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abstract: This article is concerned with the existence and uniqueness of solutions of a nonlinear neutral
fractional differential system with infinite delay, involving conformable fractional derivative. Additionally,
we study the Ulam–Hyres stability, Ulam–Hyres–Mittag–Leffler stability, Ulam–Hyres–Mittag–Leffler–Rassias
stability for the solutions of considered system using Picard operator. For application of the theory, we add
an example at the end.
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1. Introduction

Fractional differential equations (FDEs) have been considered as excellent tool in different fields
of mechanics, electricity, biology, control and signal processing etc, to describe natural behavior and
complex phenomena [6,18,19]. They also provide a better description over hereditary properties of various
materials and processes, as a result many research papers and monographs have been published in this
field see [7,17,16,10,25]. FDEs in which the highest fractional derivative of unknown term appears both
with and without delays are known as neutral FDEs. In the last few years, the study of neutral FDEs

have developed dramatically. This is due to the fact that the qualitative behavior of neutral FDEs is
quite different from those of nonneutral FDEs. Neutral FDEs also play an important role and has many
applications, for instance, it gives more better sketch of papulation fluctuations. Also, neutral FDEs

with delay appear in models of electrical networks containing lossless transmission lines etc. [9].
In the literature there exists a number of definitions of fractional derivatives, but the most popular

are Caupto and Riemann–Liouville fractional derivatives. It has been observed that these two types, and
also some other fractional derivatives, dot not obey the classical chain rule. A new definition of fractional
derivative known as conformable fractional derivative (CFD) was proposed by Khalil et al. [15], which
obey all the properties satisfied by classical derivative. Some fundamental features of CFD have been
discussed in [15,1] and for it’s applications see [12,13].

The theory of investigating conformable fractional differential equations (CFDEs) is quite recent.
Bayour and Torres [8] investigated the following problem for the existence of solutions using the criteria
of tube solutions

{
Dα

0 z(t) = f(t, z(t)), t ∈ [a, b], a > 0 α ∈]0, 1[,

x(a) = xa,

where Dα
0 represent the CFD of order α.
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Ahmad et al. [2] obtained sufficient criteria for the existence of solutions to a new class of nonlinear
neutral fractional differential equation involving two times Caputo-type fractional derivatives given by:

{
c
D

α
0 [cDβ

0 x(t) − g(t, x(t))] = f(t, x(t)), t ∈ [0, T ], T > 0,

x(0) = 0,c D
γ
0x(T ) = λ(Iδx)(T )

where cD
(.)
0 is the Caputo fractional derivative each of order α, β, γ ∈ (0, 1) and Iδ is the Riemann–

Liouville fractional integral of order δ. The functions f, g : [0, T ] × R → R are continuous, λ 6=
Γ(1+β+δ)

T γ+δΓ(1+β−γ) .

There exists a vast literature over existence and uniqueness of solutions related to FDEs, involving
Caputo or Riemann–Liouville fractional derivatives [3,4,5,20,21,22,23,24], while in setting of CFDEs as
for as we know existence, uniqueness and stabilities for neutral CFDEs have not been discussed.

Motivated by the work discussed above, in this article we study the existence and uniqueness, Ulam–
Hyers (UH) stability, Ulam–Hyers–Mittag–Leffler (UHML) stability and Ulam–Hyers–Mittag–Leffler–
Rassias (UHMLR) stability of the following nonlinear neutral CFDEs. The proposed system is given
by:

{
(Dβ

0+ − λ)[x(t) − g(t, xt)] = f(t, xt), t ∈ J =]0, T ], 0 < β ≤ 1, λ, T > 0,

x0 = φ(t), t ∈ (−∞, 0]
(1.1)

where D
β
0+(.) represent the CFD of order β. The function φ ∈ B with φt(t) = φ(t), for t ∈ (−∞, 0] and B

is a phase space of mappings from (−∞, 0] into the set of real numbers R. The functions f, g : J × B → R

are continuous satisfying certain conditions and g(0, φ(t)) = 0.

The rest of the article is organized as follows: In section 2, we recall some helpful definitions and results
relating to both fractional derivatives and fractional integrals. Existence and uniqueness of solutions to
the considered system (1.1) are discussed in section 3. UH stability, UHML stability and UHMLR
stability results are established in section 4. A particular example is given in section 5.

2. Auxiliary definitions and lemmas

This section is concerned with some notions, definitions and preliminary results used throughout this
article.

Let C(J,R) be the class of all real continuous functions and L1(J,R) be the space of all locally lebesgue

integrable real functions. We also consider C
β
1−α(J,R), the Banach space of all continuous functions

x : J → R such that limt→0 x(t) exists with norm ‖x‖
C

β

1−α

= max{|x(t)| : t ∈ J}. If x : (−∞, T ] → R is

continuous, then ∀ t ∈ J, the function xt is defined by xt(τ ) = x(t + τ ), τ ∈ (−∞, 0].
Consider the space

Ω =
{

x : (−∞, T ] → R, x|(−∞,T ] ∈ B, x|J ∈ C
β
1−α(J,R)

}
,

x|J is restriction of x into the interval J.

Definition 2.1. [1,15] The CFD of a function f : [0, ∞) → R starting from point 0 of order β is defined
as

D
β
0+f(t) = lim

ǫ→0

f(t + ǫt1−β) − f(t)

ǫ
.

If Dβ

0+f(t) exists on the interval (a, b), then D
β

0+f(0) = limt→0 f(t).

Definition 2.2. [1,15] The conformable fractional integral of a function f : [0, ∞) → R starting from
point 0 of order β is defined as

I
β
0+f(t) =

∫ t

0

sβ−1f(s)ds.

Lemma 2.3. [1,15] If f : [a, ∞) → R is continuous, then ∀ t > a

D
β
0+I

β
0+f(t) = f(t).
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Lemma 2.4. [11] If Dβ
0+f(t) is continuous on the interval [0, ∞), then

I
β
0+D

β
0+f(t) = f(t) − f(0).

Lemma 2.5. [1,15] If the function f is β−differentiable at t ∈ [0, ∞), then

D
β
0+f(t) = t1−βf ′(t).

Lemma 2.6. [15] If the functions f and g are β−differentiable at t ∈ [a, b], then fg is also β−differentiable
at t ∈ [a, b], and

D
β
0+(fg)(t) = f(t)Dβ

0+g(t) + g(t)Dβ
0+f(t).

Lemma 2.7. [15] If f : [a, b] → R is continuous on the interval [c, d] ⊂ [a, b] and if D
β
0+f(t) exists on

the open interval (c, d), then there exists a point ξ ∈ (c, d) such that

f(d) − f(c) =
1

β
D

β
0+f(ξ)[(d − a)β − (c − a)β ].

Lemma 2.8. [14] (Banach fixed point theorem) Let C 6= ∅ be a closed subset of a Banach space Y, then
any contraction mapping P : C → C has a unique fixed point.

Lemma 2.9. [14] (Schaefer’s fixed point theorem) Let P be a completely continuous operator from a
Banach space Y into itself. If the set

Ȳ = {y ∈ Y : y = ηPy}

is bounded for some 0 < η < 1, then P has fixed points.

In this paper we consider the phase space (B, ‖.‖) which is a semi–normed linear space of mappings
from (−∞, 0] into R fulfilling the following axioms.

A0 If x : (−∞, 0] → R is continuous on J, then ∀ t ∈ J and each x0 ∈ B the following conditions are
satisfied.

A1 xt ∈ B;

A2 There exists a constant H > 0 such that |x(t)| ≤ H‖xt‖B, x : J → B is continuous;

A3 There exists a continuous function K(t) and a locally bounded function M(t) both independent
from x(.) such that ‖xt‖B ≤ K(t) sup0≤s≤t |x(s)| + M(t)‖x0‖B. Take Ka = sup{K(t), t ∈ J} and
Ma = sup{M(t), t ∈ J}.

A4 The space B is complete.

It can be observed that A4 is equivalent to |φ(0)| ≤ H‖φ‖B, ∀ φ ∈ B.

3. Main Results

In this section we demonstrate and exhibit the existence and uniqueness for the solution of the
considered system on the interval (−∞, T ] under Banach contraction principle and Schaefer’s fixed point
theorem. We also discuss the UHML stability and UMLR stability for the solution of considered problem
(1.1). Before coming to the main results we assume some hypothesis as follows:

H1 Let f, g : J × B → R are continuous and there exist constants Qf ,Qg > 0 such that ∀ t ∈ J and each
x, x∗ ∈ B

|f(t, x) − f(t, x∗)| ≤ Qf ‖x − x∗‖B

and
|g(t, x) − g(t, x∗)| ≤ Qg‖x − x∗‖B;
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H2 There exists constants Mf > 0 such that ∀ x, y ∈ B and t ∈ J

|f(t, x)| ≤ Mf ‖x‖B.

H3 Let g is completely continuous and for any bounded subset of Ω, {t → g(t, x(t)) : x ∈ B} is

equicontinuous in C
β
1−α(J,R) and there exist constants b1 ∈ [0, 1), b2 > 0 such that |g(t, x)| ≤

b2 + b1‖x‖B, t ∈ J, x ∈ B.

Theorem 3.1. Let 0 < β ≤ 1, then any solution x ∈ Ω of
{

(Dβ
0+ − λ)[x(t) − g(t, xt)] = f(t, xt), t ∈ J,

x0 = φ(t), t ∈ (−∞, 0]

has the form

x(t) = g(t, xt) + eλ tβ

β φ(0) + eλ tβ

β

∫ t

0

sβ−1e−λ sβ

β f(s, xs)ds, t ∈ J. (3.1)

Proof. Consider
(Dβ

0+ − λ)[x(t) − g(t, xt)] = f(t, xt), 0 < β ≤ 1, t ∈ J. (3.2)

Using the approach of variation of constants method to represent the solutions of (3.2). Let any solution
of (3.2) takes the form

x(t) = g(t, xt) + eλ tβ

β u(t), (3.3)

where the unknown function u(.) is continuously differentiable and should be determined. From equation
(3.3) and Lemma 2.5, one has

D
β
0+x(t) = D

β
0+g(t, xt) + D

β
0+eλ tβ

β u(t),

or

D
β

0+ [x(t) − g(t, xt)] = D
β

0+eλ tβ

β u(t)

= t1−βeλ tβ

β λβ
tβ−1

β
u(t) + t1−βeλ tβ

β u′(t)

= λeλ tβ−1

β u(t) + eλ tβ

β t1−βu′(t)

= λ[x(t) − g(t, xt)] + eλ tβ

β D
β
0+u(t).

This yields

eλ tβ

β D
β
0+u(t) = (Dβ

0+ − λ)[x(t) − g(t, xt)]

= f(t, xt),

which gives

D
β

0+u(t) = e−λ tβ

β f(t, xt).

Integrating from 0 to t, we obtained

u(t) = u(0) +

∫ t

0

e−λ sβ

β sβ−1f(s, xs), (3.4)

where
u(0) = φ(0).

Therefore equation (3.3) becomes

x(t) = g(t, xt) + eλ tβ

β φ(0) + eλ tβ

β

∫ t

0

e−λ sβ

β sβ−1f(s, xs)ds.

For t ∈ (−∞, 0], x0 = φ(t). Thus φ(t) = x0(t) = x(0 + t) = x(t), which implies that x(t) = φ(t) for
t ∈ (−∞, 0]. �
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Theorem 3.2. Let H1 is true, then the system (1.1) has a unique solution on (−∞, T ], provided that
[
Qg +

Qf

λ

(
eλ T β

β − 1

)]
Ka < 1. (3.5)

Proof. Transform the considered system (1.1) into equivalent fixed point problem. Define an operator
T : Ω → Ω by:

(Tx)(t) =





g(t, xt) + eλ tβ

β φ(0) + eλ tβ

β

∫ t

0

e−λ sβ

β sβ−1f(s, xs)ds, t ∈ J,

φ(t), t ∈ (−∞, 0].

(3.6)

For every function ~ ∈ C
β
1−α(J,R) along with the condition that ~(0) = 0, we consider ~̃ : (−∞, T ] → R,

the extension of ~ into (−∞, T ] defined by

~̃(t) =

{
~(t), t ∈ J,

0, t ∈ (−∞, 0].
(3.7)

Also suppose φ̃ : (−∞, T ] → R be the extension of φ ∈ B into (−∞, T ] satisfying

φ̃(t) =

{
0, t ∈ J,

φ(t), t ∈ (−∞, 0].
(3.8)

Then φ̃0 = φ and ~̃0 = 0.

Now if x(.) satisfies (3.1), then we can analyze x(.) as x(t) = ~̃(t) + φ̃(t) for t ∈ J, which implies that

xt = ~̃t + φ̃t, where ~ satisfies

~(t) = g(t, ~̃t + φ̃(t)) + φ(0)eλ tβ

β + eλ tβ

β

∫ t

0

e−λ tβ

β sβ−1f(s, ~̃s + φ̃s)ds, t ∈ J. (3.9)

Setting
Ω = {~ ∈ Ω with ~0 = 0}.

For any ~ ∈ Ω, let ‖.‖Ω denotes the semi-norm on Ω described as

‖~‖Ω = ‖~0‖B + ‖~‖Cα
1−β

= sup
t∈J

{|~|, ~ ∈ Ω with ~0 = 0},

then (‖~‖Ω, ‖.‖Ω) form a Banach space.
Define an operator P : Ω → Ω by

(P~)(t) = g(t, ~̃t + φ̃(t)) + eλ tβ

β φ(0) + eλ tβ

β

∫ t

0

e−λ tβ

β sβ−1f(s, ~̃s + φ̃s)ds, t ∈ J

with (P~)(0) = 0. Obviously the fixed point of the operator T is the solution of system (1.1) and it’s
equivalent fixed point of P is the solution of (3.9).

Now by means of Banach fixed point theorem we will show that P has a fixed point in Ω, equivalently
P : Ω → Ω is contraction mapping. For any ~, ~∗ ∈ Ω and ∀ t ∈ J, it follows that

|(P~)(t) − (P~∗)(t)|

≤
∣∣g(t, ~̃t + φ̃t) − g(t, ~̃∗

t + φ̃t)
∣∣ + eλ tβ

β

∫ t

0

e−λ tβ

β sβ−1
∣∣f(s, ~̃s + φ̃s) − f(s, ~̃∗

s + φ̃s)
∣∣ds

≤ Qg‖~̃t − ~̃
∗
t ‖B + Qf ‖~̃t − ~̃

∗
t ‖Beλ tβ

β

∫ t

0

e−λ tβ

β sβ−1ds

= Qg‖~̃t − ~̃
∗
t ‖B +

Qf

λ
‖~̃t − ~̃

∗
t ‖B

(
eλ tβ

β − 1

)

≤ Qg‖~̃t − ~̃
∗
t ‖B +

Qf

λ
‖~̃t − ~̃

∗
t ‖B

(
eλ T β

β − 1

)
, ∀ t ∈ J.
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Now by A1 (iii) ∀ t ∈ J, we have

‖~̃t − ~̃
∗
t ‖B = ‖~t − ~

∗
t ‖B

≤ K(t) sup
0≤τ≤t

∣∣~(τ ) − ~
∗(τ )

∣∣ + M(t)
∥∥~0 − ~

∗
0

∥∥
B

≤ Ka‖~ − ~
∗‖Ω + M(t)(0)

= Ka‖~ − ~
∗‖Ω, ∀ t ∈ J.

Therefore,

sup
t∈J

|(P~)(t) − (P~∗)(t)| ≤ QgKa‖~ − ~
∗‖Ω +

Qf

λ

(
eλ T β

β − 1

)
Ka‖~ − ~

∗‖Ω.

Hence,

‖P~ − P~∗‖Ω ≤

[
Qg +

Qf

λ

(
eλ T β

β − 1

)]
Ka‖~ − ~

∗‖Ω.

It follows from the inequality (3.5) that P is a contraction mapping on Ω. The application of Banach
fixed point theorem gives P has a unique fixed point which is the unique solution of (3.9) on J.

Set x(t) = ~̃(t) + φ̃(t), then x(t) is the unique solution of system (1.1) on (−∞, T ]. �

Theorem 3.3. If the hypothesis H1 to H3 are true with 1 − Q1aKa 6= 0, then the system (1.1) has at
least one solution on the interval (−∞, T ], where

Q1a =

[
b1 +

Mf

λ

(
eλ T β

β − 1
)]

,

Q2a = b2 +
(
H + Q1aMa

)
‖φ‖B.

Proof. Consider the operator P : Ω → Ω as defined in (3.6). We shall show that P has a fixed point. The
proof will be completed in the following steps.

Step 1 : Let {~n}n∈N be a sequence in Ω such that ~n → ~ in Ω as n → ∞.

Now for any t ∈ J, we have

|(P~n)(t) − (P~∗)(t)| ≤
∣∣g(t, (~̃n)t + φ̃t) − g(t, ~̃t + φ̃t)

∣∣

+eλ tβ

β

∫ t

0

e−λ tβ

β sβ−1
∣∣f(s, ((~̃n)s + φ̃s)) − f(s, ~̃s + φ̃s)

∣∣ds

≤ Qg‖(~̃n)t − ~̃t‖B + Qf ‖(~̃n)t − ~t‖Beλ tβ

β

∫ t

0

e−λ tβ

β sβ−1ds

≤ QgKa‖~n − ~‖Ω +
KaQf

λ

(
eλ tβ

β − 1

)
‖~n − ~‖Ω

=
[
Qg +

Qf

λ

(
eλ tβ

β − 1

)]
Ka‖~n − ~‖Ω → 0, as n → ∞, ∀ t ∈ J.

This implies that
‖P~n − P~‖Ω → 0, as n → ∞.

So that P is continuous.
Step 2 : Consider a closed ball Br0

= {~ : ‖~‖Ω ≤ r0, r0 ≥ Q2a

1−Q1a
}. For any ~ ∈ Br0

and t ∈ J, we
have

|(P~)(t)| ≤
∣∣g(t, ~̃t + φ̃t)

∣∣ + eλ tβ

β

∣∣φ(0)
∣∣ + eλ tβ

β

∫ t

0

e−λ tβ

β sβ−1
∣∣f(s, ~̃s + φ̃s)

∣∣ds

≤ b2 + b1‖~̃t + φ̃t‖B + H‖φ‖B + eλ tβ

β Mf

∫ t

0

e−λ tβ

β sβ−1
∥∥~̃t + φ̃t‖Bds

≤ b2 + b1‖~̃t + φ̃t‖B + H‖φ‖B +
Mf

λ

(
eλ T β

β − 1
)∥∥~̃t + φ̃t‖B.
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Therefore,

‖P~‖Ω ≤ b2 + H‖φ‖B +

[
b1 +

Mf

λ

(
eλ T β

β − 1
)]

‖~̃t + φ̃t‖B, t ∈ J. (3.10)

Since

‖~̃t + φ̃t‖B ≤ K(t) sup
0≤τ≤t

|~̃(τ ) + φ̃(τ )| + M(t)‖~̃0 + φ̃0‖B

≤ K(t) sup
0≤τ≤t

|~̃(τ )| + K(t) sup
0≤τ≤t

|φ̃(τ )| + Ma‖φ‖B

≤ Ka sup
0≤τ≤t

|~(τ )| + Ma‖φ‖B

= Ka‖~‖Ω + Ma‖φ‖B

≤ Kar0 + Ma‖φ‖B.

Therefore the inequality (3.10) becomes

‖Ph‖Ω ≤ b2 + H‖φ‖B +

[
b1 +

Mf

λ

(
eλ T β

β − 1
)]

(Kar0 + Ma‖φ‖B)

= b2 +
(
H + Q1aMa

)
‖φ‖B + Q1aKar0

= Q2a + Q1aKar0

≤ r0.

This implies that the operator P maps a bounded subset of Ω into a bounded subset of Ω.

Step 3 : For equicontinuity let h ∈ Br0
and for any t1, t2 ∈ J with t1 < t2 and t2 − t1 < η, we have

∣∣(P~)(t2) − (P~)(t1)
∣∣

≤
∣∣g(t2, ~̃t2

+ φ̃t2
) − g(t1, ~̃t1

+ φ̃t1
)
∣∣

+
(

eλ
t
β
2
β − eλ

t
β
1
β

)(
|φ(0)| +

∫ t1

0

e−λ tβ

β sβ−1
∣∣f(s, ~̃s + φ̃s)

∣∣ds
)

+

∫ t2

t1

eλ
t
β
2
β e−λ tβ

β sβ−1
∣∣f(s, ~̃s + φ̃s)

∣∣ds

≤ QgKa‖~t2
− ~t1

‖Ω + λ
(
H‖φ‖B +

Mf(Kar0 + Ma‖φ‖B)

β
t
β
1

)
ζβ−1e

ζβ

β (t2 − t1)

+
Mf

β

(
Kar0 + Ma‖φ‖B

)
eλ

t
β
2
β (t2 − t1)β , ζ ∈ (t1, t2).

The right hand side of last inequality approaches to zero as ζ tends to zero, it follows that
∣∣(Px)(t2) −

(Px)(t1)
∣∣ → 0 as ζ → 0. By Arzelä−Ascoli theorem, we conclude that the operator P is continuous and

completely continuous.
Step 4 : It remains to show that the set

Y = {~ ∈ Ω : ~ = ηP~}

is bounded for some 0 < η < 1. On contrary suppose that Y is unbounded, that is for ~ ∈ Y, ‖~‖Ω =
K1 → ∞. But for any t ∈ J, we have

‖~‖Ω = ‖ηP~‖Ω

≤ ‖P~‖Ω

≤ Q1ar0 + Q2a.

Dividing both sides by ‖~‖Ω, we get

1 ≤
Q1ar0 + Q2a

‖~‖Ω
=

Q1ar0 + Q2a

K1
→ 0.
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Which is a contradiction, thus the set Y is bounded. Schaefer’s fixed point theorem guarantees that there
exists at least one fixed point ~ of P in Ω. Then ~ = ~̃ + φ̃ is at least one solution of (1.1) on (−∞, T ].
This completes the proof. �

4. Hyres–Ulam stability analysis

In this section we are establishing Hyres–Ulam stability and Hyres–Ulam–Mittag–Leffler stability
results.

Definition 4.1. The considered system (1.1) has Hyres–Ulam stability if we can find constant λ1 > 0
such that for each ǫ > 0 and every x ∈ Ω satisfying

∣∣(Dβ

0+ − λ)[x(t) − g(t, xt)] − f(t, xt)
∣∣ ≤ ǫ (4.1)

there exists y ∈ Ω with

(Dβ
0+ − λ)[y(t) − g(t, yt)] = f(t, yt) (4.2)

satisfying

|x(t) − y(t)| ≤ λ1ǫ, t ∈ J.

Definition 4.2. The considered system (1.1) has Hyres–Ulam–Mittag–Leffler stability with respect to
Eβ(tβ) if we can find constant λ∗ > 0 such that for each ǫ∗ > 0 and every x ∈ Ω satisfying

∣∣(Dβ

0+ − λ)[x(t) − g(t, xt)] − f(t, xt)
∣∣ ≤ ǫ∗Eβ(tβ) (4.3)

there exists y ∈ Ω with

(Dβ
0+ − λ)[y(t) − g(t, yt)] = f(t, yt) (4.4)

satisfying

|x(t) − y(t)| ≤ λ∗ǫ∗Eβ(tβ), t ∈ J,

where Eβ(tβ) is Mittag–Leffler function given by:

Eβ(tβ) =

∞∑

m=0

tmβ

Γ(mβ + 1)
.

Definition 4.3. The considered system (1.1) has UHMLR stability with respect to Eβ(tβ) if we can find
constant λ∗∗ > 0 and function ϕ : J → R+ such that for each ǫ∗∗ > 0 and every x ∈ Ω satisfying

∣∣(Dβ
0+ − λ)[x(t) − g(t, xt)] − f(t, xt)

∣∣ ≤ ǫ∗ϕ(t)Eβ(tβ) (4.5)

there exists y ∈ Ω with

(Dβ
0+ − λ)[y(t) − g(t, yt)] = f(t, yt) (4.6)

satisfying

|x(t) − y(t)| ≤ λ∗∗ǫ∗∗ϕ(t)Eβ(tβ), t ∈ J.

Remark 4.4. A function x ∈ Ω satisfies the inequality (4.1) if and only there exists θ ∈ C(J,R) such
that

|θ(t)| ≤ ǫ and (Dβ
0+ − λ)[x(t) − g(t, xt)] = f(t, xt) + θ(t), t ∈ J.

Remark 4.5. A function x ∈ Ω satisfies the inequality (4.2), if and only there exists θ∗ ∈ C(J,R) such
that

|θ∗(t)| ≤ ǫ∗Eβ(tβ) and (Dβ
0+ − λ)[x(t) − g(t, xt)] = f(t, xt) + θ∗(t), t ∈ J.

A similar remark can be obtained for the inequality (4.5).
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Lemma 4.6. Let 0 < β ≤ 1 and x ∈ Ω be the solution of inequality (4.1), then x satisfies the following
integral inequality

∣∣x(t) − g(t, xt) − eλ tβ

β φ(0) − eλ tβ

β

∫ t

0

e−λ sβ

β sβ−1f(s, xs)ds
∣∣

≤
ǫ(eλ tβ

β − 1)

λ
, t ∈ J.

Proof. From Remark 4.4, we have

(Dβ
0+ − λ)[x(t) − g(t, xt)] = f(t, xt) + θ(t), t ∈ J.

According to Theorem 3.1, the solution will be equivalent to:

x(t) = g(t, xt) + eλ tβ

β φ(0) + eλ tβ

β

∫ t

0

e−λ tβ

β sβ−1f(s, xs)ds + eλ tβ

β

∫ t

0

e−λ sβ

β θ(s)ds.

Therefore,

∣∣∣x(t) − g(t, xt) − eλ tβ

β φ(0) − eλ tβ

β

∫ t

0

e−λ sβ

β sβ−1f(s, xs)ds
∣∣∣

≤ eλ tβ

β

∫ t

0

e−λ sβ

β sβ−1|θ(s)|ds

≤ ǫeλ tβ

β

∫ t

0

e−λ sβ

β sβ−1ds

≤
ǫ(eλ tβ

β − 1)

λ
.

�

Lemma 4.7. Let 0 < β ≤ 1 and x ∈ C(J,R) be the solution of inequality (4.2), then x satisfies the
following integral inequality

∣∣∣x(t) − g(t, xt) − eλ tβ

β φ(0) − eλ tβ

β

∫ t

0

e−λ sβ

β sβ−1f(s, xs)ds
∣∣∣

≤
ǫ∗

λ

(
eλ tβ

β − 1
)
Eβ(tβ), t ∈ J.

Proof. From Remark 4.5, we have

(Dβ
0+ − λ)[x(t) − g(t, xt)] = f(t, xt) + θ∗(t), t ∈ J.

According to Theorem 3.1, the solution will be equivalent to:

x(t) = g(t, xt) + eλ tβ

β φ(0) + eλ tβ

β

∫ t

0

e−λ sβ

β sβ−1f(s, xs)ds + eλ tβ

β

∫ t

0

e−λ tβ

β θ(s)ds.

Therefore,

∣∣∣x(t) − g(t, xt) − eλ tβ

β φ(0) − eλ tβ

β

∫ t

0

e−λ sβ

β sβ−1f(s, xs)ds
∣∣∣

≤ eλ tβ

β

∫ t

0

e−λ sβ

β sβ−1|θ∗(s)|ds

≤ eλ tβ

β

∫ t

0

e−λ tβ

β ǫ∗sβ−1Eβ(sβ)ds

≤
ǫ∗

λ

(
eλ tβ

β − 1
)
Eβ(tβ).

�
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Theorem 4.8. Let the assumptions H1 to H3 hold along with condition that 1 − ξ 6= 0, where

ξ =

[
Qg +

Qf

λ

(
eλ T β

β − 1
)]
Ka,

then (1.1) is UH stable.

Proof. Let x be the approximate solution of (1.1) and y be the unique solution, then by Theorem 3.1 for
every φ ∈ B, y will have the form

y(t) = g(t, yt) + eλ tβ

β φ(0) + eλ tβ

β

∫ t

0

e−λ sβ

β sβ−1f(s, ys)ds, t ∈ J.

Now consider
∣∣x(t) − y(t)

∣∣

=
∣∣∣x(t) − g(t, yt) − eλ tβ

β φ(0) − eλ tβ

β

∫ t

0

e−λ sβ

β sβ−1f(s, ys)ds
∣∣∣

=
∣∣∣x(t) − g(t, xt) + eλ tβ

β φ(0) − eλ tβ

β

∫ t

0

e−λ sβ

β sβ−1f(s, xs)ds

+g(t, xt) + eλ tβ

β φ(0) + eλ tβ

β

∫ t

0

e−λ sβ

β sβ−1f(s, xs)ds

−g(t, yt) − eλ tβ

β φ(0) − eλ tβ

β

∫ t

0

e−λ sβ

β sβ−1f(s, ys)ds
∣∣∣

≤
∣∣∣x(t) − g(t, xt) + eλ tβ

β φ(0) − eλ tβ

β

∫ t

0

e−λ sβ

β sβ−1f(s, xs)ds
∣∣∣

+|g(t, xt) − g(t, yt)| + eλ tβ

β

∫ t

0

e−λ tβ

β sβ−1
∣∣f(s, xs) − f(s, ys)

∣∣ds

≤
ǫ(eλ tβ

β − 1)

λ
+ Qg‖xt − yt‖B +

Qf

λ

(
eλ tβ

β − 1
)
‖xt − yt‖B

≤
ǫ(eλ tβ

β − 1)

λ
+ QgKa‖x − y‖Ω +

QfKa

λ

(
eλ tβ

β − 1
)
‖x − y‖Ω.

Or

‖x − y‖Ω ≤
ǫ(eλ T β

β − 1)

λ
+

[
Qg +

Qf

λ

(
eλ T β

β − 1
)]
Ka‖x − y‖Ω.

From which we obtained

‖x − y‖Ω ≤ λ1ǫ, λ1 =
eλ T β

β − 1

λ(1 − ξ)
, t ∈ J.

The last inequality shows that the system (1.1) is UH stable. �

Theorem 4.9. Let the assumptions H1 to H3 holds along with condition 1 − ξ 6= 0, where

ξ =

[
Qg +

Qf

λ

(
eλ T β

β − 1
)]
Ka,

then (1.1) is UHML stable.

Proof. Let x be the approximate solution of (1.1) and y be the unique solution, then by Theorem 3.1 for
every φ ∈ B the solution of y will have the form

y(t) = g(t, yt) + eλ tβ

β φ(0) + eλ tβ

β

∫ t

0

e−λ sβ

β sβ−1f(s, ys)ds, t ∈ J.
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Now consider

∣∣x(t) − y(t)
∣∣

=
∣∣∣x(t) − g(t, yt) − eλ tβ

β φ(0) − eλ tβ

β

∫ t

0

e−λ sβ

β sβ−1f(s, ys)ds
∣∣∣

=
∣∣∣x(t) − g(t, xt) + eλ tβ

β φ(0) − eλ tβ

β

∫ t

0

e−λ sβ

β sβ−1f(s, xs)ds

+g(t, xt) + eλ tβ

β φ(0) + eλ tβ

β

∫ t

0

e−λ sβ

β sβ−1f(s, xs)ds

−g(t, yt) − eλ tβ

β φ(0) − eλ tβ

β

∫ t

0

e−λ sβ

β sβ−1f(s, ys)ds
∣∣∣

≤
∣∣∣x(t) − g(t, xt) + eλ tβ

β φ(0) − eλ tβ

β

∫ t

0

e−λ sβ

β sβ−1f(s, xs)ds
∣∣∣

+|g(t, xt) − g(t, yt)| + eλ tβ

β

∫ t

0

e−λ tβ

β sβ−1
∣∣f(s, xs) − f(s, ys)

∣∣ds

≤
ǫ∗

λ

(
eλ tβ

β − 1
)
Eβ(tβ) + Qg‖xt − yt‖B +

Qf

λ

(
eλ tβ

β − 1
)
‖xt − yt‖B

≤
ǫ∗

λ

(
eλ tβ

β − 1
)
Eβ(tβ) + QgKa‖x − y‖Ω +

QfKa

λ

(
eλ tβ

β − 1
)
‖x − y‖Ω.

From which we obtain

‖x − y‖Ω ≤ λ∗ǫEβ(tβ), λ∗ =
eλ T β

β − 1

λ(1 − ξ)
, t ∈ J.

By Definition 4.2, the system (1.1) has UHML stability. This completes the proof.
Note: The UHMLR stability result can be obtained in similar way. �

5. Example

In this section, we illustrate the above results by an example.

Example 5.1. Let α ∈ R+ and define a space Bα by:

Bα = {x ∈ C((−∞, 0],R) : lim
t→−∞

eαtx(t) exists in R},

with norm

‖x‖α = sup
−∞<t≤0

{eαt|x(t)|}.

Then the functional space satisfies all the axioms from A1 to A2. Next consider the following nonlinear
weighted neutral fractional differential system





(D

1
2

0+ − λ)
[
x(t) −

e−t−tα‖xt‖

10(et + e−t)

]
=

e−tα|xt|

(20 + e−t)(1 + ‖xt‖)
, t ∈ J = (0, 1],

x(t) = φ(t), t ∈ (−∞, 0].

(5.1)

Setting the functions as:

f(t, v) =
e−tαv

(20 + e−t)(1 + v)
, t ∈ J

and

g(t, v) =
e−t−tαv

10(et + e−t)
, t ∈ J.
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For any v, v∗ from Bα and t ∈ J, we have

|f(t, v) − f(t, v∗)| ≤
e−tα

20 + e−t

∣∣∣∣
v

1 + v
−

v∗

1 + v∗

∣∣∣∣

=
e−t−tα

20et + 1

∣∣∣∣
v − v∗

(1 + v)(1 + v∗)

∣∣∣∣

≤
e−t

20
e−tα|v − v∗|

≤
1

20
‖v − v∗‖α.

|g(t, v) − g(t, v∗)| ≤
e−t−tα

10(et + e−t)
|v − v∗|

=
e−t

10(et + e−t)
e−tα|v − v∗|

≤
1

10(e2t + 1)
‖v − v∗‖α

≤
1

10
‖v − v∗‖α.

Therefore the conditions from H1 to H2 are satisfied with Qf = 1
20 , Qg = 1

10 . It can be observed that (3.5)
is satisfied by considering Ka = Ma = λ = t = 1 and β = 1

2 . Actually

[
Qg +

Qf

λ
(eλ T β

β − 1)

]
Ka = 0.1324 < 1.

Thus by Theorem 3.2, the system (5.1) has a unique solution on (−∞, 1]. Also 1 − ξ = 0.8676 6= 0, the
solution of (5.1) has UH stability and UHML stability on J.

Conclusion

In this manuscript, we exercised the Banach contraction principle and Schaefer’s fixed point theorem,
to achieve the necessary conditions for the existence and uniqueness of solution to a nonlinear weighted
neutral fractional differential equation system. Likewise under specific assumptions and conditions, we
have found the UH stability, UHML stability and UHMLR stability results for the solution of (1.1).

Acknowledgments The authors would like to thank the anonymous referees for their comments and
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readability.
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