p

− 1

)

(

1 −

(

v(k)

u(k)

)p−1
)]

≤ 0,

which implies that equality holds in (2.11). It follows that equality also holds in (2.10). Lemma 2.8 gives
that v = cu, for some constant c. Replacing in (2.1) and using the fact that h 6≡ 0, we get c = 1 and
v = u. �

Lemma 2.10. Assume that
n
∑

k=1

m(k) 6= 0 and let λ > 0. Then there exists a constant c > 0 such that

n
∑

k=1

|∆u(k − 1)|p − λ

n
∑

k=1

m(k)|u(k)|p ≥ c

n
∑

k=1

|u(k)|p,

for all u ∈ W and
n
∑

k=1

m(k)|u(k)|p ≤ 0.

Proof. Assume by contradiction that for each j = 1, 2, ..., there exists uj ∈ W such that
n
∑

k=1

m(k)|uj(k)|p ≤

0 and
n
∑

k=1

|∆uj(k − 1)|p − λ
n
∑

k=1

m(k)|uj(k)|p <
1

j

n
∑

k=1

|uj(k)|p, then uj 6≡ 0. Considering vj =
uj

‖uj‖
, one

has
n
∑

k=1

|∆vj(k − 1)|p ≤

n
∑

k=1

|∆vj(k − 1)|p − λ

n
∑

k=1

m(k)|vj(k)|p → 0.

It follows that for a subsequence, vk converges in W to a nonzero function v such that
n
∑

k=1

|∆v(k−1)|p = 0,

then v is a nonzero constant and −λ
n
∑

k=1

m(k)|v(k)|p = 0. This contradicts
n
∑

k=1

m(k) 6= 0. �



6 H. Chehabi, O. Chakrone and M. Chehabi

3. Principal eigenvalues in the Dirichlet case

Consider the Dirichlet problem
{

−∆ϕp(∆u(k − 1)) = λm(k)|u(k)|p−2u(k) + h(k) in [1, n],
u(0) = u(n + 1) = 0,

(3.1)

m and h are as before with (2.2) and (2.3). There are two principal eigenvalues : λ1(m) > 0 and
λ−1(m) = −λ1(−m) of the problem

{

−∆ϕp(∆u(k − 1)) = λm(k)|u(k)|p−2u(k) in [1, n],
u(0) = u(n + 1) = 0,

(3.2)

where

λ1(m) = inf

{

n+1
∑

k=1

|∆u(k − 1)|p : u ∈ W0,

n
∑

k=1

m(k)|u(k)|p = 1

}

, (3.3)

and W0 = {u : [0, n + 1] → R ; u(0) = u(n + 1) = 0} is an n-dimensional Banach space under the norm

‖u‖ =

(

n+1
∑

k=1

|∆u(k − 1)|p
)

1

p

.

These eigenvalues are simple and the corresponding eigenfunctions can be taken strictly positive in [1,n]
(see [2] ).

Remark 3.1. The norms

(

n+1
∑

k=1

|∆u(k − 1)|p
)

1

p

and

(

n
∑

k=1

|u(k)|p
)1/p

are equivalent in W0, so there

exists a constant c > 0 such that
n+1
∑

k=1

|∆u(k − 1)|p ≥ c
n
∑

k=1

|u(k)|p for all u ∈ W0.

Proposition 3.2. Let u be a solution of
{

−∆ϕp(∆u(k − 1)) + a0(k)|u(k)|p−2u(k) = h(k) in [1, n],
u(0) = u(n + 1) = 0,

(3.4)

where a0 ≥ 0 and h � 0. Then u > 0 in [1, n].

Proof. As in the proposition 2.1, writing u = u+ − u− and taking −u− as testing function in (3.4), we
obtain

n+1
∑

k=1

|∆u−(k − 1)|p +

n+1
∑

k=1

a0(k)|u−(k)|p ≤ −

n+1
∑

k=1

h(k)u−(k) ≤ 0,

therefore
n+1
∑

k=1

|∆u−(k − 1)|p = 0 and u− = 0, thus u ≥ 0.

On the other hand, if u(k0) = 0 for some k0 ∈ [1, n], then as in Proposition 2.1, we obtain u(k0 + 1) =
u(k0 − 1) = 0 and so on, we prove u ≡ 0, which contradicts h 6≡ 0. �

Remark 3.3. The corollary 2.2 and Lemma 2.8 remain true in the Dirichlet case.

Proposition 3.4. If λ /∈ [λ−1(m), λ1(m)], then problem (3.1) with h ≥ 0 has no solution u 	 0.

Proof. As in Proposition 2.7, assume that there exists a solution u � 0 of (3.1) for some λ ∈ R and some
h ≥ 0. We get

λ
n+1
∑

k=1

m(k)|v(k)|p ≤
n+1
∑

k=1

|∆v(k − 1)|p,

for all v ∈ W0 with v ≥ 0. This implies λ ≤ λ1(m), as well as −λ ≤ λ1(−m) = −λ−1(m), thus
λ ∈ [λ−1(m), λ1(m)]. �
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Proposition 3.5. Problem (3.1) with h 	 0 does not have any solution if λ = λ−1(m) or λ = λ1(m). It
admits a unique solution if, λ−1(m) < λ < λ1(m) and the latter is strictly positive in [1, n].

Proof. The proof of this proposition follows almost the same lines as that of Proposition 2.9. Reasoning
by contradiction, suppose that (3.1) with λ = λ1(m) has a solution u, we get u > 0 in [1, n]. By Lemma
2.8, we have for an eigenfunction ϕ associated to λ1(m) of (3.2), ϕ > 0 (see [2] ),

λ1(m)

n+1
∑

k=1

m(k) (ϕ(k))
p

+

n+1
∑

k=1

h(k) (ϕ(k))p

(u(k))p−1
≤

n+1
∑

k=1

|∆ϕ(k − 1)|p,

we deduce
n+1
∑

k=1

h(k)|ϕ(k)|p

(u(k))p−1
≤ 0, which is impossible since h � 0.

Suppose that λ ∈ [0, λ1(m)[ , we consider the functional

φ(u) =
1

p

n+1
∑

k=1

|∆u(k − 1)|p −
λ

p

n
∑

k=1

m(k)|u(k)|p −

n
∑

k=1

h(k)u(k).

By definition of λ1(m) and Remark 3.1,

φ(u) ≥
1

p

(

1 −
λ

λ1(m)

)

n+1
∑

k=1

|∆u(k − 1)|p −
n
∑

k=1

h(k)u(k)

≥ c
n
∑

k=1

|u(k)|p −
n
∑

k=1

h(k)u(k),

for some constant c > 0 and for all u ∈ W0. Then φ is coercive on W0, so it has a mininum, thus there
exists a solution u of (3.1). One gets u > 0 in [1, n]. The unicity is proved as in Proposition 2.9. The
cases λ = λ−1(m) or λ ∈ ]λ−1(m), 0[ can be treated in the same way with the weight (-m). �
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