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Stability and Local Attractivity for Non-autonomous Boundary Cauchy Problems
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abstract: In this paper we present results concerning the existence, stability and local attractivity for non-
autonomous semilinear boundary Cauchy problems. In our method, we assume certain smoothness properties
on the linear part and the local Lipschitz continuity on the nonlinear perturbation. We apply our abstract
results to population equations.
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1. Introduction

Consider the following non-linear boundary Cauchy problem











d

dt
u(t) = Amax(t)u(t), t ≥ s ≥ 0,

L(t)u(t) = f(t, u(t)), t ≥ s ≥ 0,

u(s) = x,

(1.1)

where Amax(t) ∈ L(D, X), L(t) ∈ L(D, Y ), X , Y and D are Banach spaces with D densely and continu-
ously embedded in X and a function f maps from R+ × X to Y . The solution u : [s, ∞) → X takes the
initial value x ∈ X at time s. The linear boundary Cauchy problem associated with (1.1) is given by











d

dt
u(t) = Amax(t)u(t), t ≥ s ≥ 0,

L(t)u(t) = 0, t ≥ s ≥ 0,

u(s) = x.

(1.2)

This type of equation has recently been considered and studied as a model class with various appli-
cations like population equations, functional differential equations and boundary control problems (see
[3,4,7,8] and the references therein).

A crucial question concerning nonautonomous boundary equations is the existence of solutions. In [4],
the authors proved that the solutions of (1.1) in the case that f(t, x(t)) ≡ f(t) are given by a variation of
constants formula which, following the same argument as in [10], we extend to a variation of constants
formula solution of (1.1) in the present work.

The variation of constants formula has played a very important role in the study of the regularity
properties and the long time behavior for this type of evolution equations, see [1,5,9], for example.
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2 A. Jerroudi and M. Moussi

In the present work, our contribution is concerning with the stability and the local attractivity which
are among the most topics in the qualitative theory of infinite dynamical systems attracting in the last
years a big interest.

Roughly speaking, our goal is establishing existence of mild solution vanishing at infinity. The second
goal is to establish sufficient conditions for guaranteeing the existence of local attractivity. More precisely,
by assuming that the solution of the linear problem (1.2) is exponentially stable and the nonlinear
perturbation f is locally Lipschitzian, we will prove that the solution of (1.1) is locally attractive.

Our plan in this paper is as follows: in section 2, we give some preliminaries concerning definitions
and natural assumptions for well-posedness. Section 3 is devoted to the existence of mild solution in a
variation of constants formula form. In section 4 and section 5, we prove a stability and a local attractivity
results, respectively, of the problem (1.1). The last section is devoted to an application of structured
population equation.

To end this section, we give notations used in this paper. For Banach spaces X, Y , L(X, Y ) denotes
the space of all linear bounded operators from X to Y . We denote by idX the identity map defined on
X . By C(R+, X) we denote the space of all continuous functions from R+ into X , Cb(R+, X) is the
space of all bounded continuous functions from R+ into X , and by C0(R+, X) we denote the space of the
continuous functions on R+ converging to zero at the infinity.
B(R) := {x ∈ X : ‖x‖ ≤ R} is the closed ball centred at zero with radius equal to R .

Let A : D(A) ⊂ X −→ X be a closed linear operator, we denote by

ρ(A) := {λ ∈ R | λ idX − A : D(A) −→ X is bijective}

the resolvent set of A. For λ ∈ ρ(A), the operator R(λ, A) := (λ idX − A)
−1

is called the resolvent of A.

2. Preliminaries

In this section we recall some definitions and results, and formulate assumptions.

Definition 2.1. A family of bounded linear operators U := (U(t, s))t≥s∈J , J := R+ or R, on a Banach
space X is an evolution family if

1. U(t, r)U(r, s) = U(t, s) and U(t, t) = idX for all t ≥ r ≥ s ∈ J ;

2. the mapping {(t, s) ∈ J × J : t ≥ s} ∋ (t, s) 7→ U(t, s) ∈ L(X, X) is strongly continuous.

An evolution family is called exponentially bounded if, in addition,

3. There exist constants M ≥ 1 and ω ∈ R such that:

‖U(t, s)‖ ≤ Meω(t−s) t ≥ s ≥ 0.

When ω < 0 we say that the evolution family is exponentially stable.

Definition 2.2. Let I ⊆ R. A family of linear (unbounded) operators (A(t))t∈I on a Banach space X is
called a stable family if there are constants M ≥ 1, ω ∈ R such that (ω, +∞) ⊂ ρ(A(t)) for all t ∈ I and

∥

∥

∥

∥

∥

m
∏

i=1

R(λ, A(ti))

∥

∥

∥

∥

∥

≤ M(λ − ω)−m

for λ > ω and any finite sequence t1, ..., tm in I such that t1 ≤ t2 ≤ · · · ≤ tm, m = 1, 2, ....

Let X , D and Y be Banach spaces such that D is densely and continuously embedded in X . The
operators Amax(t) ∈ L(D, X), L(t) ∈ L(D, Y ) are supposed to satisfy the following assumptions.

(H1) There are positive constants c1, c2 such that

c1||x||D ≤ ||x|| + ||Amax(t)x|| ≤ c2||x||D

for all x ∈ D and t ≥ 0.
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(H2) For each x ∈ D, the mapping t 7−→ Amax(t)x is continuously differentiable.

(H3) The family of operators (A(t))t≥0, where A(t) := Amax(t)|ker L(t), is stable with stability constants
M and ω0.

(H4) The operators L(t) : D −→ Y , t ≥ 0, are surjective.

(H5) For each x ∈ D the mapping t 7−→ L(t)x is continuously differentiable.

(H6) There exist constants γ > 0 and ω ∈ R such that

||L(t)x||Y ≥
λ − ω

γ
||x||X

for all x ∈ ker(λ − Amax(t)), λ > ω and t ≥ 0.

In the following lemma, we cite consequences of the above assumptions from [6, Lemma 1.2].

Lemma 2.3. If the conditions (H1)–(H6) are satisfied, then for all λ in ρ(A(t))

1. L(t)|ker(λ−Amax(t)) is an isomorphism from ker(λ − Amax(t)) to Y .

2. The function t 7−→ Lλ,ty is continuously differentiable for all y ∈ Y and ‖λLλ,t‖ ≤
λγ

λ − ω
, where

Lλ,t =
(

L(t)|ker(λ−Amax(t))

)−1
, ∀λ > ω.

Under the above assumptions, it was shown in [7] that there exists an evolution family (U(t, s))t≥s≥0

generated by (A(t))t≥s and

||U(t, s)|| ≤ Meω0(t−s), ∀t ≥ s ≥ 0. (2.1)

That is U(t, s)x is a solution of the problem (1.2).

3. Existence of mild solution

In this section we are interested in the nonlinear case. More precisely, we discuss the existence of mild
solution for the problem (1.1). We start by giving the following definition.

Definition 3.1. A function u ∈ C([s, +∞[ , X) is said to be a mild solution of the problem (1.1) if it
satisfies the integral equation

u(t) = U(t, s)x + lim
λ→+∞

∫ t

s

U(t, σ)λLλ,σf(σ, u(σ)) dσ, ∀ t ≥ s. (3.1)

Remark 3.2. Let x ∈ X and t ≥ s ≥ 0. Define the operator S on the space C([s; +∞[, X) by

(Su)(t) = U(t, s)x + lim
λ→+∞

∫ t

s

U(t, σ)λLλ,σf(σ, u(σ))dσ. (3.2)

It was shown in [8, Proposition 3.2.2] that Su ∈ C([s; +∞[, X). Therefore, one can see that a continuous
function u is a mild solution of (1.1) if and only if it is a fixed point of the operator S.

In the next theorem, we give a result on the existence and uniqueness of mild solution of the problem
(1.1). For that, the nonlinear perturbation f is needed to satisfy f(t, 0) ≡ 0 and the following local
Lipschicity condition:

(C) For every T > 0 and R > 0, there is a constant CR,T such that:

‖f(t, u) − f(t, v)‖ ≤ CR,T ‖u − v‖ ,

for all u and v in B(R) and t ∈ [s, T ].
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Theorem 3.3. Under the conditions (H1)–(H6), (C) and for all x ∈ X, there exists a positive constant
Tmax ≤ +∞ such that the problem (1.1) has a unique mild solution u on [s, Tmax[ with the initial value
u(s) = x. Moreover, if Tmax < +∞, then

lim
t→Tmax

‖u(t)‖ = +∞

Proof. We follow the same arguments as in the proof of [10, p 185, Therorem 1.4]. Let s ≥ 0 and x ∈ X .

Denoting by δs,x := min

{

1,
‖x‖

γRsCRs,s+1

}

, where Rs := 2M(s) ‖x‖, M(s) := maxs≤t≤s+1 ‖U(t, s)‖ and

CRs,s+1 the constant provided by (C). Let τ := s + δs,x, we will prove that there is a mild solution of
(1.1) on the interval [s, τ ] whose length is δs,x.

Let S be the operator as defined in (3.2) on the space C ([s, τ ], X). From [8, Proposition 3.2.2],
we have S(C ([s, τ ], X)) ⊂ C ([s, τ ], X). Furthermore, S maps the ball B(Rs) ⊂ C ([s, τ ], X) into itself.
Indeed, supposing that u ∈ C ([s, τ ]; X) such that ‖u‖ ≤ Rs. Then, for t ∈ [s, τ ] we have

‖(Su)(t)‖ ≤ ‖U(t, s)x‖ + lim
λ→+∞

∫ t

s

‖U(t, σ)‖ ‖λLλ,σ‖ ‖(f(σ, u(σ))‖ dσ

≤ M(s) ‖x‖ + M(s)γ

∫ t

s

‖f(σ, u(σ))‖ dσ

≤ M(s) ‖x‖ + M(s)(t − s)γCRs,s+1 ‖u‖
≤ M(s) ‖x‖ + M(s)δs,xγCRs,s+1Rs

≤ 2M(s) ‖x‖
= Rs.

Thus, S
(

B(Rs)
)

⊂ B(Rs). Moreover, one can show, by induction, that for all u and v in B(Rs)

‖(Snu − Snv)‖ ≤

(

γτM(s)CRs,s+1

)n

n!
‖u − v‖∞ , ∀n ∈ N

∗.

Hence, for n sufficiently large, S is a contraction on B(Rs). Thus, by the fixed point theorem, there
exists a unique function u in B(Rs) satisfying Su = u. This fixed point is the desired mild solution
on [s, τ ]. The above procedure can be reproduced in the way that the mild solution u on [s, τ ] can be
extended to the interval [s, τ + δ] for δ > 0 depending on ‖u(τ)‖, Rτ and CRτ ,τ+1 by u(t) = v(t) on
[τ , τ + δ], where v is the solution of the integral equation

v(t) = U(t, τ)u(τ ) + lim
λ→+∞

∫ t

τ

U(t, σ)λLλ,σf(σ, v(σ))dσ, for τ ≤ t ≤ τ + δ.

Hence, one can conclude that there exists Tmax > s such that [s; Tmax[ is the maximal interval of the
existence of mild solution of (1.1).

Now, supposing that Tmax < ∞ and lim
t→Tmax

‖u(t)‖ < ∞. Then, there is a sequence (tn) and n0 ∈ N

such that lim
n→+∞

tn = Tmax and ‖u(tn)‖ ≤ C for all n ≥ n0. From the above argument, we can prove

that, for tn near enough to Tmax, the mild solution on [s, tn] can be extended on [tn, tn + δ] with δ > 0,
which contradicts the definition of Tmax.

For the unicity, let T, R > 0 and let u, v be mild solutions of (1.1) on [s, T ]. Supposing that
u(s) ∈ B(R). Then, we have

‖u(t)‖ ≤ Meω0(t−s) ‖u(s)‖ + MγCR,T

∫ t

s

eω0(t−σ) ‖u(σ)‖ dσ

≤ RMeω0(t−s) + MγCR,T

∫ t

s

eω0(t−σ) ‖u(σ)‖ dσ.

Therefore,

e−ω0t ‖u(t)‖ ≤ RMe−ω0s + Mγ0CR,T

∫ t

s

e−ω0σ ‖u(σ)‖ dσ.
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Using the Gronwall’s lemma we get

‖u(t)‖ ≤ RMe(t−s)(ω0+MγCR,T ) := R′.

Now, let u(s), v(s) ∈ B(R) and t ∈ [s, T ], we have

‖u(t) − v(t)‖ ≤ Meω0(t−s) ‖u(s) − v(s)‖ + MγCR′,T

∫ t

s

eω0(t−σ) ‖u(σ) − v(σ)‖ dσ.

By the same argument as above, one can get

‖u(t) − v(t)‖ ≤ Me(t−s)(ω+MγCR′,T ) ‖u(s) − v(s)‖ .

This implies the unicity of the mild solution. �

4. Stability of mild solution

Our aim, in the present section, is to show the stability of mild solutions associated with the problem
(1.1). Let x ∈ X and t ≥ s ≥ 0. Define the operator Γ on C0(R+, Y ) by

(Γu)(t) = U(t, s)x + lim
λ→+∞

∫ t

s

U(t, σ)λLλ,σu(σ)dσ. (4.1)

We have the following lemma.

Lemma 4.1. Under the assumptions (H1)–(H6) and if (U(t, s))t≥s≥0 is exponentially stable, then the

operator Γ maps C0(R+, Y ) into C0(R+, X) and is
Mγ

|ω0|
−Lipschitzian.

Proof. Let x ∈ X and u ∈ C0(R+, Y ), by [8, Proposition 3.2.2] we have Γ(C(R+, Y )) ⊂ C(R+, X).
Moreover, for all t ≥ s ≥ 0 we have

‖Γu(t)‖ ≤ ‖U(t, s)x‖ + lim
λ→+∞

∫ t

s

‖U(t, σ)‖ λ ‖Lλ,σ‖ ‖u(σ)‖ dσ.

Since (U(t, s))t≥s≥0 is exponentially stable, then the first claim can be obtained by (2.1) and by applying
the dominated convergence theorem.

On the other hand, for u and v in C0(R+, X) and t ≥ s ≥ 0, we have

‖Γu(t) − Γv(t)‖ =

∥

∥

∥

∥

lim
λ→+∞

∫ t

s

U(t, σ)λLλ,σ(u(σ) − v(σ))dσ

∥

∥

∥

∥

≤ lim
λ→+∞

Mγλ

λ − ω

∫ t

s

eω0(t−σ) ‖u(σ) − v(σ)‖ dσ

≤ Mγ ‖u − v‖∞

∫ t

s

eω0(t−σ)dσ

≤
Mγ

|ω0|
‖u − v‖∞ .

This ends the proof. �

Remark 4.2. For f ∈ C(R+ × X, Y ) define the operator Nf on C(R+, X) by Nf (u) := f(·, u(·)). One
can see that a function u ∈ C(R+, X) is a mild solution of the problem (1.1) if and only if Γ ◦ Nf(u) = u.

Theorem 4.3. Let f ∈ C(R+ × X, Y ) be a globally Lipschitz function with a Lipschitz constant C ≥ 0.

Moreover, assume that lim
t→+∞

f(t, 0) = 0, ω0 < 0 and
|ω0|

Mγ
> C. Then, under the assumptions (H1)–(H6),

every unique mild solution of (1.1) is vanishing at infinity.
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Proof. Let ux be the mild solution of (1.1) with an initial value x ∈ X . By the Lemma 4.1, the operator

Γ is
Mγ

|ω0|
−Lipschitzian from C0(R+, Y ) to C0(R+, X), and by [2, Theorem 3.6], the operator Nf is

C−Lipschitzian from C0(R+, X) to C0(R+, Y ). Thus, for all u, v ∈ C0(R+, X) and t ≥ s ≥ 0, we have

‖Γ ◦ Nf (u)(t) − Γ ◦ Nf (v)(t)‖ ≤
MγC

|ω0|
‖u(t) − v(t)‖ .

This implies that
‖Γ ◦ Nf (u) − Γ ◦ Nf(v)‖

∞
< ‖u − v‖∞ ,

which means that Γ ◦ Nf is a contraction from C0(R+, X) to C0(R+, X). Therefore, using the Banach
fixed point theorem, we infer that there exists a unique w ∈ C0(R+, X) such that

(Γ ◦ Nf)(w) = w.

In other word, by the above remark, w is a mild solution of (1.1) with the initial value x. By the unicity
of the mild solution, one can conclude that ux = w and then the proof is achieved. �

5. Local attractivity of mild solution

The aim of this section is to show an attractivity result of the problem (1.1). For this purpose, we
need the following Lipschitz condition on the nonlinear perturbation:

(H7) There exist constants R > 0 and 0 < α ≤ 1 such that

‖f(t, ū(t) + x) − f(t, ū(t) + y)‖ ≤ α ‖x − y‖ , ∀t ≥ 0, ∀x, y ∈ B(R).

Where ū is a mild solution of (1.1).

Definition 5.1. For an element x ∈ X, we denote by ux the mild solution of the problem (1.1) with
initial value ux(s) = x ∈ X. A mild solution u of (1.1) is called locally attractive if there exists a number
R > 0 such that for all x in the ball B(u(s), R) ⊂ X, we have

lim
t→+∞

‖ux(t) − u(t)‖ = 0. (5.1)

If the limit in (5.1) exists for all x ∈ X, we say that u is globally attractive.

Let us define the mapping g : R+ × X −→ Y by

g(t, x) := f(t, ū(t) + x) − f(t, ū(t))

and its corresponding boundary Cauchy problem











d

dt
u(t) = Amax(t)u(t), t ≥ s ≥ 0,

L(t)u(t) = g(t, u(t)), t ≥ s ≥ 0,

u(s) = x.

(5.2)

We have the following lemma which is needed below.

Lemma 5.2. The problem (5.2) has a unique mild solution belonging to the space C0(R+, B(R)) provided

that
|ω0|

Mγ
> α.

Proof. Let t ∈ R+ and x, y in B(R), from the assumption (H7), we have

‖g(t, x)‖ ≤ α ‖x‖
≤ R

(5.3)
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and
‖g(t, x) − g(t, y)‖ ≤ α ‖x − y‖ . (5.4)

We define the operator Ng on C0(R+, B(R)) by

Ng(v)(t) := g(t, v(t)).

Using (5.3), one can see that Ng maps C0(R+, B(R)) into itself. Furthermore, using (5.4) we get, for v1

and v2 ∈ C0(R+, B(R)),
‖Ng(v1) − Ng(v2)‖

∞
≤ α ‖v1 − v2‖∞ , (5.5)

since Ng(0) = 0, then one has

‖Ng(v)‖
∞

≤ α ‖v‖∞ , ∀v ∈ C0(R+, B(R)).

Using the Lemma 4.1, we obtain, for all v ∈ C0(R+, B(R))

‖Γ(Ng(v))‖
∞

≤
Mγ

|ω0|
‖Ng(v)‖

∞

≤
Mγα

|ω0|
‖v‖∞

≤ R.

This shows that
Γ ◦ Ng

(

C0(R+, B(R))
)

⊂ C0(R+, B(R)).

In addition, since Γ is
Mγ

|ω0|
−Lipschitzian and using (5.5), we conclude that for all v1 and v2 ∈

C0

(

R+, B(R)
)

,

‖Γ ◦ Ng(v1) − Γ ◦ Ng(v2)‖ ≤
Mγ

|ω0|
‖Ng(v1) − Ng(v2)‖

≤
Mγα

|ω0|
‖v1 − v2‖∞

< ‖v1 − v2‖∞ .

Thus, Γ ◦ Ng is a contraction from C0(R+, B(R)) to C0(R+, B(R)). Applying the Banach fixed point
theorem we infer that there exists a unique function ux ∈ C0(R+, B(R)) such that Γ ◦ Ng(ux) = ux.
Then, by Remark 4.2, the proof is achieved. �

We are now ready to state the main result of this section.

Theorem 5.3. Assume that the problem (1.1) has a unique mild solution ux with initial value x ∈ X

and let ū be another mild solution of (1.1) associated with the initial value ū(s). Under the assumptions
(H1)–(H7) and if the evolution family (U(t, s))t≥s≥0 is exponentially stable. Then ū is locally attractive

provided that
|ω0|

Mγ
> α.

Proof. Let a ∈ X and let ua be the mild solution of (1.1) with the initial value ua(s) = a. Supposing
that ‖a − ū(s)‖ ≤ R. We put x := a − ū(s) ∈ B(R) and consider the function v(t) := ua(t) − ū(t). Then
for all t ≥ s ≥ 0 we have

v(t) = ua(t) − ū(t)

= U(t, s)a − U(t, s)ū(s) + lim
λ→+∞

∫ t

s

U(t, σ)λLλ,σf(σ, ua(σ))dσ

− lim
λ→+∞

∫ t

s

U(t, σ)λLλ,σf(σ, ū(σ))dσ

= U(t, s)x + lim
λ→+∞

∫ t

s

U(t, σ)λLλ,σg(σ, v(σ))dσ

= Γ ◦ Ng(v)(t).
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Therefore, v is the unique mild solution of the problem (5.2) with the initial value v(s) = x ∈ B(R).
Thus, from the above lemma, v ∈ C0(R+, B(R)) and

lim
t→+∞

‖ua(t) − ū(t)‖ = lim
t→+∞

‖v(t)‖

= 0.

This proves that ū is locally attractive and then the theorem is shown. �

6. Application: Non-autonomous dynamical population equation

Consider the following non-autonomous population equation:



















∂

∂t
u(t, x) = −

∂

∂x
(g(t, x)u(t, x)) − µ(t, x)u(t, x), t ≥ s ≥ 0, x ≥ 0,

g(t, 0)u(t, 0) =

∫ +∞

0

β(t, x, P u)u(t, x)dx, t ≥ s ≥ 0,

u(s, x) = ϕ(x), x ≥ 0.

(6.1)

Where u(t, x) represents the density of population at time t with size x, the functions g, µ and β

represent respectively the growth, the mortality and the fertility rates and P u :=

∫ +∞

0

u(x)dx is the

total population.
The problem (6.1) can be reformulated as an abstract boundary Cauchy problem :











d

dt
u(t) = Amax(t)u(t), t ≥ s ≥ 0,

L(t)u(t) = f(t, u(t)), t ≥ s ≥ 0,

u(s) = ϕ,

where Amax(t) is defined on X := L1(R+) by

(Amax(t)φ)(x) = −
∂

∂x
(g(t, x)φ(x)) − µ(t, x)φ(x), for all x ∈ R+,

with the domain
D := W 1,1(R+),

L(t) : D −→ Y := R is defined by
L(t)φ = g(t, 0)φ(0).

The function f is defined on R+ × X by

f(t, u) =

∫ +∞

0

β(t, x, P u)u(x) dx. (6.2)

To get our purpose, we make the following assumptions:

(i) 0 < µ′ < µ(t, x) and 0 < µ < µ(t, x) +
∂

∂x
g(t, x), ∀t ∈ R+, a.e., x ∈ R+.

(ii) 0 < ν < g(t, x), ∀t ∈ R+, x ∈ R+.

(iii) t 7−→ µ(t, .) ∈ C1
b (R+, L∞(R+)).

(iv) t 7−→ g(t, .) ∈ C1
b (R+, W 1,∞(R+)).

(v) β(., x, .) ∈ C(R+ ×X,R), for all x ∈ R+. Moreover, β(t, x, y) < β, for all t, y ∈ R+ and a.e. x ∈ R+.

(vi) For each T > 0, there exists a constant CT such that for all t ∈ [s, T ]

‖β(t, ., y1) − β(t, ., y2)‖ ≤ CT |y1 − y2| , ∀y1, y2 ∈ R+.
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Lemma 6.1. Under the above assumptions, the hypothesis (H1)–(H6) are fulfilled.

Proof. Verification of (H1): Let φ ∈ D, we have

‖φ‖D =

∫ +∞

0

|φ(x)|dx +

∫ +∞

0

|φ′(x)|dx

≤

∫ +∞

0

|φ(x)|dx +

∫ +∞

0

∣

∣

∣

∣

∣

∣

∣

1

g(t, x)
g(t, x)φ′(x) +

µ(t, x) +
∂

∂x
g(t, x)

g(t, x)
φ(x)

∣

∣

∣

∣

∣

∣

∣

dx

+

∫ +∞

0

∣

∣

∣

∣

∣

∣

∣

µ(t, x) +
∂

∂x
g(t, x)

g(t, x)
φ(x)

∣

∣

∣

∣

∣

∣

∣

dx

=

∫ +∞

0

|φ(x)|dx +

∫ +∞

0

∣

∣

∣

∣

1

g(t, x)
(Amax(t)φ)(x)

∣

∣

∣

∣

dx

+

∫ +∞

0

∣

∣

∣

∣

∣

∣

∣

µ(t, x) +
∂

∂x
g(t, x)

g(t, x)
φ(x)

∣

∣

∣

∣

∣

∣

∣

dx

≤









1 + sup
t≥s

∥

∥

∥

∥

µ(t, .) +
∂

∂x
g(t, .)

∥

∥

∥

∥

∞

ν









‖φ‖X +
1

ν
‖Amax(t)φ‖X

≤ max









1 + sup
t≥s

∥

∥

∥

∥

µ(t, .) +
∂

∂x
g(t, .)

∥

∥

∥

∥

∞

ν
,

1

ν









(‖φ‖X + ‖Amax(t)φ‖X) .

On the other hand,

‖φ‖X + ‖Amax(t)φ‖X =

∫ +∞

0

|φ(x)|dx

+

∫ +∞

0

∣

∣

∣

∣

g(t, x)φ′(x) +
(

µ(t, x) +
∂

∂x
g(t, x)

)

φ(x)

∣

∣

∣

∣

dx

≤

(

1 + sup
t≥s

∥

∥

∥

∥

µ(t, .) +
∂

∂x
g(t, .)

∥

∥

∥

∥

∞

)∫ +∞

0

|φ(x)| dx

+ sup
t≥s

‖g(t, .)‖∞

∫ ∞

0

|φ′(x)| dx

≤ max

(

1 + sup
t≥s

∥

∥

∥

∥

µ(t, .) +
∂

∂x
g(t, .)

∥

∥

∥

∥

∞

, sup
t≥s

‖g(t, .)‖∞

)

‖φ‖D .

Verification of (H2): Follows immediately from the assumptions (iii) and (iv).

Verification of (H3): It can be shown that the resolvent of A(t) := Amax(t)|ker L(t) is given by

R(λ, A(t))φ =
1

g(t, ·)

∫ ·

0

e
−
∫

·

τ

λ+µ(t,σ)
g(t,σ)

dσ
φ(τ ) dτ , ∀φ ∈ X.
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Then we have, for λ > −µ and φ ∈ X ,

‖R(λ, A(t))φ‖X =

∫ +∞

0

|(R(λ, A(t))φ)(x)| dx

≤

∫ +∞

0

1

g(t, x)

∫ x

0

e
−
∫

x

τ

λ+µ(t,σ)
g(t,σ)

dσ
|φ(τ )| dτdx

=

∫ +∞

0

|φ(τ )|

∫ +∞

τ

1

g(t, x)
e

−
∫

x

τ

λ+µ(t,σ)
g(t,σ)

dσ
dxdτ

≤

∫ +∞

0

|φ(τ )|

∫ +∞

τ

1

g(t, x)
e

∫

x

τ

−(λ+µ)+ ∂
∂σ

g(t,σ)

g(t,σ)
dσ

dxdτ

≤
1

λ + µ

∫ ∞

0

|φ(τ )| dτ

=
1

λ + µ
‖φ‖X .

Hence, the family of operators (A(t))t≥0 is stable with the constants of stability ω0 = −µ and M = 1.

Verification of (H4): L(t) is linear bounded. Indeed, for φ ∈ D we have φ(0) = −

∫ +∞

0

∂

∂x
φ(x)dx

and

‖L(t)φ‖ = |φ(0)g(t, 0)|
≤ sup

t≥s

‖g(t, .)‖∞ ‖φ‖D .

For y ∈ R we take φ(·) =
ye−·

g(t, ·)
and we get the surjectivity of L(t).

Verification of (H5): Follows from (iv).
Verification of (H6): For λ > µ′, let φ ∈ ker(λ − Amax(t)). We have

λφ(·) +
∂

∂x
(g(t, ·)φ(·)) + µ(t, ·)φ(·) = 0.

Therefore,
‖L(t)φ‖ = |φ(0)g(t, 0)|

=

∫ +∞

0

∣

∣

∣

∣

∂

∂x
(φ(x)g(t, x))

∣

∣

∣

∣

dx

=

∫ +∞

0

|(λ + µ(t, x))φ(x)| dx

≥ (λ + µ′) ‖φ‖ .

We take ω = −µ′ and γ = 1. �

Lemma 6.2. The function f defined in (6.2) is continuous and locally Lipschitzian.

Proof. Let u ∈ L1(R+). For all x ∈ R+, the mapping (t, u) 7→ β(t, x, P u)u(x) is continuous and, for all
t, y ∈ R+, the mapping x 7→ β(t, x, P u)u(x) takes values in L1(R+). Thus, by application of continuity
of integral theorem we infer that f is continuous. Let T > 0, for u, v ∈ L1(R+) and t ∈ [s, T ], we have

‖f(t, u) − f(t, v)‖ =

∣

∣

∣

∣

∫ +∞

0

β(t, x, P u)u(x) − β(t, x, P v)v(x)dx

∣

∣

∣

∣

≤

∫ +∞

0

|β(t, x, P u)(u(x) − v(x))| dx +

∫ ∞

0

∣

∣

∣

(

β(t, x, P u) − β(t, x, P v)
)

v(x)
∣

∣

∣ dx

≤ β ‖u − v‖ + CT ‖u − v‖ ‖v‖ .
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Thus, for a given R > 0 and u, v in X such that u, v ∈ B(R) we obtain

‖f(t, u) − f(t, v)‖ ≤ CT,R,β ‖u − v‖ ,

with CT,R,β = β + RCT . This ends the proof. �

We are now ready to state our first application result.

Theorem 6.3. Under the assumptions (i)–(vi), and for every ϕ ∈ L1(R+) and s ≥ 0, there exists a
constant Tmax ≤ +∞ such that the population equation (6.1) has a unique mild solution u on [s, Tmax[.
Moreover, if u is bounded, then Tmax = +∞.

Proof. From Lemma 6.1 and Lemma 6.2, the assumptions (H1)–(H6) and (C) are fulfilled. Thus, the
proof is a direct consequence of Theorem 3.3. �

As a second application of the abstract result, we state the following theorem.

Theorem 6.4. Assume that β < m := min{1, µ}. If the assumptions (i)–(vi) are satisfied, then for
every ϕ ∈ L1(R+) and s ≥ 0, there is Tmax ≤ +∞ such that every mild solution u of (6.1) on [s, Tmax[
is locally attractive. Moreover, if u is bounded then u is locally attractive on [s, +∞[.

Proof. By Lemma 6.1 and Lemma 6.2, the assumptions (H1)–(H6) and (C) are fulfilled and the problem
(6.1) has a unique mild solution.
By the proof of Lemma 6.1, especially the proof of assumptions (H3) and (H5), we have ω0 = −µ < 0,
M = 1 and γ = 1.

Let u be the mild solution of (6.1) and let x, y ∈ X . From (vi) we have

‖f(t, u(t) + x) − f(t, u(t) + y)‖ ≤ β ‖x − y‖ + CT ‖x − y‖ ‖y‖ .

Let R > 0 such that ‖x‖ ≤ R and ‖y‖ ≤ R. Then,

‖f(t, u(t) + x) − f(t, u(t) + y)‖ ≤ β ‖x − y‖ + RCT ‖x − y‖
≤ (β + RCT ) ‖x − y‖ .

Denoting by α := β + RCT . If we take R > 0 such that R <
m − β

CT

, then we get the result by applying

Theorem 5.3. �
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