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Existence and Non-existence of Solutions for a (p, q)-Laplacian Steklov System

Youness Oubalhaj, Belhadj Karim and Abdellah Zerouali

abstract: In this paper, we study the existence and non-existence of weak solutions to the following system:
{

∆pu = ∆qv = 0 in Ω,

|∇u|p−2 ∂u
∂ν

= λm|u|p−2u − ε[(α + 1)|u|α−1u|v|β+1 − f ] on ∂Ω,

|∇v|q−2 ∂v
∂ν

= λn|v|q−2v − ε[(β + 1)|v|β−1v|u|α+1 − g] on ∂Ω,

where Ω is a bounded domain in R
N (N ≥ 2) with a smooth boundary ∂Ω, ∆pu = div(|∇u|p−2∇u) is the

p-Laplacian, ∂
∂ν

is the outer normal derivative, ε ∈ {0, 1}, m, n, f and g are the functions that satisfies some
conditions.

Key Words: Steklov system, weights, nonlinear boundary conditions, (p, q)-Lapacian, eigenvalue
problem.
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1. Introduction

Consider the system with nonlinear boundary conditions







∆pu = ∆qv = 0 in Ω,
|∇u|p−2 ∂u

∂ν
= λm|u|p−2u− ε[(α+ 1)|u|α−1u|v|β+1 − f ] on ∂Ω,

|∇v|q−2 ∂v
∂ν

= λn|v|q−2v − ε[(β + 1)|v|β−1v|u|α+1 − g] on ∂Ω,
(1.1)

where Ω is a bounded domain in R
N (N ≥ 2), with a smooth boundary ∂Ω, 1 < p < +∞, 1 < q < +∞,

ε ∈ {0, 1} and suppose the following conditions:
α ≥ 0, β ≥ 0 such that α+1

p
+ β+1

q
= 1 and

f ∈ Lr(∂Ω), r =
pp̄

pp̄− p̄+ 1
,
N − 1

p− 1
< p̄ < ∞ if p < N and p̄ ≥ 1 if p ≥ N,

g ∈ Lr̄(∂Ω), r̄ =
qq̄

qq̄ − q̄ + 1
,
N − 1

q − 1
< q̄ < ∞ if q < N and q̄ ≥ 1 if q ≥ N.

Mp̄ = {m ∈ Lp̄(∂Ω),m+ 6≡ 0,

∫

∂Ω

mdσ < 0},

Mq̄ = {m ∈ Lq̄(∂Ω),m+ 6≡ 0,

∫

∂Ω

mdσ < 0},

∆pu = div(|∇u|p−2∇u) is the p-Laplacian. The operator △p turns up in many mathematical setting:
e.g., non-newtonien fluids, reaction-diffusion problems, porous media, astronomy, etc. (see for example
[4]).
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Many publications, such as [6,8], discuss quasilinear elliptic systems involving p-Laplacian operators
and show the existence and multiplicity of solutions. The authors in [6] studied the existence of solutions
for







−△pu = Fu(x, u, v) in Ω,
−△qv = Fv(x, u, v) in Ω,
u = v = 0, on ∂Ω,

where p, q are real numbers larger than 1.
In [1,5], the authors studied a Dirichlet problem involving critical exponents. The author, in [9], has

been interested to the system involving (p(x), q(x))-laplacian with Dirichlet conditions, which generalize
and improve the result of [1].
Existence results for nonlinear elliptic systems when the nonlinear term appears as a source in the
equation complemented with Dirichlet boundary conditions have been studied by various authors; we
cite the works [6,10,11].

For the nonlinear boundary condition, the authors in [7] proved the existence of nontrivial solutions
of the quasi-linear elliptic system.

{

∆pu = |u|p−2u, ∆qv = |v|q−2v in Ω,
|∇u|p−2 ∂u

∂ν
= Fu(x, u, v), |∇v|q−2 ∂v

∂ν
= Fv(x, u, v) on ∂Ω,

where (Fu, Fv) is the gradient of some positive potential F : ∂Ω × R × R → R.
The (p, q) harmonic case for the Steklov system has been studied in [2].

In the present paper, we are interested at the existence and non-existence of (p, q)-harmonic solutions,
(u, v) ∈ W1,p(Ω) × W1,q(Ω), for a Steklov system (1.1).

This paper is organized as follows. In section 2, which has a preliminary character, we collect some
results relative to the following Steklov problem (2.1). In section 3, we study the existence and non-
existence solutions for our system (1.1). Our proofs are based on variational arguments.

2. Preliminaries

In this section, we collect some results relative to the Steklov eigenvalue problem
{

∆pu = 0 in Ω,
|∇u|p−2 ∂u

∂ν
= λm(x)|u|p−2u on ∂Ω,

(2.1)

where the weight m is assumed to lie in Mp̄ = {m ∈ Lp̄(∂Ω),m+ 6≡ 0,
∫

∂Ω
mdσ < 0}.

O. Torné in [12] showed, by using infinite dimensional Ljusternik-Schnirelman theory, that the problem
(2.1) admits a sequence of eigenvalues:

λk(m, p) = inf
C∈Γk

sup
x∈C

1

p

∫

Ω

|∇u|pdx,

where
Γk = {C ⊂ S;C is symmetric, compact and γ(C) ≥ K},

with

S = {u ∈ W1,p(Ω);
1

p

∫

∂Ω

m|u|Pdσ = 1} and γ(C) is the Krasnoselski genus of C.

Let λ1(m, p) = inf{ 1
p

∫

Ω |∇u|pdx;u ∈ W1,p(Ω) and 1
p

∫

∂Ω m|u|Pdσ = 1}.

This author also showed that if
∫

∂Ω
mdσ < 0, then λ1(m, p) > 0.

In [3], A. Anane et al have also proved that there exists an increasing unbounded sequence of positive
eigenvalues for the problem (2.1) but by applying an other deformation lemma.
In [3] the authors showed the following result.

Theorem 2.1. 1. If m,m0 ∈ Mp̄, then we have

1

λ1
:=

1

λ1(m, p)
= sup

u∈A

1

p

∫

∂Ω

m|u|pdσ,
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where

A = {u ∈ W 1,p(Ω);
1

p

∫

Ω

|∇u|pdx = 1}.

2. If m ≤6≡ m0, then λ1(m0, p) < λ1(m, p).

3. Existence and nonexistence of solutions for a Steklov system

In this section, where ε = 1, we show that the problem (1.1), admits at least a nontrivial solution
under some conditions on the positive number λ, we also show the non-existence results for nontrivial
solutions of the system (1.1) in the case ε = 0. The following theorem is the main result in this paper.

Theorem 3.1. Let m ∈ Mp̄, n ∈ Mq̄ and 0 < λ < inf(λ1(m, p), λ1(n, q)). Then

1. If ε = 1, the system (1.1) admits at least a solution for any f, g.

2. If ε = 0, the system (1.1) has no non-trivial solutions.

Consider the space W = W1,p(Ω) × W1,q(Ω) equipped with the norm

‖w‖ = ‖u‖1,p + ‖v‖1,q, for w = (u, v) ∈ W,

where

‖u‖1,p =
(

∫

Ω

|∇u|pdx+

∫

Ω

|u|pdx
)

1
p

and

‖v‖1,q =
(

∫

Ω

|∇v|qdx+

∫

Ω

|v|qdx
)

1
q

.

We say that (u, v) ∈ W1,p(Ω) × W1,q(Ω) is a weak solution of (1.1) if :

∫

Ω

|∇u|p−2∇u∇ϕdx =

∫

∂Ω

λm|u|p−2uϕdσ − ε[(α + 1)

∫

∂Ω

|u|α−1u|v|β+1ϕdσ −

∫

∂Ω

fϕdσ],

∫

Ω

|∇v|q−2∇v∇ψdx =

∫

∂Ω

λn|v|q−2vψdσ − ε[(β + 1)

∫

∂Ω

|v|β−1v|u|α+1ψdσ +

∫

∂Ω

gψdσ].

for all (ϕ, ψ) ∈ W1,p(Ω) × W1,q(Ω), where dσ is the N − 1 dimensional Hausdroff measure.
The energy functional corresponding to the system (1.1) is the functional Φε such that Φε : W → R with

Φε(u, v) =
1

p

∫

Ω

|∇u|pdx−
λ

p

∫

∂Ω

m|u|pdσ +
1

q

∫

Ω

|∇v|qdx−
λ

q

∫

∂Ω

n|v|qdσ

+ε

[
∫

∂Ω

|u|α+1|v|β+1dσ −

∫

∂Ω

fudσ −

∫

∂Ω

gvdσ

]

.

It is clear that the critical points of the energy functional Φε are the weak solutions of the system (1.1).
To prove the Theorem (3.1), we need the following lemmas.

Lemma 3.2. If ε = 1, m ∈ Mp̄ and n ∈ Mq̄, then the functional Φε=1 is coercive for, 0 < λ <

inf(λ1(m, p), λ1(n, q)).

Proof. Suppose by contradiction that Φε=1 is not coercive. Then there exist a sequence wn ∈ W and
c ≥ 0 with wn = (un, vn) such that ‖wn‖ → +∞ and |Φε=1(wn)| ≤ c.
The condition |Φε=1(wn)| ≤ c implies that

1

p

∫

Ω

|∇un|pdx−
λ

p

∫

∂Ω

m|un|pdσ +
1

q

∫

Ω

|∇vn|qdx−
λ

q

∫

∂Ω

n|vn|qdσ

+

∫

∂Ω

|un|α+1|vn|β+1dσ −

∫

∂Ω

fundσ −

∫

∂Ω

gvndσ ≤ c.
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Since
∫

∂Ω

|un|α+1|vn|β+1dσ ≥ 0,

then
1

p

∫

Ω

|∇un|pdx−
λ

p

∫

∂Ω

m|un|pdσ +
1

q

∫

Ω

|∇vn|qdx−
λ

q

∫

∂Ω

n|vn|qdσ

−

∫

∂Ω

fundσ −

∫

∂Ω

gvndσ ≤ c.

Thus
1

p

∫

Ω

|∇un|pdx−
λ

p

∫

∂Ω

m|un|pdσ −

∫

∂Ω

fundσ −

∫

∂Ω

gvndσ ≤ c, (3.1)

and
1

q

∫

Ω

|∇vn|qdx−
λ

q

∫

∂Ω

n|vn|qdσ −

∫

∂Ω

fundσ −

∫

∂Ω

gvndσ ≤ c. (3.2)

As 0 < λ < inf(λ1(m, p), λ1(n, q)), then we have

(

1 −
λ

λ1(m, p)

)1

p

∫

Ω

|∇un|pdx−

∫

∂Ω

fundσ −

∫

∂Ω

gvndσ ≤ c,

and
(

1 −
λ

λ1(n, q)

)1

q

∫

Ω

|∇vn|qdx−

∫

∂Ω

fundσ −

∫

∂Ω

gvndσ ≤ c.

Put ũn = un

‖wn‖ and ṽn = vn

‖wn‖ , dividing by ‖wn‖p and ‖wn‖q, we obtain

(

1 −
λ

λ1(m, p)

)1

p

∫

Ω

|∇ũn|pdx−
1

‖wn‖p

(

∫

∂Ω

fundσ +

∫

∂Ω

gvndσ
)

≤
c

‖wn‖p
,

(

1 −
λ

λ1(n, q)

)1

q

∫

Ω

|∇ṽn|qdx−
1

‖wn‖q

(

∫

∂Ω

fundσ −

∫

∂Ω

gvndσ
)

≤
c

‖wn‖q
.

Since ũn is bounded, for a further subsequence still denoted ũn, ũn ⇀ ũ weakly in W1,p(Ω) and ũn → ũ

strongly in Lp(Ω). On the other hand, we have

∫

Ω

|∇ũ|pdx+

∫

Ω

|ũ|pdx ≤ lim inf
n−→+∞

(

∫

Ω

|∇ũn|pdx+

∫

Ω

|ũn|pdx
)

.

Passing to the limit, we obtain 1
p

∫

Ω
|∇ũ|pdx = 0. Thus ũ = cst = c1 and ‖ũn‖1,p −→ ‖ũ‖1,p. Since

W1,p(Ω) is uniformly convex and reflexive, ũn −→ cst = c1 strongly in W1,p(Ω). By a similar argument,
we show that ṽn −→ cst = c2 strongly in W1,q(Ω).
Dividing (3.1) and (3.2) respectively by ‖wn‖p and ‖wn‖q and passing to the limit, we obtain

−
λ|c1|p

p

∫

∂Ω

mdσ ≤ 0

and

−
λ|c2|q

q

∫

∂Ω

ndσ ≤ 0.

Since
∫

∂Ω mdσ < 0 and
∫

∂Ω ndσ < 0, then c1 = c2 = 0. Consequently ‖w̃n‖ −→ 0, where w̃n = (ũn, ṽn).
This contradicts ‖w̃n‖ = 1. Finally, Φε=1 is coercive. �

Lemma 3.3. If m ∈ Mp̄ and n ∈ Mq̄, then the energy functional Φε=1 is a weakly lower semicontinuous.
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Proof. It suffices to see that the trace mapping W −→ L
pp̄

p̄−1 (∂Ω) × L
qq̄

q̄−1 (∂Ω) is compact. Indeed, if we

have W1,p(Ω) × W1,q(Ω) ⊂ L
pp̄

p̄−1 (∂Ω) × L
qq̄

q̄−1 (∂Ω) with compact injection, then for any bounded part in

W, it is relatively compact in L
pp̄

p̄−1 (∂Ω) × L
qq̄

q̄−1 (∂Ω).
Let (un, vn) be a bounded sequence in W, it means that un is bounded in W1,p(Ω) and vn is bounded
in W1,q(Ω). For the subsequences , there exists (u, v) ∈ W1,p(Ω) × W1,q(Ω) such that un ⇀ u weakly

in W1,p(Ω), strongly in Lp(Ω) and L
pp̄

p̄−1 (∂Ω) and vn ⇀ v weakly in W1,q(Ω), strongly in Lq(Ω) and

L
qq̄

p̄−1 (∂Ω). Thus
∫

Ω

|∇u|pdx ≤ lim inf
n→∞

∫

Ω

|∇un|pdx

and
1

p

∫

Ω

|∇u|pdx−
λ

p

∫

∂Ω

m|u|pdσ +

∫

∂Ω

|u|α+1|v|β+1dσ −

∫

∂Ω

fudσ ≤

lim inf
n→∞

[

1

p

∫

Ω

|∇un|pdx−
λ

p

∫

∂Ω

m|un|pdσ +

∫

∂Ω

|un|α+1|vn|β+1dσ −

∫

∂Ω

fundσ

]

.

We have the same result, if we replace un by vn. This implies that

Φε=1(u, v) ≤ lim inf
n→∞

Φε=1(un, vn),

consequently Φε=1 is weakly lower semi-continuous. �

Proof of Theorem 3.1. 1. By Lemma 3.2, Φε=1 is coercive and by Lemma 3.3 Φε=1 is weakly lower
semicontinuous. Furthermore Φε=1 is continuously differentiable.Thus the proof is complete by
using the minimum principle.

2. For ε = 0, the system (1.1) becomes







∆pu = ∆qv = 0 in Ω,
|∇u|p−2 ∂u

∂ν
= λm|u|p−2u on ∂Ω,

|∇v|q−2 ∂v
∂ν

= λn|v|q−2v on ∂Ω.
(3.3)

Affirm that if 0 < λ < inf(λ1(m, p), λ1(n, q)), then the system (3.3) has no non-trivial solution.
Indeed, suppose, by contradiction, that the system (3.3) have a non-trivial solution (u, v) such that u 6= 0
or v 6= 0. Then, we obtain

∫

Ω

|∇u|p−2∇u∇ϕdx =

∫

∂Ω

λm|u|p−2uϕdσ,

∫

Ω

|∇v|q−2∇v∇φdx =

∫

∂Ω

λn|v|q−2vφdσ.

For all (ϕ, ψ) ∈ W1,p(Ω) × W1,q(Ω). Thus for ϕ = u and ψ = v, we obtain

∫

Ω

|∇u|pdx = λ

∫

∂Ω

m|u|pdσ and

∫

Ω

|∇v|qdx = λ

∫

∂Ω

n|v|qdσ.

So, we distinguish two cases:

1. If
∫

Ω
|∇u|pdx =

∫

Ω
|∇v|qdx = 0, then u = cst and v = cst. So, we have 0 = λ|cst|p

∫

∂Ω
mdσ and

0 = λ|cst|q
∫

∂Ω
ndσ. Since

∫

∂Ω
mdσ < 0 and

∫

∂Ω
ndσ < 0, u = v = 0. This contradicts the fact that

u 6= 0 or v 6= 0.

2. If
∫

Ω |∇u|pdx > 0 or
∫

Ω |∇v|qdx > 0, then

0 <

∫

Ω |∇u|pdx
∫

∂Ω m|u|pdσ
= λ or 0 <

∫

Ω |∇v|qdx
∫

∂Ω n|v|qdσ
= λ.
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Thus

λ1(m, p) ≤

∫

Ω |∇u|pdx
∫

∂Ωm|u|pdσ
= λ or λ1(n, q) ≤

∫

Ω |∇v|qdx
∫

∂Ω n|v|pdσ
= λ.

So
λ1(m, p) ≤ λ or λ1(n, q) ≤ λ.

It follows that
inf(λ1(m, p), λ1(n, q)) ≤ λ.

This contradicts our assumption.

�

Corollary 3.4. 1. For ε = 1, let m,m0 ∈ Mp̄ and n, n0 ∈ Mq̄, if m ≤6≡ m0, n ≤6≡ n0 on ∂Ω and

λ = λ1(m0, p) = λ1(n0, q), then the system (1.1) admits at least a solution for any f, g.

2. For ε = 0, let m ∈ Mp̄, n ∈ Mq̄, if 0 < λ ≤ inf(λ1(m, p), λ1(n, q)) < sup(λ1(m, p), λ1(n, q)), then

the system (1.1) has no non-trivial solution (u, v) ∈ W in the sense that u 6≡ 0 and v 6≡ 0.

3. For ε = 0, let m ∈ Mp̄, n ∈ Mq̄, if λ = λ1(m, p) = λ1(n, q)), then the system (1.1) has infinitely

many solutions.

Proof. 1. Let m,m0 ∈ Mp̄, n, n0 ∈ Mq̄, by Theorem 2.1, if m ≤6≡ m0 and n ≤6≡ n0, then λ =
λ1(m0, p) < λ1(m, p), and λ = λ1(n0, q) < λ1(n, q) this implies that λ < inf(λ1(m, p), λ1(n, q)).
According to Theorem 3.1 the proof is complete.

2. • if 0 < λ < inf(λ1(m, p), λ1(n, q)), we use the Theorem 2.1.

• If 0 < λ = inf(λ1(m, p), λ1(n, q)) < sup(λ1(m, p), λ1(n, q)), then we have two cases. First case:
if λ = λ1(m, p) < λ1(n, q)), the non-trivial solutions are of the form (αϕ1(m, p), 0), where
ϕ1(m, p) is an eigenfunction of system (2.1) associated to λ1(m, p) .
Second case: if λ = λ1(n, q) < λ1(m, p)), the non-trivial solutions are of the form (0, βϕ1(n, q)),
where ϕ1(n, q) is an eigenfunction of system (2.1) (with q and n instead p and m) of associated
to λ1(n, q) .

3. We use the simplicity of the first eigenvalue λ1(k, r) of the system (2.1), where k ≡ m and r = p or
k ≡ n and r = q.

�
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12. O. Torné, Steklov problem with an indefinite weight for the p-Laplacien, Electronic Journal of Differential Equations,
Vol. 2005(2005), No. 87, pp. 1-8.

Youness Oubalhaj,

Department of Mathematics,

University Moulay Ismail, Faculty of Sciences and Technics, Errachidia,

Morocco.

E-mail address: yunessubalhaj@gmail.com

and

Belhadj Karim,

Department of Mathematics,

University Moulay Ismail, Faculty of Sciences and Technics, Errachidia,

Morocco.

E-mail address: karembelf@gmail.com

and

Abdellah Zerouali ,

Department of Mathematics,

Regional Centre of Trades Education and Training, Oujda,

Morocco.

E-mail address: abdellahzerouali@yahoo.fr


	Introduction
	Preliminaries
	Existence and nonexistence of solutions for a Steklov system

