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abstract: In this paper we establish in first the existence of strong optimal solutions of a control problem
for dynamics driven by a linear forward-backward doubly stochastic differential equations of mean-field type
(MF-FBDSDEs), with random coefficients and non linear functional cost. Moreover, we establish necessary
as well as sufficient optimality conditions for this kind of control problem. In the second part of this paper,
we establish necessary as well as sufficient optimality conditions for existence of both optimal relaxed control
and optimal strict control for dynamics of nonlinear forward-backward doubly SDEs of mean-field type.

Key Words: Mean-field, forward backward doubly SDEs, strict control, relaxed control, existence,
optimality conditions, adjoint equations, variational equation.

Contents

1 Introduction 1

2 Existence of a strong optimal control for a linear MF-FBDSDEs 2

2.1 Formulation of the problem and assumptions . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Existence of a strong optimal control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Necessary and sufficient conditions for optimality 7

4 Necessary and sufficient optimality conditions for both relaxed and strict control

problems for nonlinear MF-FBDSDE 10

4.1 Necessary and sufficient optimality conditions for relaxed control problems . . . . . . . . . 11
4.1.1 The variational inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.1.2 Necessary optimality conditions for relaxed control . . . . . . . . . . . . . . . . . . 20
4.1.3 Sufficient optimality conditions for relaxed control . . . . . . . . . . . . . . . . . . 22

4.2 Necessary and Sufficient optimality conditions for strict control . . . . . . . . . . . . . . . 24
4.2.1 Necessary optimality conditions for strict control . . . . . . . . . . . . . . . . . . . 24
4.2.2 Sufficient optimality conditions for strict control . . . . . . . . . . . . . . . . . . . 26

1. Introduction

The problem of existence of optimal controls for various control systems is a fundamental problem
in stochastic optimal control theory. Also to establish the existence conditions of an optimal control,
which labeled necessary and sufficient conditions for optimality, is one of the important subjects which
has attracted comprehensive attention in the past years. Stochastic optimal control of mean-field type
recently are extensively studied, due to their applications in economics and mathematical finance. In
2009, Buckdahn et al. [6] established the theory of mean-field backward stochastic differential equations
which were derived as a limit of some highly dimensional system of FBSDEs, corresponding to a large
number of particles. Since that, many authors treated the system of this kind of Mckean-Vlasov type
(see [15] and [1]). As it is well-knew that the adjoint equation of a controlled SDEs of mean-field type
is a backward-SDEs of mean-field type, the maximum principle for optimal control systems of mean-field
type (MF-SDEs, MF-BSDEs and MF-FBSDEs) has becomes popular topic. In this regard, Carmona and
Dularue proved in [7] the existence of solution for mean-field FBSDEs systems. One can refer to [ [2], [5],
[16], [12] and [14]] for more result on the maximum principles for different types of mean-field systems.
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Mathematical mean-field approaches play a crucial role in diverse areas, such as physics, economics,
finance and games theory, see Lasry and Lions [15], Dawson [8] and Huang et al. [13]. In the other hand,
the existence of optimal relaxed controls and optimal strict controls for systems of mean-field forward
backward stochastic differential equations has been proved by Benbrahim and Gherbal [4], where the
diffusion is controlled. The existence of relaxed solutions to mean field games with singular controls has
been proved by Fu and Horst in [10]. The authors proved approximations of solutions for a particular
class of mean field games with singular controls and relaxed controls by solutions for mean field games
with purely regular controls, on the space of càdlàg functions equipped with the Skorokhod M1 topology.
Wu and Liu [17] proved existence and uniqueness of solutions for systems of backward doubly SDEs
driven by Itô-Levy processes of mean field type and they established necessary and sufficient optimality
conditions for partial information optimal control problems of BDSDEs driven by Itô-Levy processes of
mean field type. See also in Xu [18] an existence and uniqueness result of the solutions to mean field
BDSDEs with locally monotone coefficients and globally monotone coefficients is established and gives
the probabilistic representation of the solutions for a class of stochastic partial differential equations by
virtue mean field BDSDEs.

Recently, Al-Hussein and Gherbal, [3], established the existence and uniqueness of the solutions of
multidimensional forward-backward doubly SDEs with random jumps. For systems of forward-backward
doubly SDEs of mean field type, Zhu and Shi [19] proved an existence and uniqueness result for measurable
solutions by means of a method of continuation. They given also the probabilistic interpretation for the
solutions to a class of nonlocal stochastic partial differential equations (SPDEs) combined with algebra
equations.

In this work, we consider a control problem for systems governed by the following FBDSDE of mean
field type





dyu
t = b(t, yu

t ,E[yu
t ], ut)dt + σ(t, yu

t ,E[yu
t ], ut)dWt

dY u
t = −f(t, yu

t ,E[yu
t ], Y u

t ,E[Y u
t ], Zu

t ,E[Zu
t ], ut)dt

−g(t, yu
t ,E[yu

t ], Y u
t ,E[Y u

t ], Zu
t ,E[Zu

t ], ut)
←−
dBt + Zu

t dWt

yu
0 = x, Y u

T = h(yu
T ,E[yu

T ]), t ∈ [0, T ],

(1.1)

where b, σ, f, g and h are given functions, (Ws)s≥0 and (Bs)s≥0 be two mutually independent standard
Brownian motions, defined on a probability space (Ω,F,P), taking their values respectively in Rd and in
Rl, and u· represents a strict control.

The integral with respect to Bs is a backward Itô integral, while the integral with respect to Ws is a
standard forward Itô integral.

We consider a functional cost to be minimized, over the set of strict controls, as the following:

J(u·) := E
[
α (yu

T ,E [yu
T ]) + β (Y u

0 ,E [Y u
0 ]) +

∫ T

0
ℓ
(
t, yu

t ,E [yu
t ] , Y u

t ,E [Y u
t ] , Zu

t ,E [Zu
t ] , ut

)
dt

]
, (1.2)

where α, β and ℓ are appropriate functions.
The considered system and the cost functional, depend on the state process, and also on the distri-

bution of the state process.
One of our main aims in this paper is to prove existence of strong optimal control (that is adapted to

the initial σ-algebra) for systems governed by a linear FBDSDEs of mean-field type. Also we establish
necessary as well as sufficient optimality conditions for a strict control problem. In the second part
of this paper, we establish necessary as well as sufficient optimality conditions for both relaxed and
strict control problems for systems driven by nonlinear mean-field forward-backward doubly stochastic
differential equations.

The paper is organized as follows. In Section 2, we present and prove the first main result concerning
the existence of strong optimal strict controls for linear MF-FBDSDEs. Section 3, is devoted to derive
necessary and sufficient conditions of optimality for this kind of control problem of linear MF-FBDSDEs.
In the last section, we establish necessary as well as sufficient optimality conditions for both relaxed and
strict control problems governed by systems of nonlinear MF-FBDSDEs.
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2. Existence of a strong optimal control for a linear MF-FBDSDEs

In this section, we prove the existence of a strong optimal strict control which is adapted to the initial
σ-algebra, under the convexity of the cost functions and the action space U .

2.1. Formulation of the problem and assumptions

Let (Ω,F,P) be a complete probability space. Let (Wt)t∈[0,T ] and (Bt)t∈[0,T ] be two Brownian motions

valued in Rd and Rl respectively, defined on this space.
Let N denote the class of P-null sets of F. For each t ∈ [0, T ], we define Ft , F

W
t ∨ F

B
t,T , where for

any process {δt}, we set F
δ
s,t = σ (δr − δs; s ≤ r ≤ t) ∨N,Fδ

t = F
δ
0,t.

Note that the collection {Ft, t ∈ [0, T ]} is neither increasing nor decreasing, then it does not constitute
a classical filtration.

Given ξ a square integrable and FT -measurable process, x a square integrable and F0-measurable pro-
cess and for any admissible control u, we consider a control problem governed by the following controlled
linear MF-FBDSDE





dyu
t = b(t, yu

t ,E[yu
t ], ut)dt + σ(t, yu

t ,E[yu
t ], ut)dWt

dY u
t = −f(t, yu

t ,E[yu
t ], Y u

t ,E[Y u
t ], Zu

t ,E[Zu
t ], ut)dt

−g(t, yu
t ,E[yu

t ], Y u
t ,E[Y u

t ], Zu
t ,E[Zu

t ], ut)
←−
dBt + Zu

t dWt,
yu

0 = x, YT = h(yu
T ,E[yu

T ]),

(2.1)

with

b(t, yu
t ,E[yu

t ], ut) = aty
u
t + âtE [yu

t ] + btut,

σ(t, yu
t ,E[yu

t ], ut) = ct.y
u
t + ĉtE [yu

t ] + b̂tut,

f(t, yu
t ,E[yu

t ], Y u
t ,E[Y u

t ], Zu
t ,E[Zu

t ], ut) = dty
u
t + d̂tE [yu

t ] + etY
u

t + êtE [Y u
t ]

+ftZ
u
t + f̂tE [Zu

t ] + gtut,

g(t, yu
t ,E[yu

t ], Y u
t ,E[Y u

t ], Zu
t ,E[Zu

t ], ut) = hty
u
t + ĥtE [yu

t ] + ktY
u

t + k̂tE [Y u
t ]

+mtZ
u
t + m̂tE [Zu

t ] + ĝtut,

h(yu
T ,E[yu

T ]) = ξ,

and a cost functional:

J(u·) := E
[
α (yu

T ,E [yu
T ]) + β (Y u

0 ,E [Y u
0 ]) +

∫ T

0
ℓ
(
t, yu

t ,E [yu
t ] , Y u

t ,E [Y u
t ] , Zu

t ,E [Zu
t ] , ut

)
dt

]
, (2.2)

where a·, â·, b·, b̂·, c·, ĉ·, d·, d̂·, e·, ê·, f·, f̂·, g·, ĝ·, h·, ĥ·, k·, k̂·, m· and m̂· are matrix-valued functions of suit-
able sizes. The solution (y·, Y·, Z·) takes values in Rn × Rm × Rm+d and u· is the control variable values
in subset U of Rk. α, β, ℓ are a given functions define by

ℓ : [0, T ]× R
n × R

n × R
m × R

m × R
m×d × R

m×d × U → R,

α : Rn × R
n → R,

β : Rm × R
m → R.

Definition 2.1. An admissible control u· is a square integrable, Ft-measurable process with values in
some subset U ⊆ Rk. We denote by UL the set of all admissible controls.

Note that we have an additional constraint that a control must be square-integrable just to ensure
the existence of solutions of (2.1) under u·. We say that an admissible control u∗

· ∈ UL is an optimal
control if

J (u∗
· ) = inf

v·∈UL

J (v·) . (2.3)
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The following notations are needed
S2
F

(0, T ;Rm) : the set of process π·, Ft-adapted with values in Rm such that

E
[ ∫ T

0

|πt|
2

dt
]

<∞,

M2
F

(0, T ;Rn) : the set of process η·, Ft-adapted and Rn-valued continuous processes such that

E
[

sup
0≤t≤T

|ηt|
2 ]

<∞,

UL ,
{

v· ∈ S
2
F

(
0, T ;Rk

)
/vt ∈ U, a.e.t ∈ [0, T ] ,P− a.s.

}
.

We shall consider in the first part of this paper, the following assumptions

(H1) : the set U ⊆ Rk is convex and compact and the functions ℓ, α and β
are continuous, bounded and convex,

(H2) : at, ât, bt, b̂t, ct, ĉt, dt, d̂t, et, êt, ft, f̂t, gt, ĝt, ht, ĥt, kt and k̂t are bounded by λ > 0 and mt, m̂t are
bounded by γ ∈

]
0, 1

2

[
. That is:

λ , sup
t,ω
|ϕt (ω)| and γ , sup

t,ω
|σt (ω)| ,

where ϕt (ω) = at, ât, bt, b̂t, ct, ĉt, dt, d̂t, et, êt, ft, f̂t, gt, ĝt, ht, ĥt, kt, k̂t and σt = mt, m̂t.

Proposition 2.2. Under assumptions (H2) the system of linear FBDSDE of mean-field type (2.1), has
a unique strong solution.

Proof. The proof of this proposition is established in Zhu and Shi [19], by using a method of continuation,
and the fact that our system (2.1) is a special case of the one given in [19]. �

Remark 2.3. A special case is that in which both α, β and ℓ are convex quadratic functions. The control
problem {(2.1), (2.2), (2.3)} is then reduced to a stochastic linear quadratic optimal control problem.

2.2. Existence of a strong optimal control

The following theorem confirms the existence of a strong optimal solutions for the control problem
{(2.1), (2.2), (2.3)}.

Theorem 2.4. Under either (H1)− (H2), if the strict control problem {(2.1), (2.2), (2.3)} is finite, then
it admits an optimal strong solution.

Proof. Assume that (H1)-(H2) holds. Let (un
· ) be a minimizing sequence, i.e.,

lim
n→∞

J (un
· ) = inf

v·∈UL

J (v·) .

With associated trajectories
(

y
un

·

· , Y
un

·

· , Z
un

·

·

)
satisfies the linear FBDSDE of mean-field type (2.1).

From the fact that U is a compact set, there exists a subsequence (which is still labeled by (un
· )n≥0)

such that

un
· −→ u·, weakly in S

2
F

(
[0, T ];Rk

)
.

Applying Mazur’s theorem, there is a sequence of convex combinations

Ũn
· =

∑

≥0

θnu+n
· (with θn ≥ 0, and

∑

≥0

θn = 1),
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such that

Ũn
· → u· strongly in S

2
F

(
[0, T ];Rk

)
. (2.4)

Since the set U ⊆ Rk is convex and compact, it follows that u· ∈ UL.

Let (y
Ũn

·

· , Y
Ũn

·

· , Z
Ũn

·

· ) and (yu·

· , Y u·

· , Zu·

· ) be the solutions of the linear MF-FBDSDE (2.1), associated

with Ũn
· and u· respectively i.e.,





dy
Ũn

·

t =
(
aty

Ũn
·

t + âtE[y
Ũn

·

t ] + btŨ
n
t

)
dt +

(
cty

Ũn
·

t + ĉtE[y
Ũn

·

t ] + b̂tŨ
n
t

)
dWt

dY
Ũn

·

t = −
(
dty

Ũn
·

t + d̂tE[y
Ũn

·

t ] + etY
Ũn

·

t + êtE[Y
Ũn

·

t ] + ftZ
Ũn

·

t + f̂tE[Z
Ũn

·

t ] + gtŨ
n
t

)
dt

−
(
hty

Ũn
·

t + ĥtE[y
Ũn

·

t ] + ktY
Ũn

·

t + k̂tE[Y
Ũn

·

t ] + mtZ
Ũn

·

t + m̂tE[Z
Ũn

·

t ]

+ĝtŨ
n
t

)←−
dBt + Z

Ũn
·

t dWt,

y
Ũn

·

0 = x, Y
Ũn

·

T = ξ,

(2.5)

and




dyu·

t =
(
aty

u·

t + âtE[yu·

t ] + btut

)
dt +

(
cty

u·

t + ĉtE[yu·

t ] + b̂tut

)
dWt

dY u·

t = −
(
dty

u·

t + d̂tE[yu·

t ] + etY
u·

t + êtE[Y u·

t ] + ftZ
u·

t + f̂tE[Zu·

t ] + gtut

)
dt

−
(
hty

u·

t + ĥtE[yu·

t ] + ktY
u·

t + k̂tE[Y u·

t ] + mtZ
u·

t + m̂tE[Zu·

t ]

+ĝtut

)←−
dBt + Zu·

t dWt,

yu·

0 = x, Y u·

T = ξ.

(2.6)

Then let us prove

(y
Ũn

·

t , Y
Ũn

·

t ,

∫ T

0

Z
Ũn

·

s dWs) converges strongly to (yu·

t , Y u·

t ,

∫ T

0

Zu·

s dWs), (2.7)

in M2
F

([0, T ];Rn+m)× S2
F

(
[0, T ];Rm×d

)
.

Firstly, we have

( sup
0≤s≤t

|y
Ũn

·

s − yu·

s |
2) ≤

∫ t

0

(
|as|

2( sup
0≤r≤s

|y
Ũn

·

r − yu·

r |
2) + |âs|

2
E[ sup

0≤r≤s

|y
Ũn

·

r − yu·

r |
2]

+|bs|
2|Ũn

s − us|
2
)
ds + sup

0≤s≤t

(
∣∣
∫ t

0

(
cs(y

Ũn
·

s − yu·

s )

+cs(E[y
Ũn

·

s − yu·

s ]) + b̂s(Ũn
s − us)

)
dWs

∣∣)2,

using the Burkholder-Davis-Gundy inequality to the martingale part, we can show

E
[

sup
0≤s≤T

|y
Ũn

·

s − yu·

s |
2
]
≤ K

∫ t

0

E
[

sup
0≤r≤s

|y
Ũn

·

r − yu·

r |
2
]
ds + K ′

E
[ ∫ t

0

|Ũn
s − us|

2ds
]
.

Applying Gronwall’s lemma and using (2.4), we get

lim
n→∞

E
[

sup
0≤s≤T

|y
Ũn

·

s − yu·

s |
2
]

= 0. (2.8)
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Secondly, applying Itô’s formula to

∣∣∣∣Y
Ũn

·

t − Y u·

t

∣∣∣∣
2

and taking expectation, we get

E
[

sup
0≤t≤T

|Y
Ũn

·

t − Y u·

t |
2
]

+ E
[ ∫ T

0

‖Z
Ũn

·

s − Zu·

s ‖
2ds

]
≤

2E
[ ∫ T

t

〈Y
Ũn

·

s − Y u·

s , ds(y
Ũn

·

s − yu·

s ) + d̂sE[y
Ũn

·

s − yu·

s ] + es(Y
Ũn

·

s − Y u·

s )

+êsE[Y
Ũn

·

s − Y u·

s ] + fs(Z
Ũn

·

s − Zu·

s ) + f̂sE[Z
Ũn

·

s − Zu·

s ] + gs(Ũn
s − us)〉ds

]

+E
[ ∫ T

0

|hs(y
Ũn

·

s − yu·

s ) + ĥsE[y
Ũn

·

s − yu·

s ] + ks(Y
Ũn

·

s − Y u·

s )

+k̂sE[Y
Ũn

·

s − Y u·

s ] + ms(Z
Ũn

·

s − Zu·

s ) + m̂sE[Z
Ũn

·

s − Zu·

s ] + ĝs(Ũn
s − us)|2ds

]
.

According to the assumption (H2) and by using the Young’s formula, we obtain

E
[

sup
0≤t≤T

|Y
Ũn

·

t − Y u·

t |
2
]

+ E
[ ∫ T

0

‖Z
Ũn

·

s − Zu·

s ‖
2ds

]

≤
1

ρ1

E
[ ∫ T

0

|Y
Ũn

·

s − Y u·

s |
2ds

]
+ 14ρ1λ2

E
[ ∫ T

0

(
|y

Ũn
·

s − yu·

s |
2 + |Y

Ũn
·

s − Y u·

s |
2

+‖Z
Ũn

·

s − Zu·

s ‖
2 +

1

2
|Ũn

s − us|
2
)
ds

]
+ 10λ2

E
[ ∫ T

0

(
|y

Ũn
·

s − yu·

s |
2

+|Y
Ũn

·

s − Y u·

s |
2 +

1

2
|Ũn

s − us|
2
)
ds

]
+ 4γ2

E
[ ∫ T

0

‖Z
Ũn

·

s − Zu·

s ‖
2ds

]

+
5λγ

ρ2

E
[ ∫ T

0

(
|y

Ũn
·

s − yu·

s |
2 + E[|y

Ũn
·

s − yu·

s |
2] + |Y

Ũn
·

s − Y u·

s |
2

+E[|Y
Ũn

·

s − Y u·

s |
2] + |Ũn

s − us|
2
)
ds

]

+2ρ2λγE
[ ∫ T

0

(
‖Z

Ũn
·

s − Zu·

s ‖
2 + E[‖Z

Ũn
·

s − Zu·

s ‖
2]

)
ds

]
,

and therefore

E
[

sup
0≤t≤T

|Y
Ũn

·

t − Y u·

t |
2
]

+ E
[ ∫ T

0

‖Z
Ũn

·

s − Zu·

s ‖
2ds

]

≤ (
1

ρ1

+ 14ρ1λ2 + 10λ2 +
10λγ

ρ2

)E
[ ∫ T

0

|Y
Ũn

·

s − Y u·

s |
2ds

]

+(14ρ1λ2 + 4γ2 + 4ρ2λγ)E
[ ∫ T

0

‖Z
Ũn

·

s − Zu·

s ‖
2ds

]

+(14ρ1λ2 + 10λ2 +
10λγ

ρ2

)E
[ ∫ T

0

|y
Ũn

·

s − yu·

s |
2ds

]

+(7ρ1λ2 + 5λ2 +
5λγ

ρ2

)E
[ ∫ T

0

|Ũn
s − us|

2ds
]
.

Choosing

ρ1 =
1− 4γ2

28λ2 > 0 and ρ2 =
1− 4γ2

12λγ
> 0 because 0 < γ <

1

2
,
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the previous inequality becomes

E
[

sup
0≤t≤T

|Y
Ũn

·

t − Y u·

t |
2
]

+ µ1E
[ ∫ T

0

‖Z
Ũn

·

s − Zu·

s ‖
2ds

]
≤ µ2E

[ ∫ T

0

|Y
Ũn

·

s − Y u·

s |
2ds

]

+µ3E
[ ∫ T

0

|y
Ũn

·

s − yu·

s |
2ds

]
+ µ4E

[ ∫ T

0

|Ũn
s − us|

2ds
]
, (2.9)

where

µ1 =
1− 4γ2

6
> 0,

µ2 =
28λ2

1− 4γ2
+

1− 4γ2

2
+ 10λ2 +

120 (λγ)
2

1− 4γ2
> 0,

µ3 =
1− 4γ2

2
+ 10λ2 +

120 (λγ)2

1− 4γ2
> 0,

µ4 =
1− 4γ2

4
+ 5λ2 +

60 (λγ)
2

1− 4γ2
> 0.

We derive two inequalities from (2.9),

E
[

sup
0≤t≤T

|Y
Ũn

·

t − Y u·

t |
2
]
≤ µ2E

[ ∫ T

0

|Y
Ũn

·

s − Y u·

s |
2ds

]

+µ3E
[ ∫ T

0

|y
Ũn

·

s − yu·

s |
2ds

]
+ µ4E

[ ∫ T

0

|Ũn
s − us|

2ds
]
, (2.10)

and

µ1E
[ ∫ T

0

‖Z
Ũn

·

s − Zu·

s ‖
2ds

]
≤ µ2E

[ ∫ T

0

|Y
Ũn

·

s − Y u·

s |
2ds

]

+µ3E
[ ∫ T

0

|y
Ũn

·

s − yu·

s |
2ds

]
+ µ4E

[ ∫ T

0

|Ũn
s − us|

2ds
]
. (2.11)

Using Burkholder-Davis-Gundy’s inequality, applying Gronwall’s lemma to (2.10) and passing to the limit
as n→∞, and using the convergence (2.4) and (3.5), we obtain

lim
n→∞

E
[

sup
0≤s≤T

|Y
Ũn

·

s − Y u·

s |
2
]

= 0. (2.12)

Then, one can shows directly from (2.4),(2.8) and (2.11) that

E
[ ∫ T

0

‖Z
Ũn

·

s − Zu·

s ‖
2ds

]
−→ 0, as n→∞,

which gives the result by applying the isometry of Itô.
Finally, let us prove that u· is an optimal control. Using the continuity of functions α, β and ℓ, we get

J (u·) = E
[
α

(
yu·

T ,E
[
yu·

T

])
+ β

(
Y u·

0 ,E
[
Y u·

0

])

+
∫ T

0 ℓ
(
t, yu·

t ,E
[
yu·

t

]
, Y u·

t ,E
[
Y u·

t

]
, Zu·

t ,E
[
Zu·

t

]
, ut

)
dt

]

= lim
n→∞

E
[
α

(
y

Ũn
·

T ,E

[
y

Ũn
·

T

])
+ β

(
Y

Ũn
·

0 ,E

[
Y

Ũn
·

0

])

+
∫ T

0
ℓ
(
t, y

Ũn
·

t ,E

[
y

Ũn
·

t

]
, Y

Ũn
·

t ,E

[
Y

Ũn
·

t

]
, Z

Ũn
·

t ,E

[
Z

Ũn
·

t

]
, Ũn

t

)
dt

]
.
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By the convexity of α, β and ℓ, it follows that

J (u·) ≤ lim
n→∞

∑

≥0

θnE
[
α

(
y

u
+n
·

T ,E
[
y

u
+n
·

T

])
+ β

(
Y

u
+n
·

0 ,E
[
Y

u
+n
·

0

])

+

∫ T

0

ℓ
(
t, y

u
+n
·

t ,E
[
y

u
+n
·

t

]
, Y

u
+n
·

t ,E
[
Y

u
+n
·

t

]
, Z

u
+n
·

t ,E
[
Z

u
+n
·

t

]
, u+n

t

)
dt

]

= lim
n→∞

∑

k≥0

θnJ
(
u+n

·

)
≤ lim

n→∞
Max

1≤≤in

J
(
u+n

·

) ∑

≥1

θn = inf
v·∈UL

J (v·) .

This completes the proof. �

3. Necessary and sufficient conditions for optimality

In this section, we establish necessary as well as sufficient optimality conditions for a strict control
problem driven by a linear MF-FBDSDE. In this end, we use the convex perturbation method because
the domain of control U is convex.

Let (u·, yu·

t , Y u·

t , Zu·

t ) be the optimal solution of the control problem {(2.1), (2.2), (2.3)} obtained in
section 2. Let us define the perturbed control as follow: for each admissible control v·

uε
t = ut + ε (vt − ut) ,

where, ε > 0 is sufficiently small.

It’s clear that uε
· is admissible control and let

(
y

uε
·

t , Y
uε

·

t , Z
uε

·

t

)
be the solution of (2.1) corresponding

to uε
· .

The necessary conditions for optimality will be derived by using the optimality of u· and the following
inequality,

0 ≤ lim
ε→0

1

ε
(J (uε

· )− J (u·))

= lim
ε→0

1

ε
(J (u· + ε (v· − u·))− J (u·))

= 〈J′ (u·) , v· − u·〉 .

Considering in this section the following assumptions
(H3) (Regularity conditions)





(i) the function ℓ is continuously differentiable with respect to
(y, y′, Y, Y ′, Z, Z ′, v), and the mappings α and β are continuously

differentiable with respect to (y, y′) and (Y, Y ′), respectively,
(ii) the derivatives of ℓ, α, β with respect to their arguments are bounded.

The second main result in this paper, is the following

Theorem 3.1. (Necessary and sufficient conditions for optimality). Let u· be an admissible control
(candidate to be optimal) with associated trajectories (yu·

· , Y u·

· , Zu·

· ). Then u· is an optimal control for the
strict control problem {(2.1), (2.2), (2.3)}, if and only if, there exists a unique solution

(
Φu·

· , Ψu·

· , Σu·

· , Πu·

·

)

of the following adjoint equations of the MF-FBDSDE (2.1),




−dΦu·

t =
(
Hy

(
t, ζu·

t , ut, χu·

t

)
+ E[Hy′

(
t, ζu·

t , ut, χu·

t

)
]
)
dt− Σu

t dWt,

dΨu·

t =
(
HY

(
t, ζu·

t , ut, χu·

t

)
+ E[HY ′

(
t, ζu·

t , ut, χu·

t

)
]
)
dt

+
(
HZ

(
t, ζu·

t , ut, χu·

t

)
+ E[HZ′

(
t, ζu·

t , ut, χu·

t

)
]
)
dWt −Πu

t

←−
dBt,

Φu·

T = αy

(
yu·

T ,E[yu·

T ]
)

+ E[αy′

(
yu

T ,E[yu·

T ]
)

],

Ψu·

0 = βY

(
Y u·

0 ,E[Y u·

0 ]
)

+ E[βY ′

(
Y u·

0 ,E[Y u·

0 ]
)

],

(3.1)
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such that

〈Hv(t, ζu·

t , ut, χu·

t ), vt − ut〉 ≥ 0, ∀v· ∈ UL, a.e, as, (3.2)

where H̟(t, ζu·

t , ut, χu·

t ) with ̟ := y, y′, Y, Y ′, Z, Z ′, is the gradient

∇̟H(t, yu·

t ,E[yu·

t ], Y u·

t ,E[Y u·

t ], Zu·

t ,E[Zu·

t ], ut, Φu·

t , Ψu·

t , Σu·

t , Πu·

t ),

(t, ζu·

t , ut, χu·

t ) := (t, yu·

t ,E[yu·

t ], Y u·

t ,E[Y u·

t ], Zu·

t ,E[Zu·

t ], ut, Φu·

t , Ψu·

t , Σu·

t , Πu·

t ),

and the Hamiltonian function is given by

H (t, y, y′, Y, Y ′, Z, Z ′, v, Φ, Ψ, Σ, Π) =
〈

Ψ, dy + d̂y′ + eY + êY ′ + fZ + f̂Z ′ + gv
〉

+ 〈Φ, ay + ây′ + bv〉+
〈

Π, hy + ĥy′ + kY + k̂Y ′ + mZ + m̂Z ′ + ĝv
〉

+
〈

Σ, cy + ĉy′ + b̂v
〉

+ ℓ (t, y, y′, Y, Y ′, Z, Z ′, v) .

Proof. Our control problem is governed by a linear system, so to establish a necessary and sufficient
optimality conditions, we use the following principle: The convex optimization principle (see Ekeland-
Temam ( [9], prop 2.1, p 35). Since the domain of control U is convex, the functional J is convex in u·,
continuous and Gâteaux-differentiable with continuous derivative J′, thus, we have

(u· minimize J)⇔ 〈J′ (u·) , v· − u·〉 ≥ 0; ∀v· ∈ UL. (3.3)

Firstly, let us calculate the Gâteaux derivative of J at a point u· and in the direction (v· − u·), we obtain

〈J′ (u·) , v· − u·〉 = E
[
〈αy(yu·

T ,E[yu·

T ]) + E[αy′(yu·

T ,E[yu·

T ])], yv·

T − yu·

T 〉
]

+E
[
〈βY (Y u·

0 ,E[Y u·

0 ]) + E[βY ′(Y u·

0 ,E[Y u·

0 ])], Y v·

0 − Y u·

0 〉
]

(3.4)

+E
[ ∫ T

0

〈ℓy(t, ζu·

t , ut) + E[ℓy′(t, ζu·

t , ut)], yv·

t − yu·

t 〉dt
]

+E
[ ∫ T

0

〈ℓY (t, ζu·

t , ut) + E[ℓY ′(t, ζu·

t , ut)], Y v·

t − Y u·

t 〉dt
]

+E
[ ∫ T

0

〈ℓZ(t, ζu·

t , ut) + E[ℓZ′ (t, ζu·

t , ut)], Zv·

t − Zu·

t 〉dt
]

+E
[ ∫ T

0

〈ℓv(t, ζu·

t , ut), vt − ut〉dt
]
.

The adjoint equations (3.1) can be rewritten as follows





−dΦu
t =

(
Ψu

t dt + Φu
t at + Πu

t ht + Σu
t ct + ℓy(t, ζu

t , ut)

+E[Ψu
t d̂t + Φu

t ât + Πu
t ĥt + Σu

t ĉt + ℓy′(t, ζu
t , ut)]

)
dt− Σu

t dWt,

dΨu
t =

(
Ψu

t et + Πu
t kt + ℓY (t, ζu

t , ut) + E[
(
Ψu

t êt + Πu
t k̂t + ℓY ′(t, ζu

t , ut)]
)
dt

+
(
Ψu

t ft + Πu
t mt + ℓZ(t, ζu

t , ut) + E[
(
Ψu

t f̂t + Πu
t m̂t + ℓZ′(t, ζu

t , ut)]
)
dWt,

−Πu
t

←−
dBt

Φu
T = αy

(
yu

T ,E[yu
T ]

)
+ E[αy′

(
yu

T ,E[yu
T ]

)
],

Ψu
0 = βY

(
Y u

0 ,E[Y u
0 ]

)
+ E[βY ′

(
Y u

0 ,E[Y u
0 ]

)
].
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From (3.1), the equality (3.4) becomes

〈J′ (u·) , v· − u·〉 = E
[
〈Φu

T , yv·

T − yu·

T 〉
]

+ E
[
〈Ψu

0 , Y v·

0 − Y u·

0 〉
]

+E
[ ∫ T

0

〈ℓy(t, ζu·

t , ut) + E[ℓy′(t, ζu·

t , ut)], yv·

t − yu·

t 〉dt
]

(3.5)

+E
[ ∫ T

0

〈ℓY (t, ζu·

t , ut) + E[ℓY ′(t, ζu·

t , ut)], Y v·

t − Y u·

t 〉dt
]

+E
[ ∫ T

0

〈ℓZ(t, ζu·

t , ut) + E[ℓZ′ (t, ζu·

t , ut)], Zv·

t − Zu·

t 〉dt
]

+E
[ ∫ T

0

〈ℓv(t, ζu·

t , ut), vt − ut〉dt
]
.

Applying integration by part to 〈Ψu
t , Y v·

t − Y u·

t 〉 and 〈Φu
t , yv·

t − yu·

t 〉, passing to integral on [0, T ] and
taking the expectations to deduce

E
[
〈Φu·

T , yv·

T − yu·

T 〉
]

= −E
[ ∫ T

0

〈Ψu·

t dt + Φu·

t at + Πu·

t ht + Σu·

t ct + ℓy(t, ζu·

t , ut)

+E[Ψu·

t d̂t + Φu·

t ât + Πu·

t ĥt + Σu·

t ĉt + ℓy′(t, ζu·

t , ut)], yv·

t − yu·

t 〉dt
]

+E
[ ∫ T

0

〈Φu·

t , at(y
v·

t − yu·

t ) + âtE[yv·

t − yu·

t ] + bt(vt − ut)〉dt
]

+E
[ ∫ T

0

〈Σu·

t , ct(y
v·

t − yu·

t ) + ĉtE[yv·

t − yu·

t ] + b̂t(vt − ut)〉dt
]
, (3.6)

and

E
[
〈Ψu·

0 , Y v·

0 − Y u·

0 〉
]

= −E
[ ∫ T

0

〈Ψu·

t et + Πu·

t kt + ℓY (t, ζu·

t , ut)

+E[Ψu·

t êt + Πu·

t k̂t + ℓY ′(t, ζu·

t , ut)], Y v·

t − Y u·

t 〉dt
]

+E
[ ∫ T

0

〈Ψu·

t , dt(y
v·

t − yu·

t ) + d̂tE[yv·

t − yu·

t ] + et(Y
v·

t − Y u·

t )

+êtE[Y v·

t − Y u·

t ] + ft(Z
v·

t − Zu·

t ) + f̂tE[Zv·

t − Zu·

t ] + gt(vt − ut)〉dt
]

+E
[ ∫ T

0

〈Πu·

t , ht(y
v·

t − yu·

t ) + ĥtE[yv·

t − yu·

t ] + kt(Y
v·

t − Y u·

t )

+k̂tE[Y v·

t − Y u·

t ] + mt(Z
v·

t − Zu·

t ) + m̂tE[Zv·

t − Zu·

t ] + ĝt(vt − ut)〉dt
]

−E
[ ∫ T

0

〈Ψu·

t ft + Πu·

t mt + ℓZ(t, ζu·

t , ut)

+E[Ψu·

t f̂t + Πu·

t m̂t + ℓZ′(t, ζu·

t , ut)], Zv·

t − Zu·

t 〉dt
]
. (3.7)

Combining (3.5), (3.6) and (3.7), we obtain

〈J′(u), v· − u·〉 = E
[ ∫ T

0

〈Φu·

t bt + Σu·

t b̂t + Ψu·

t gt + Πu·

t ĝt + ℓv(t, ζu·

t , ut), vt − ut)〉dt
]
.

On the other hand, we calculate the Gâteaux derivative of H at a point u· in the direction (v· − u·), we
have

E
[ ∫ T

0

〈Hv(t, ζu·

t , ut, χu·

t ), vt − ut〉dt
]

= E
[ ∫ T

0

〈Φu·

t bt + Σu·

t b̂t + Ψu·

t gt + Πu·

t ĝt

+ℓv(t, ζu·

t , ut), vt − ut)〉dt
]

= 〈J′(u), v· − u·〉. (3.8)
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Combines (3.3) and (3.8), we get

(u minimize J)⇔ E
[ ∫ T

0

〈Hv(t, ζu·

t , ut, χu·

t ), vt − ut〉dt
]
≥ 0, ∀v· ∈ UL.

By a standard argument we get the result. �

4. Necessary and sufficient optimality conditions for both relaxed and strict control

problems for nonlinear MF-FBDSDE

In this section, we establish necessary as well as sufficient optimality conditions for both relaxed and
strict control problems driven by systems of nonlinear MF-FBDSDEs, where the action space U is not
necessary convex.

4.1. Necessary and sufficient optimality conditions for relaxed control problems

We start by establish necessary and sufficient optimality conditions for existence of optimal relaxed
control. Let P (U) denote the space of probability measures on B(U) equipped with the topology of weak
convergence, where U is a nonempty Borel compact subset of Rk. In a relaxed control problem, the
U -valued process vt is replaced by an P (U)-valued process qt. Moreover, if qt(du) = δvt

(du) is a Dirac
measure charging vt for each t, then we get a strict control problem as a special case of the relaxed one.

We consider a relaxed control problem governed by the following MF-FBDSDE:





dyµ
t =

∫
U

b(t, yµ
t ,E[yµ

t ], u)µt(du)dt + σ(t, yµ
t ,E[yµ

t ])dWt

dY µ
t = −

∫
U

f(t, yµ
t ,E[yµ

t ], Y µ
t ,E[Y µ

t ], Zµ
t ,E[Zµ

t ], u)µt(du)dt

−g(t, yµ
t ,E[yµ

t ], Y µ
t ,E[Y µ

t ], Zµ
t ,E[Zµ

t ])
←−
dBt + Zµ

t dWt

yµ
0 = x, Y µ

T = h(yµ
T ,E[yµ

T ]), t ∈ [0, T ],

(4.1)

and the functional cost is given by

J(µ·) := E
[
α (yµ

T ,E [yµ
T ]) + β (Y µ

0 ,E [Y µ
0 ])

+
∫ T

0

∫
U

ℓ
(
t, yµ

t ,E [yµ
t ] , Y µ

t ,E [Y µ
t ] , Zµ

t ,E [Zµ
t ] , u

)
µt(du)dt

]
.

(4.2)

We say that a relaxed control q· is an optimal control if

J(q·) = inf
µ

·
∈R

J(µ·). (4.3)

According to the fact that the set of relaxed controls is convex, then to establish necessary optimality
condition we use the convex perturbation method. Let q· be an optimal relaxed control with associated
trajectories (yq

t , Y q
t , Zq

t ) solution of the MF-FBDSDEs (4.1). Then, we can define a perturbed relaxed
control by

qε
t = qt + ε(µt − qt),

where ε > 0 is sufficiently small and µ· is an arbitrary element of R. Denote by (yε
t , Y ε

t , Zε
t ) the solution

of the system (4.1) corresponding to qε
· .

We shall consider in this section the following assumptions.

• (H4) (Lipschitz condition) ∃ C > 0, 0 < γ < 1
2 such that ∀ y1, y′

1, y2, y′
2, Y1, Y ′

1 , Y2, Y ′
2 , Z1, Z ′

1, Z2,
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Z ′
2, u,

|b(t, y1, y′
1, u)− b(t, y2, y′

2, u)|
2
≤ C (|y1 − y2|

2 + |y′
1 − y′

2|
2
),

|σ(t, y1, y′
1)− σ(t, y2, y′

2)|
2
≤ C (|y1 − y2|

2 + |y′
1 − y′

2|
2
),

|f(t, y1, y′
1, Y1, Y ′

1 , Z1, Z ′
1, u)− f(t, y2, y′

2, Y2, Y ′
2 , Z2, Z ′

2, u)|
2

≤ C (|y1 − y2|
2

+ |y′
1 − y′

2|
2

+ |Y1 − Y2|
2

+ |Y ′
1 − Y ′

2 |
2

+‖Z1 − Z2‖
2 + ‖Z ′

1 − Z ′
2‖

2),

|ℓ(t, y1, y′
1, Y1, Y ′

1 , Z1, Z ′
1, u)− ℓ(t, y2, y′

2, Y2, Y ′
2 , Z2, Z ′

2, u)|
2

≤ C (|y1 − y2|
2

+ |y′
1 − y′

2|
2

+ |Y1 − Y2|
2

+ |Y ′
1 − Y ′

2 |
2

+‖Z1 − Z2‖
2 + ‖Z ′

1 − Z ′
2‖

2),

|g(t, y1, y′
1, Y1, Y ′

1 , Z1, Z ′
1)− g(t, y2, y′

2, Y2, Y ′
2 , Z2, Z ′

2)|
2

≤ C (|y1 − y2|
2

+ |y′
1 − y′

2|
2

+ |Y1 − Y2|
2

+ |Y ′
1 − Y ′

2 |
2
)

+γ(‖Z1 − Z2‖
2 + ‖Z ′

1 − Z ′
2‖

2).

• (H5) (Regularity conditions)





(i) the mappings b, h, σ, α are bounded and continuously differentiable with
respect to (x, x′), and the functions f, g and β are bounded and continuously

differentiable with respect to (y, y′, Y, Y ′, Z, Z ′) and (y, y′), respectively,
(ii) the derivatives of b, h, g, σ, f with respect to the above arguments are

continuous and bounded,
(iii) the derivatives of ℓ are bounded by C(1 + |y|+ |y′|+ |Y |+ |Y ′|+ |Z|+ |Z ′|),
(iv) the derivatives of α and β are bounded by C (1 + |y|+ |y′|) and

C (1 + |Y |+ |Y ′|) respectively,

for some positive constant C.

4.1.1. The variational inequality. Using the optimality of q·, the variational inequality will be derived
from the following inequality

0 ≤ J(qε)− J(q).

For this end, we need some results.

Proposition 4.1. Under assumptions (H4)− (H5) , we have

lim
ε→0

E

[
sup

0≤t≤T

|yε
t − yq

t |
2

]
= 0, (4.4)

lim
ε→0

E

[
sup

0≤t≤T

|Y ε
t − Y q

t |
2

]
= 0, (4.5)

lim
ε→0

E

[∫ T

0

‖Zε
t − Zq

t ‖
2dt

]
= 0. (4.6)
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Proof. We calculate E
[
|yε

t − yq
t |

2
]

and using the definition of qε
t to get

E
[
|yε

t − yq
t |

2
]
≤ CE

[ ∫ t

0

∣∣∣∣
∫

U

b (s, yε
s,E [yε

s ] , u) qs(du)

−

∫

U

b (s, yq
s ,E [yq

s ] , u) qs(du)

∣∣∣∣
2

ds
]

+Cε2
E

[ ∫ t

0

∣∣∣∣
∫

U

b (s, yε
s,E [yε

s] , u) µs(du)−

∫

U

b (s, yε
s,E [yε

s ] , u) qs(du)

∣∣∣∣
2

ds
]

+CE
[ ∫ t

0

|σ (s, yε
s,E [yε

s])− σ (s, yq
s ,E [yq

s ])|
2

ds
]
.

Since b and σ are uniformly Lipschitz and b is bounded, we can show

E
[
|yε

t − yq
t |

2
]
≤ CE

[ ∫ t

0

|yε
s − yq

s |
2ds

]
+ Cε2.

Applying Granwall’s lemma and Burkholder-Davis-Gundy inequality, we get (4.4).
On the other hand, applying Itô’s formula to (Y ε

t − Y q
t )2, taking expectation and applying Young’s

inequality, to obtain

E
[
|Y ε

t − Y q
t |

2
]

+ E

[∫ T

t

‖Zε
s − Zq

s‖
2ds

]
≤ E

[
|h(yε

T ,E[yε
T ])− h(yq

T ,E[yq
T ])|2

]

+
1

θ
E

[∫ T

t

|Y ε
s − Y q

s |
2ds

]
+ θE

[ ∫ T

t

∣∣∣∣
∫

U

f (s, yε
s,E [yε

s ] , Y ε
s ,E [Y ε

s ] , Zε
s ,E [Zε

s ] , u) qε
s(du)

−

∫

U

f (s, yq
s ,E [yq

s ] , Y q
s ,E [Y q

s ] , Zq
s ,E [Zq

s ] , u) qs(du)

∣∣∣∣
2

ds
]

+E
[ ∫ T

t

|g (s, yε
s,E [yε

s] , Y ε
s ,E [Y ε

s ] , Zε
s ,E [Zε

s ])

−g (s, yq
s ,E [yq

s ] , Y q
s ,E [Y q

s ] , Zq
s ,E [Zq

s ])|
2

ds
]
.

Using the definition of qε
t , we obtain

E
[
|Y ε

t − Y q
t |

2
]

+ E

[∫ T

t

‖Zε
s − Zq

s‖
2ds

]
≤ E

[
|h(yε

T ,E[yε
T ])− h(yq

T ,E[yq
T ])|2

]

+
1

θ
E

[∫ T

t

|Y ε
s − Y q

s |
2ds

]

+Cθε2
E

[ ∫ T

t

∣∣∣∣
∫

U

f (s, yε
s,E [yε

s ] , Y ε
s ,E [Y ε

s ] , Zε
s ,E [Zε

s ] , u) µs(du)

−

∫

U

f (s, yε
s,E [yε

s] , Y ε
s ,E [Y ε

s ] , Zε
s ,E [Zε

s ] , u) qs(du)

∣∣∣∣
2

ds
]

+CθE
[ ∫ T

t

∣∣∣∣
∫

U

f (s, yε
s,E [yε

s ] , Y ε
s ,E [Y ε

s ] , Zε
s ,E [Zε

s ] , u) qs(du)

−

∫

U

f (s, yq
s ,E [yq

s ] , Y q
s ,E [Y q

s ] , Zq
s ,E [Zq

s ] , u) qs(du)

∣∣∣∣
2

ds
]

+E
[ ∫ T

t

|g (s, yε
s,E [yε

s] , Y ε
s ,E [Y ε

s ] , Zε
s ,E [Zε

s ])

−g (s, yq
s ,E [yq

s ] , Y q
s ,E [Y q

s ] , Zq
s ,E [Zq

s ])|
2

ds
]
.
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Since f and h are uniformly Lipschitz with respect to their arguments, we have

E
[
|Y ε

t − Y q
t |

2
]

+ E

[∫ T

t

‖Zε
s − Zq

s‖
2ds

]
≤ (

1

θ
+ 2Cθ + 2C)E

[∫ T

t

|Y ε
s − Y q

s |
2ds

]

+(2Cθ + 2γ)E

[∫ T

t

‖Zε
s − Zq

s‖
2ds

]
+ φε

t , (4.7)

where

φε
t = 2CE

[
|yε

T − yq
T |

2
]

+ (2Cθ + 2C)E
[ ∫ T

t

|yε
s − yq

s |
2ds

]
+ Cεθ2.

From (4.4) we can show that

lim
ε→0

φε
t = 0. (4.8)

Choose θ = 1−2γ
4C

> 0, thus 2Cθ + 2γ = 1−2γ
2 + 2γ = 1+2γ

2 < 1, so the inequality (4.7) becomes

E
[
|Y ε

t − Y q
t |

2
]

+
1− 2γ

2
E

[∫ T

t

‖Zε
s − Zq

s‖
2ds

]
≤ CE

[∫ T

t

|Y ε
s − Y q

s |
2ds

]
+ φε

t ,

we derive from this inequality, two inequalities

E
[
|Y ε

t − Y q
t |

2
]
≤ CE

[∫ T

t

|Y ε
s − Y q

s |
2ds

]
+ φε

t , (4.9)

and

E

[∫ T

t

‖Zε
s − Zq

s‖
2ds

]
≤ CE

[∫ T

t

|Y ε
s − Y q

s |
2ds

]
+ φε

t . (4.10)

Applying Granwall’s lemma and Burkholder-Davis-Gundy inequality in (4.9) and using (4.4) and (4.8)
to get (4.5). Finally (4.6) derived from (4.5), (4.8) and (4.10). �

Proposition 4.2. Let
(

ŷt, Ŷt, Ẑt

)
, be the solution of the following variational equations of MF-FBDSDE

(4.1)





dŷt =
∫

U
by (t, yq

t ,E [yq
t ] , u) qt(du)ŷtdt

+E
[∫

U
by′ (t, yq

t ,E [yq
t ] , u) qt(du)E[ŷt]

]
dt

+ (σy (t, yq
t ,E [yq

t ]) ŷt + E [σy′ (t, yq
t ,E [yq

t ])E[ŷt]]) dWt

+
(∫

U
b (t, yq

t ,E [yq
t ] , u) qt(du)−

∫
U

b (t, yq
t ,E [yq

t ] , u) µt(du)
)

dt

dŶt = −(
∫

U
fy(t, πq

t , u)qt(du)ŷt + E
[∫

U
fy′(t, πq

t , u)qt(du)E[ŷt]
]

+
∫

U
fY (t, πq

t , u)qt(du)Ŷt + E

[∫
U

fY ′(t, πq
t , u)qt(du)E[Ŷt]

]

+
∫

U
fZ(t, πq

t , u)qt(du)Ẑt + E

[∫
U

fZ′(t, πq
t , u)qt(du)E[Ẑt]

]

+(
∫

U
f (t, πq

t , u) qt(du)−
∫

U
f (t, πq

t , u) µt(du)))dt

−(gy(t, πq
t )ŷt + E [gy′(t, πq

t )E[ŷt]] + gY (t, πq
t )Ŷt + E

[
gY ′(t, πq

t )E[Ŷt]
]

+gZ(t, πq
t )Ẑt + E

[
gZ′(t, πq

t )E[Ẑt]
]
)
←−
dBt + ẐtdWt,

ŷ0 = 0, ŶT = hy (yq
T ,E[yq

T ]) ŷT + E [hy′ (yq
T ,E[yq

T ])E[ŷT ]] ,

(4.11)
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where (t, πq
t , u) := (t, yq

t ,E [yq
t ] , Y q

t ,E [Y q
t ] , Zq

t ,E [Zq
t ] , u). We have the following estimates

lim
ε→0

E

[
sup

0≤t≤T

∣∣∣∣
1

ε
(yε

t − yq
t )− ŷt

∣∣∣∣
2
]

= 0, (4.12)

lim
ε→0

E

[
sup

0≤t≤T

∣∣∣∣
1

ε
(Y ε

t − Y q
t )− Ŷt

∣∣∣∣
2
]

= 0, (4.13)

lim
ε→0

E

[∫ T

0

∥∥∥∥
1

ε
(Zε

t − Zq
t )− Ẑt

∥∥∥∥
2

dt

]
= 0. (4.14)

Proof. For simplicity, denote by

Υε
t =

1

ε
(yε

t − yq
t )− ŷt,Y

ε
t =

1

ε
(Y ε

t − Y q
t )− Ŷt,Z

ε
t =

1

ε
(Zε

t − Zq
t )− Ẑt. (4.15)

i) Let us prove (4.12). From (4.1), (4.11) and notations (4.15), we have

Υε
t =

1

ε

∫ t

0

[∫

U

b (s, yε
s,E [yε

s] , u) qε
s(du)−

∫

U

b (s, yq
s ,E [yq

s ] , u) qε
s(du)

]
ds

+
1

ε

∫ t

0

[∫

U

b (s, yq
s ,E [yq

s ] , u) qε
s(du)−

∫

U

b (s, yq
s ,E [yq

s ] , u) qs(du)

]
ds

+
1

ε

∫ t

0

[σ (s, yε
s,E [yε

s])− σ (s, yq
s ,E [yq

s ])] dWs

−

∫ t

0

∫

U

by (s, yq
s ,E [yq

s ] , u) qs(du)ŷsds

−

∫ t

0

E

[∫

U

by′ (s, yq
s ,E [yq

s ] , u) qs(du)E[ŷs]

]
ds

−

∫ t

0

(σy (s, yq
s ,E [yq

s ]) ŷs + E [σy′ (s, yq
s ,E [yq

s ])E[ŷs]]) dWs

−

∫ t

0

(∫

U

b (s, yq
s ,E [yq

s ] , u) qs(du)−

∫

U

b (s, yq
s ,E [yq

s ] , u) µs(du)

)
ds.

Using the definition of qε
s and taking expectation, we obtain

E
[
|Υε

t |
2
]
≤ CE

[∫ t

0

∫ 1

0

∫

U

|by (s, Λε
s, u) Υε

t |
2qs(du)dλds

]

+CE

[∫ t

0

∫ 1

0

∫

U

|E [by′ (s, Λε
s, u)E[Υε

t ]] |2qs(du)dλds

]

+CE

[∫ t

0

∫ 1

0

|σy (s, Λε
s) Υε

t |
2dλds

]

+CE

[∫ t

0

∫ 1

0

|E [σy′ (s, Λε
s)E[Υε

t ]] |2dλds

]
+ CE

[
|Γε

t |
2
]

,
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where (s, Λε
s, u) := (s, yq

s + λε(Υε
s + ŷs),E[yq

s + λε(Υε
s + ŷs)], u) , and

Γε
t =

∫ t

0

∫ 1

0

∫

U

by (s, Λε
s, u) (yε

s − yq
s) µs(du)dλds

+

∫ t

0

∫ 1

0

∫

U

E [by′ (s, Λε
s, u)E[yε

s − yq
s ]] µs(du)dλds

−

∫ t

0

∫ 1

0

∫

U

by (s, Λε
s, u) (yε

s − yq
s) qs(du)dλds

−

∫ t

0

∫ 1

0

∫

U

E [by′ (s, Λε
s, u)E[yε

s − yq
s ]] qs(du)dλds

+

∫ t

0

∫ 1

0

∫

U

(by (s, Λε
s, u) ŷs + E [by′ (s, Λε

s, u)E[ŷs]]) qs(du)dλds

+

∫ t

0

∫ 1

0

(σy (s, Λε
s) ŷt + E [σy′ (s, Λε

s)E[ŷs]]) dλdWs

−

∫ t

0

∫

U

by (s, yq
s ,E[yq

s ], u) ŷsqs(du)ds

−

∫ t

0

∫

U

E [by′ (s, yq
s ,E[yq

s ], u)E[ŷs]] qs(du)ds

−

∫ t

0

(σy (s, yq
s ,E[yq

s ]) ŷs + E [σy′ (s, yq
s ,E[yq

s ])E[ŷs]]) dWs,

since by, by′ , σy, σy′ are continuous and bounded we have

E
[
|Υε

t |
2
]
≤ CE

[∫ t

0

|Υε
s|

2ds

]
+ CE

[
|Γε

t |
2
]

, (4.16)

and

lim
ε→0

E
[
|Γε

t |
2
]

= 0. (4.17)

By using (4.17), Granwall’s lemma and Burkholder-Davis-Gundy inequality in (4.16), one can show (4.12).

ii) Let us prove (4.13) and (4.14). We put

(s, ∆ε
s, u) :=

(
s, yq

s + λε(Υε
s + ŷs),E[yq

s + λε(Υε
s + ŷs)], Y q

s + λε(Yε
s + Ŷs)

,E[Y q
s + λε(Yε

s + Ŷs)], Zq
s + λε(Zε

s + Ẑs),E[Zq
s + λε(Zε

s + Ẑs)], u
)
.

From (4.1), (4.11) and (4.15) we have





dYε
t = −

(
F ε

Y Yε
t + E [F ε

Y ′E[Yε
t ]] + F ε

ZZ
ε
t + E [F ε

Z′E[Zε
t ]] + Θε

t

)
dt

−
(
gY (t, ∆ε

t )Yε
t + E [gY ′ (t, ∆ε

t )E[Yε
t ]] + gZ (t, ∆ε

t )Zε
t

+E [gZ′ (t, ∆ε
t )E[Zε

t ]] + Ξε
t

)←−
dBt + Zε

t dWt

Yε
T = 1

ε
(h (yε

T ,E[yε
T ])− h (yq

T ,E[yq
T ]))

− (hy′ (yq
T ,E[yq

T ]) ŷT + E [hy′ (yq
T ,E[yq

T ])E[ŷT ]]) ,

(4.18)

where

F ε,q
̟ =

∫ 1

0

∫

U

f̟

(
t, ∆ε

t , u
)
qt(du)dλ, for ̟ = y, y′, Y, Y ′, Z, Z ′,
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Θε
t = F ε,q

y Υε
t + E

[
F ε,q

y′ E[Υε
t ]

]
+ F ε,q

y ŷt + E

[
F ε,q

y′ E[ŷt]
]

−

∫

U

fy

(
t, πq

t , u
)
qt(du)ŷt − E

[∫

U

fy′

(
t, πq

t , u
)
qt(du)E[ŷt]

]
+ F ε,q

Y Ŷt

+E

[
F ε,q

Y ′ E[Ŷt]
]
−

∫

U

fY

(
t, πq

t , u
)
qt(du)Ŷt − E

[∫

U

fY ′

(
t, πq

t , u
)
qt(du)E[Ŷt]

]

+F ε,q
Z Ẑt + E

[
F ε,q

Z′ E[Ẑt]
]
−

∫

U

fZ

(
t, πq

t , u
)
qt(du)Ẑt

−E

[∫

U

fZ′

(
t, πq

t , u
)
qt(du)E[Ẑt]

]

+F ε,µ
y (yε

t − yq
t ) + E

[
F ε,µ

y′ E[yε
t − yq

t ]
]

+ F ε,µ
Y (Y ε

t − Y q
t )

+E [F ε,µ
Y ′ E[Y ε

t − Y q
t ]] + F ε,µ

Z (Zε
t − Zq

t ) + E [F ε,µ
Z′ E[Zε

t − Zq
t ]]

−
(
F ε,q

y (yε
t − yq

t ) + E

[
F ε,q

y′ E[yε
t − yq

t ]
]

+ F ε,q
Y (Y ε

t − Y q
t )

+E [F ε,q
Y ′ E[Y ε

t − Y q
t ]] + F ε,q

Z (Zε
t − Zq

t ) + E [F ε,q
Z′ E[Zε

t − Zq
t ]]

)
,

and

Ξε
t =

∫ 1

0

(
gy

(
t, ∆ε

t

)
ŷt + E

[
gy′

(
t, ∆ε

t

)
E[ŷt]

]
− gy

(
t, πq

t

)
ŷt − E

[
gy′

(
t, πq

t

)
E[ŷt]

] )
dλ
←−
dBt

+

∫ 1

0

(
gY

(
t, ∆ε

t

)
Ŷt + E

[
gY ′

(
t, ∆ε

t

)
E[Ŷt]

]
− gY

(
t, πq

t

)
Ŷt − E

[
gY ′

(
t, πq

t

)
E[Ŷt]

] )
dλ
←−
dBt

+

∫ 1

0

(
gZ

(
t, ∆ε

t

)
Ẑt + E

[
gZ′

(
t, ∆ε

t

)
E[Ẑt]

]
− gZ

(
t, πq

t

)
Ẑt − E

[
gZ′

(
t, πq

t

)
E[Ẑt]

] )
dλ
←−
dBt.

Using the fact that the derivatives fy, fy′ , fY , fY ′ , fZ , fZ′ are continuous and bounded and from (4.4),
(4.5), (4.6) and (4.12) we show

lim
ε→0

E

[∫ T

t

|Θε
s|

2ds

]
= 0, and lim

ε→0
E

[∫ T

t

|Ξε
s|

2ds

]
= 0. (4.19)

Applying Itô’s formula to |Yε
t |

2 we obtain

E
[
|Yε

t |
2
]

+ E

[∫ T

t

‖Zε
s‖

2ds

]
= E

[
|Yε

T |
2
]

+ 2E

[∫ T

t

〈Yε
s, +F Y

s Y
ε
s + E

[
F Y ′

s E[Yε
s]

]

+F Z
s Z

ε
s + E

[
F Z′

s E[Zε
s]

]
+ Θε

s〉ds
]

+ E

[∫ T

t

|gY (t, ∆ε
t )Yε

s

+E [gY ′ (t, ∆ε
t )E[Yε

s]] + gZ (t, ∆ε
t )Zε

s + E [gZ′ (t, ∆ε
t )E[Zε

s]] + Ξε
s|

2ds
]

.

Applying Young’s inequality and the boundedness of the derivatives F Y
s , F Y ′

s , F Z
s , F Z′

s , gY , gY ′ , gZ , gZ′ ,



18 N. Berrouis, B. Gherbal and A. Ninouh

we obtain

E
[
|Yε

t |
2
]

+ E

[∫ T

t

‖Zε
s‖

2ds

]
≤ E

[
|Yε

T |
2
]

+
1

θ1
E

[∫ T

t

|Yε
s|

2ds

]

+5Cθ1E

[∫ T

t

(
|Yε

s|
2

+ E

[
|Yε

s|
2
]

+ ‖Zε
s‖

2
+ E

[
‖Zε

s‖
2
]

+ |Θε
s|

2
)

ds

]

+3CE

[∫ T

t

(
|Yε

s|
2 + E

[
|Yε

s|
2
]

+ |Ξε
s|

2
)

ds

]

+2γ2
E

[∫ T

t

(
‖Zε

s‖
2

+ E

[
‖Zε

s‖
2
])

ds

]

+2CγE

[∫ T

t

〈Yε
s + E [Yε

s] + Ξε
s,Zε

s + E [Zε
s]〉ds

]
.

Applying Young’s inequality again

E
[
|Yε

t |
2
]

+ E

[∫ T

t

‖Zε
s‖

2ds

]
≤ E

[
|Yε

T |
2
]

+
1

θ1
E

[∫ T

t

|Yε
s|

2ds

]

+5Cθ1E

[∫ T

t

(
|Yε

s|
2

+ E

[
|Yε

s|
2
]

+ ‖Zε
s‖

2
+ E

[
‖Zε

s‖
2
]

+ |Θε
s|

2
)

ds

]

+3CE

[∫ T

t

(
|Yε

s|
2 + E

[
|Yε

s|
2
]

+ |Ξε
s|

2
)

ds

]
+ 2γ2

E

[∫ T

t

(
‖Zε

s‖
2 + E

[
‖Zε

s‖
2
])

ds

]

+
6Cγ

θ2
E

[∫ T

t

(
|Yε

s|
2

+ E

[
|Yε

s|
2
]

+ |Ξε
s|

2
)

ds

]

+2Cγ θ2E

[∫ T

t

(
‖Zε

s‖
2

+ E

[
‖Zε

s‖
2
])

ds

]
.

Hence

E
[
|Yε

t |
2
]

+ E

[∫ T

t

‖Zε
s‖

2ds

]

≤ E
[
|Yε

T |
2
]

+ (
1

θ1
+ 10C θ1 + 6C +

12Cγ

θ2
)E

[∫ T

t

|Yε
s|

2ds

]

+(10C θ1 + 4γ2 + 8Cγ θ2)E

[∫ T

t

‖Zε
s‖

2ds

]

+5C θ1E

[∫ T

t

|Θε
s|

2ds

]
+ (3C +

6Cγ

θ2
)E

[∫ T

t

|Ξε
s|

2ds

]
. (4.20)

We choose

θ1 =
1− 4γ2

20C
> 0, θ2 =

1− 4γ2

24C γ
> 0,

thus

10C θ1 + 4γ2 + 8Cγ θ2 =
1− 4γ2

2
+ 4γ2 +

1− 4γ2

3
=

5 + 4γ2

6
< 1.
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Then the inequality (4.19) becomes

E
[
|Yε

t |
2
]

+ K1E

[∫ T

t

‖Zε
s‖

2ds

]
≤ E

[
|Yε

T |
2
]

+ K2E

[∫ T

t

|Yε
s|

2ds

]

+K3E

[∫ T

t

|Θε
s|

2ds

]
+ K4E

[∫ T

t

|Ξε
s|

2ds

]
, (4.21)

with K1 = 1−4γ2

6 > 0, K2 > 0, K3 > 0, K4 > 0.

We derive from (4.21) two inequality

E
[
|Yε

t |
2
]
≤ E

[
|Yε

T |
2
]

+ K2E

[∫ T

t

|Yε
s|

2ds

]

+K3E

[∫ T

t

|Θε
s|

2ds

]
+ K4E

[∫ T

t

|Ξε
s|

2ds

]
, (4.22)

and

E

[∫ T

t

‖Zε
s‖

2ds

]
≤

1

K1
E

[
|Yε

T |
2
]

+
K2

K1
E

[∫ T

t

|Yε
s|

2ds

]

+
K3

K1
E

[∫ T

t

|Θε
s|

2ds

]
+

K4

K1
E

[∫ T

t

|Ξε
s|

2ds

]
. (4.23)

On the other hand we have

E
[
|Yε

T |
2
]

= E

[∣∣∣∣
1

ε
(h (yε

T ,E[yε
T ])− h (hq

T ,E[yq
T ]))

− (hy (yq
T ,E[yq

T ]) ŷT + E [hy′ (yq
T ,E[yq

T ])E[ŷT ]])|
2
]

≤ 4E

[∣∣∣∣
∫ 1

0

hy (Λε
T ) dλ− hy (yq

T ,E[yq
T ])

∣∣∣∣
2

· |ŷT |
2

]

+4E

[
E

[∣∣∣∣
∫ 1

0

hy′ (Λε
T ) dλ− hy′ (yq

T ,E[yq
T ])

∣∣∣∣
2
]
· E

[
|ŷT |

2 ]
]

+4E

[∫ 1

0

(
|hy (Λε

T )|
2
· |Υε

T |
2

+ E

[
|hy′ (Λε

T )|
2
]
· E

[
|Υε

T |
2
])

dλ

]
.

Since hy, h′
y are continuous and bounded, using (4.12) to get

lim
ε→0

E
[
|Yε

T |
2
]

= 0. (4.24)

Now, applying Gronwall’s lemma in (4.22) and using (4.19) and (4.24) to obtain (4.13) and from (4.13),
(4.19) and (4.24) we get (4.14). �

Proposition 4.3 (Variational inequality). Let (H4)− (H5) , holds. Let q· be an optimal relaxed control



20 N. Berrouis, B. Gherbal and A. Ninouh

with associated trajectories (Xq·

t , Y q·

t , Zq·

t ). Then, for any element µ· of R, we have

0 ≤ E [αy(yq
T ,E[yq

T ])ŷT + E [αy′(yq
T ,E [yq

T ])E[ŷT ]]]

+E

[
βY (Y q

0 ,E[Y q
0 ])Ŷ0 + E

[
βY ′(Y

q
0 ,E[Y q

0 ])E[Ŷ0]
]]

+E
[ ∫ T

0

∫

U

(
ℓy(t, πq

t , u)ŷt + E [ℓy′(t, πq
t , u)E[ŷt]]

+ℓY (t, πq
t , u)Ŷt + E

[
ℓY ′(t, πq

t , u)E[Ŷt]
]

+ℓZ(t, πq
t , u)Ẑt + E

[
ℓZ′(t, πq

t , u)E[Ẑt]
] )

qt(du)dt
]

+E
[ ∫ T

0

( ∫

U

ℓ(t, yq
t ,E[yq

t ], Y q
t ,E[Y q

t ], Zq
t ,E[Zq

t ], u)µt(du)

−

∫

U

ℓ(t, yq
t ,E[yq

t ], Y q
t ,E[Y q

t ], Zq
t ,E[Zq

t ], u)qt(du)
)
dt

]
. (4.25)

Proof. From the optimality of q· we have

0 ≤ E [α(yε
T ,E[yε

T ])− α(yq
T ,E[yq

T ])] + E [β(Y ε
0 ,E[Y ε

0 ])− β(Y q
0 ,E[Y q

0 ])]

+E
[ ∫ T

0

( ∫

U

ℓ(t, yε
t ,E[yε

t ], Y ε
t ,E[Y ε

t ], Zε
t ,E[Zε

t ], u)qε
t (du)

−

∫

U

ℓ(t, yq
t ,E[yq

t ], Y q
t ,E[Y q

t ], Zq
t ,E[Zq

t ], u)qε
t (du)

)
dt

]

+E
[ ∫ T

0

( ∫

U

ℓ(t, yq
t ,E[yq

t ], Y q
t ,E[Y q

t ], Zq
t ,E[Zq

t ], u)qε
t (du)

−

∫

U

ℓ(t, yq
t ,E[yq

t ], Y q
t ,E[Y q

t ], Zq
t ,E[Zq

t ], u)qt(du)
)
dt

]
.

Let us divide this inequality by ε and using the definition of qε
t and from the notation (4.15), we have

0 ≤ E

[∫ 1

0

(αy(Λε
T )ŷT + E [αy′(Λε

T )E[ŷT ]]) dλ

]

+E

[∫ 1

0

(
βY (Y q

0 + λε(Yε
0 + Ŷ0),E[Y q

0 + λε(Yε
0 + Ŷs)])Ŷ0

+E

[
βY ′(Y

q
0 + λε(Yε

0 + Ŷ0),E[Y q
0 + λε(Yε

0 + Ŷs)])E[Ŷ0]
])

dλ
]

+E
[ ∫ T

0

∫ 1

0

∫

U

(
ℓy(t, ∆ε

t , u)ŷt + E [ℓy′(t, ∆ε
t , u)E[ŷt]]

+ℓY (t, ∆ε
t , u)Ŷt + E

[
ℓY ′(t, ∆ε

t , u)E[Ŷt]
]

+ℓZ(t, ∆ε
t , u)Ŷt + E

[
ℓZ′(t, ∆ε

t , u)E[Ŷt]
] )

qt(du)dλdt
]

+E
[ ∫ T

0

( ∫

U

ℓ(t, yq
t ,E[yq

t ], Y q
t ,E[Y q

t ], Zq
t ,E[Zq

t ], u)µt(du)

−

∫

U

ℓ(t, yq
t ,E[yq

t ], Y q
t ,E[Y q

t ], Zq
t ,E[Zq

t ], u)qt(du)
)
dt

]
+∇ε

t ,

(4.26)
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where ∇ε
t is given by

∇ε
t = E

[∫ 1

0

(αy(Λε
T )Υε

T + E [αy′(Λε
T )E[Υε

T ]]) dλ

]

+E

[∫ 1

0

(
βY

(
Y q

0 + λε(Yε
0 + Ŷ0),E[Y q

0 + λε(Yε
0 + Ŷs)]

)
Y

ε
0

+E

[
βY ′

(
Y q

0 + λε(Yε
0 + Ŷ0),E[Y q

0 + λε(Yε
0 + Ŷs)]

)
E[Yε

0]
])

dλ
]

+E
[ ∫ T

0

∫ 1

0

∫

U

(
ℓy(t, ∆ε

t , u)(yε
t − yq

t ) + E [ℓy′(t, ∆ε
t , u)E[yε

t − yq
t ]]

+ℓY (t, ∆ε
t , u)(Y ε

t − Y q
t ) + E [ℓY ′(t, ∆ε

t , u)E[Y ε
t − Y q

t ]]

+ℓZ(t, ∆ε
t , u)(Zε

t − Zq
t ) + E [ℓZ′(t, ∆ε

t , u)E[Zε
t − Zq

t ]]
)
µt(du)dλdt

]

−E
[ ∫ T

0

∫ 1

0

∫

U

(
ℓy(t, ∆ε

t , u)(yε
t − yq

t ) + E [ℓy′(t, ∆ε
t , u)E[yε

t − yq
t ]]

+ℓY (t, ∆ε
t , u)(Y ε

t − Y q
t ) + E [ℓY ′(t, ∆ε

t , u)E[Y ε
t − Y q

t ]]

+ℓZ(t, ∆ε
t , u)(Zε

t − Zq
t ) + E [ℓZ′(t, ∆ε

t , u)E[Zε
t − Zq

t ]]
)
qt(du)dλdt

]

+E
[ ∫ T

0

∫ 1

0

∫

U

(
ℓy(t, ∆ε

t , u)Υε
t + E [ℓy′(t, ∆ε

t , u)E[Υε
t ]]

+ℓY (t, ∆ε
t , u)Yε

t + E [ℓY ′(t, ∆ε
t , u)E[Yε

t ]]

+ℓZ(t, ∆ε
t , u)Zε

t + E [ℓZ′(t, ∆ε
t , u)E[Zε

t ]]
)
qt(du)dλdt

]
.

Since the derivatives αy, αy′ , βY , βY ′ , ℓy, ℓy′ , ℓY , ℓY ′ , ℓZ , ℓZ′ are continuous and bounded, then by using
(4.4), (4.5),(4.6), (4.12), (4.13),(4.14) and the Cauchy-Schwartz inequality we show that

lim
ε→0

E
[
|∇ε

t |
2
]

= 0.

Then let ε go to 0 in (4.26), we get the variational inequality. �

4.1.2. Necessary optimality conditions for relaxed control. Let us introduce the adjoint equations of the
MF-FBDSDE (4.1) and then gives the maximum principle.

Define the Hamiltonian H from

[0, T ]× R
n × R

n × R
m × R

m × R
m×d × R

m×d × U × R
m × R

n × R
m×l × R

n×d,

to R by

H(t, y, y′, Y, Y ′, Z, Z ′, µ, Φ, Ψ, Σ, Π) := Φ

∫

U

b(t, y, y′, u)µ(du) + Σσ(t, y, y′)

+ Ψ

∫

U

f(t, y, y′, Y, Y ′, Z, Z ′, u)µ(du) + Πg(t, y, y′, Y, Y ′, Z, Z ′)

+

∫

U

ℓ(t, y, y′, Y, Y ′, Z, Z ′, u)µ(du). (4.27)

Theorem 4.4. (Necessary optimality conditions for relaxed control) Assume that (H4)−(H5) , holds. Let
q· ∈ R an optimal relaxed control. Let (yq, Y q, Zq) be the associated solution of MF-FBDSDE (4.1). Then
there exists a unique solution (Φq, Ψq, Σq, Πq) of the following adjoint equations of MF-FBDSDE (4.1):





dΦq
t = −

(
Hy(t, ζq

t , qt, χq
t ) + E

[
Hy′(t, ζq

t , qt, χq
t )

])
dt + Σq

t dWt,
dΨq

t =
(
HY (t, ζq

t , qt, χq
t ) + E

[
HY ′(t, ζq

t , qt, χq
t )

])
dt

+
(
HZ(t, ζq

t , qt, χq
t ) + E

[
HZ′(t, ζq

t , qt, χq
t )

])
dWt −Πq

t

←−
dBt,

Ψq
0 = βY (Y q

0 ,E[Y q
0 ]) + E

[
ky′(Y q

0 ,E[Y q
0 ])

]
,

Φq
T = αy(yq

T ,E[yq
T ]) + E

[
αy′(yq

T ,E[yq
T ])

]

+hy(yq
T ,E[yq

T ])Ψq
T + E

[
hy′(yq

T ,E[yq
T ])E[Ψq

T ]
]
,

(4.28)
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such that

H(t, yq
t ,E[yq

t ], Y q
t ,E[Y q

t ], Zq
t ,E[Zq

t ], qt, Φq
t , Ψq

t , Σq
t , Πq

t )

≤ H(t, yq
t ,E[yq

t ], Y q
t ,E[Y q

t ], Zq
t ,E[Zq

t ], µt, Φq
t , Ψq

t , Σq
t , Πq

t )

, a.e. t, P − a.s., ∀µ ∈ P (U), (4.29)

where (t, ζq
t , qt, χq

t ) := (t, yq
t ,E[yq

t ], Y q
t ,E[Y q

t ], Zq
t ,E[Zq

t ], qt, Φq
t , Ψq

t , Σq
t , Πq

t ).

Proof. From (4.28), the inequality variational (4.25) becomes

0 ≤ E [〈Φq
T , ŷT 〉]− E

[
hy(yq

T ,E[yq
T ])Ψq

T + E
[
hy′(yq

T ,E[yq
T ])E[Ψq

T ]
]]

+E

[
〈Ψq

0, Ŷ0〉
]

+ E
[ ∫ T

0

∫

U

(
ℓy(t, πq

t , u)ŷt + E [ℓy′(t, πq
t , u)E[ŷt]]

+ℓY (t, πq
t , u)Ŷt + E

[
ℓY ′(t, πq

t , u)E[Ŷt]
]

+ℓZ(t, πq
t , u)Ẑt + E

[
ℓZ′(t, πq

t , u)E[Ẑt]
] )

qt(du)dt
]

+E
[ ∫ T

0

( ∫

U

ℓ(t, yq
t ,E[yq

t ], Y q
t ,E[Y q

t ], Zq
t ,E[Zq

t ], u)µt(du)

−

∫

U

ℓ(t, yq
t ,E[yq

t ], Y q
t ,E[Y q

t ], Zq
t ,E[Zq

t ], u)qt(du)
)
dt

]
. (4.30)

Now applying Itô’s formula to compute 〈Φq
t , ŷt〉 and 〈Ψq

t , Ŷt〉 and taking the expectations we derive

E
[
〈Φq

T , ŷT 〉
]

= − E
[ ∫ T

0

〈Ψq
t

∫

U

(
fy(t, πq

t , u) + E
[
fy′(t, πq

t , u)
])

qt(du)

+Πq
t

(
gy(t, πq

t ) + E
[
gy′(t, πq

t )
])

+

∫

U

(
ℓy(t, πq

t , u) + E
[
ℓy′(t, πq

t , u)
])

qt(du), ŷt〉dt
]

+ E
[ ∫ T

0

Φq
t

( ∫

U

b(t, yq
t ,E[yq

t ], u)qt(du)−

∫

U

b(t, yq
t ,E[yq

t ], u)µt(du)
)
dt

]
,

and

E
[
〈Ψq

0, Ŷ0〉
]

= E
[
〈Ψq

T , ŶT 〉
]

+E
[ ∫ T

0

〈Ψq
t ,

∫

U

(
fy(t, πq

t , u)ŷt + E
[
fy′(t, πq

t , u)E[ŷt]
])

qt(du)〉dt
]

+E
[ ∫ T

0

〈Πq
t ,

(
gy(t, πq

t )ŷt + E
[
gy′(t, πq

t )E[ŷt]
])
〉dt

]

−E
[ ∫ T

0

〈

∫

U

(
ℓY (t, πq

t , u) + E
[
ℓY ′(t, πq

t , u)
])

qt(du), Ŷt〉dt
]

−E
[ ∫ T

0

〈

∫

U

(
ℓZ(t, πq

t , u) + E
[
ℓZ′(t, πq

t , u)
])

qt(du), Ẑt〉dt
]

+ E
[ ∫ T

0

Ψq
t

( ∫

U

f(t, πq
t , u)qt(du)−

∫

U

f(t, πq
t , u)µt(du)

)
dt

]
.

Substitute the above equalities in inequality (4.30) to get, for every µ ∈ R,

0 ≤ E
[ ∫ T

0

(
H(t, yq

t ,E[yq
t ], Y q

t ,E[Y q
t ], Zq

t ,E[Zq
t ], qt, Φq

t , Ψq
t , Σq

t , Πq
t )

−H(t, yq
t ,E[yq

t ], Y q
t ,E[Y q

t ], Zq
t ,E[Zq

t ], µt, Φq
t , Ψq

t , Σq
t , Πq

t )
)
dt

]
.

Therefore inequality (4.29) follows by a standard arguments. �
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4.1.3. Sufficient optimality conditions for relaxed control. In this subsection we study when the necessary
conditions for optimality in Theorem 4.4 become sufficient as well.

Theorem 4.5. (Sufficient optimality conditions for relaxed control) Assume that (H4) hold. Given
q· ∈ R, let (yq, Y q, Zq) and (Φq

t , Ψq
t , Σq

t , Πq
t ) be the corresponding solutions of the MF-FBSDEs (4.1) and

(4.28) respectively. Suppose that α, β, ℓ and the function H(t, ·, ·, ·, ·, qt, Φq
t , Ψq

t , Σq
t , Πq

t ) are convex.
Then (yq

· , Y q
· , Zq

· , q·) is an optimal solution of the control problem (4.1)–(4.3) if it satisfies (4.29).

Proof. Let q· ∈ R be arbitrary (candidate to be optimal), and let (yq
· , Y q

· , Zq
· ) denote the trajectory

associated to q·. For any µ· ∈ R with associated trajectory (yµ
· , Y µ

· , Zµ
· ), we have

J(µ·)− J(q·) = E
[
α(yµ

T ,E[yµ
T ])− α(yq

T ,E[yq
T ])

]
+ E

[
β(Y µ

0 ,E[Y µ
0 ])− β(Y q

0 ,E[Y q
0 ])

]

+ E
[ ∫ T

0

( ∫

U

ℓ(t, yµ
t ,E[yµ

t ], Y µ
t ,E[Y µ

t ], Zµ
t ,E[Zµ

t ], u)µt(du)

−

∫

U

ℓ(t, yq
t ,E[yq

t ], Y q
t ,E[Y q

t ], Zq
t ,E[Zq

t ], u)qt(du)
)
dt

]
.

Since α and β are convex, we get

α(yµ
T ,E[yµ

T ])− α(yq
T ,E[yq

T ]) ≥ 〈αy(yq
T ,E[yq

T ]), yµ
T − yq

T 〉

+E
[
〈αy′(yq

T ,E[yq
T ]),E[yµ

T − yq
T ]〉

]
,

β(Y µ
0 ,E[Y µ

0 ])− β(Y q
0 ,E[Y q

0 ]) ≥ 〈βY (Y q
0 ,E[Y q

0 ]), Y µ
0 − Y q

0 〉

+E
[
〈βY ′(Y

q
0 ,E[Y q

0 ]),E[Y µ
0 − Y q

0 ]〉
]
.

Thus

J(µ·)− J(q·) ≥ 〈αy(yq
T ,E[yq

T ]), yµ
T − yq

T 〉+ E
[
〈αy′(yq

T ,E[yq
T ]),E[yµ

T − yq
T ]〉

]

+ 〈βY (Y q
0 ,E[Y q

0 ]), Y µ
0 − Y q

0 〉+ E
[
〈βY ′(Y

q
0 ,E[Y q

0 ]),E[Y µ
0 − Y q

0 ]〉
]

+ E
[ ∫ T

0

( ∫

U

ℓ(t, yµ
t ,E[yµ

t ], Y µ
t ,E[Y µ

t ], Zµ
t ,E[Zµ

t ], u)µt(du)

−

∫

U

ℓ(t, yq
t ,E[yq

t ], Y q
t ,E[Y q

t ], Zq
t ,E[Zq

t ], u)qt(du)
)
dt

]
.

Therefore after recalling also (4.28) one gets

J(µ·)− J(q·) ≥ E
[
〈Φq

T , yµ
T − yq

T 〉
]

−E
[
〈hy(yq

T ,E[yq
T ])Ψq

T + E
[
hy′(yq

T ,E[yq
T ])E[Ψq

T ]
]
, yµ

T − yq
T 〉

]

+ E
[
〈Ψq

0, Y µ
0 − Y q

0 〉
]

+ E
[ ∫ T

0

( ∫

U

ℓ(t, yµ
t ,E[yµ

t ], Y µ
t ,E[Y µ

t ], Zµ
t ,E[Zµ

t ], u)µt(du)

−

∫

U

ℓ(t, yq
t ,E[yq

t ], Y q
t ,E[Y q

t ], Zq
t ,E[Zq

t ], u)qt(du)
)
dt

]
. (4.31)

Applying Itô’s formula to 〈Φq
t , yµ

t − yq
t 〉 and 〈Ψq

t , Y µ
t − Y q

t 〉 , we obtain

E
[
〈Φq

T , yµ
T − yq

T 〉
]

= E
[ ∫ T

0

〈Φq
t ,

∫

U

b(t, yµ
t ,E[yµ

t ], u)µt(du)

−

∫

U

b(t, yq
t ,E[yq

t ], u)qt(du)〉dt
]

+E
[ ∫ T

0

〈Σq
t , σ(t, yµ

t ,E[yµ
t ])− σ(t, yq

t ,E[yq
t ])〉 dt

]

−E
[ ∫ T

0

〈Hy(t, ζq
t , qt, χq

t ) + E[Hy′(t, ζq
t , qt, χq

t )], yµ
t − yq

t 〉dt
]
, (4.32)
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and

E
[
〈Ψq

0, Y µ
0 − Y q

0 〉
]

= E
[
〈Ψq

T , Y µ
T − Y q

T 〉
]

− E
[ ∫ T

0

〈HY (t, ζq
t , qt, χq

t ) + E[HY ′(t, ζq
t , qt, χq

t )], Y µ
t − Y q

t 〉dt
]

+ E
[ ∫ T

0

〈Ψq
t ,

∫

U

f(t, yµ
t ,E[yµ

t ], Y µ
t ,E[Y µ

t ], Zµ
t ,E[Zµ

t ], u)µt(du)

−

∫

U

f(t, yq
t ,E[yq

t ], Y q
t ,E[Y q

t ], Zq
t ,E[Zq

t ], u)qt(du)〉dt
]

− E
[ ∫ T

0

〈HZ(t, ζq
t , qt, χq

t ) + E[HZ′(t, ζq
t , qt, χq

t )], Zµ
t − Zq

t 〉dt
]

+ E
[ ∫ T

0

〈Ψq
t , g(t, yµ

t ,E[yµ
t ], Y µ

t ,E[Y µ
t ], Zµ

t ,E[Zµ
t ])

− g(t, yq
t ,E[yq

t ], Y q
t ,E[Y q

t ], Zq
t ,E[Zq

t ])〉dt
]
. (4.33)

From the convexity of h we have

E
[
〈Ψq

T , Y µ
T − Y q

T 〉
]

= E
[
〈Ψq

T , h(yµ
T ,E[yµ

T ])− h(yq
T ,E[yq

T ])〉
]

≥ E
[ 〈

hy(yq
T ,E[yq

T ])Ψq
T + E

[
hy′(yq

T ,E[yq
T ])E[Ψq

T ]
]
, yµ

T − yq
T

〉 ]
. (4.34)

Replacing (4.32) and (4.33) in inequality (4.31) and using (4.34), we get

J(µ·)− J(q·) ≥ E
[ ∫ T

0

(
H(t, ζq

t , µt, χq
t )−H(t, ζq

t , qt, χq
t )

)
dt

− E
[ ∫ T

0

〈Hy(t, ζq
t , qt, χq

t ) + E[Hy′(t, ζq
t , qt, χq

t )], yµ
t − yq

t 〉dt
]

− E
[ ∫ T

0

〈HY (t, ζq
t , qt, χq

t ) + E[HY ′(t, ζq
t , qt, χq

t )], Y µ
t − Y q

t 〉dt
]

− E
[ ∫ T

0

〈HZ(t, ζq
t , qt, χq

t ) + E[HZ′(t, ζq
t , qt, χq

t )], Zµ
t − Zq

t 〉dt
]
. (4.35)

On the other hand, by the convexity of H(t, y, y′, Y, Y ′, Z, Z ′, q, Φ, Ψ, Σ, Π) in (y, y′, Y, Y ′, Z, Z ′) and its
linearity in q, then by using the clarke generalized gradient of H evaluated at (y, y′, Y, Y ′, Z, Z ′), we
obtain

H(t, ζq
t , µt, χq

t )−H(t, ζq
t , qt, χq

t ) ≥ Hy(t, ζq
t , qt, χq

t )
(
yµ

t − yq
t

)

+ E
[
Hy′(t, ζq

t , qt, χq
t )E[yµ

t − yq
t ]

]
+ HY (t, ζq

t , qt, χq
t )

(
Y µ

t − Y q
t

)

+E
[
HY ′(t, ζq

t , qt, χq
t )E[Y µ

t − Y q
t ]

]
+ HZ(t, ζq

t , qt, χq
t )

(
Zµ

t − Zq
t

)

+E
[
HZ′(t, ζq

t , qt, χq
t )E[Zµ

t − Zq
t ]

]
.

Therefore, applying this inequality in (4.35) gives

J(µ·)− J(q·) ≥ 0, ∀µ ∈ R.

The theorem is proved. �

4.2. Necessary and Sufficient optimality conditions for strict control

In this part, we shall derive necessary and sufficient optimality condition for strict control problem
and shows that it follows from the relaxed one. This strict control problem is driven by the following



Stochastic Optimal Control for Dynamics of FBDSDEs of mean-field Type 25

MF-FBDSDE





yv
t = x +

∫ t

0 b(s, yv
s ,E[yv

s ], vs)ds +
∫ t

0 σ(s, yv
s ,E[yv

s ])dWs

Y v
t = h(yv

T ,E[yv
T ]) +

∫ T

t
f(s, yv

s ,E[yv
s ], Y v

s ,E[Y v
s ], Zv

s ,E[Zv
s ], vs)ds

+
∫ T

t
g(s, yv

s ,E[yv
s ], Y v

s ,E[Y v
s ], Zv

s ,E[Zv
s ])
←−
dBt −

∫ T

t
Zv

s dWs,

(4.36)

and the functional cost to be minimize over the set of strict controls U is given by

J(v·) := E
[
α (yv

T ,E [yv
T ]) + β (Y v

0 ,E [Y v
0 ])

+
∫ T

0
ℓ
(
t, yv

t ,E [yv
t ] , Y v

t ,E [Y v
t ] , Zv

t ,E [Zv
t ] , vt

)
dt

]
.

(4.37)

We say that a strict control u· is an optimal control if

J(u·) = inf
v·∈U

J(v·). (4.38)

We denote by

R
δ = {µ· ∈ R/ µ = δv : v ∈ U},

the set of all relaxed controls in the form of Dirac measure charging a strict control. Denote by P (U δ)
the action set of all relaxed control Rδ.

4.2.1. Necessary optimality conditions for strict control. Define the Hamiltonian H in the strict control
problem from

[0, T ]× R
n × R

n × R
m × R

m × R
m×d × R

m×d × U × R
m × R

n × R
m×l × R

n×d,

to R by

H(t, y, y′, Y, Y ′, Z, Z ′, v, Φ, Ψ, Σ, Π) := +Φb(t, y, y′, v) + Σσ(t, y, y′)

+Ψf(t, y, y′, Y, Y ′, Z, Z ′, v) + Πg(t, y, y′, Y, Y ′, Z, Z ′, v)

+ℓ(t, y, y′, Y, Y ′, Z, Z ′, v). (4.39)

Theorem 4.6. (Necessary optimality conditions for strict control.) Let u· ∈ U an optimal strict control.
Let (yu, Y u, Zu) be the associated solution of MF-FBDSDE (4.36). Then there exists a unique solution
(Φu, Ψu, Σu, Πu) of the following adjoint equations of MF-FBDSDE (4.36):





dΦu
t = −

(
Hy(t, ζu

t , ut, χu
t ) + E

[
Hy′(t, ζu

t , ut, χu
t )

])
dt + Σu

t dWt,
dΨu

t =
(
HY (t, ζu

t , ut, χu
t ) + E

[
HY ′(t, ζu

t , ut, χu
t )

])
dt

+
(
HZ(t, ζu

t , ut, χu
t ) + E

[
HZ′(t, ζu

t , ut, χu
t )

])
dWt −Πu

t

←−
dBt,

Ψu
0 = βY (Y u

0 ,E[Y u
0 ]) + E

[
βY ′(Y u

0 ,E[Y u
0 ])

]
,

Φu
T = αy(yu

T ,E[yu
T ]) + E

[
αy′(yu

T ,E[yu
T ])

]

+hy(yu
T ,E[yu

T ])Ψu
T + E

[
hy′(yu

T ,E[yu
T ])E[Ψu

T ]
]
,

(4.40)

such that

H(t, yu
t ,E[yu

t ], Y u
t ,E[Y u

t ], Zu
t ,E[Zu

t ], ut, Φu
t , Ψu

t , Σu
t , Πu

t )

≤ H(t, yu
t ,E[yu

t ], Y u
t ,E[Y u

t ], Zu
t ,E[Zu

t ], vt, Φu
t , Ψu

t , Σu
t , Πu

t ), a.e. t, P -a.s., ∀v ∈ U,

(4.41)

where (t, ζu
t , ut, χu

t ) := (t, yu
t ,E[yu

t ], Y u
t ,E[Y u

t ], Zu
t ,E[Zu

t ], ut, Φu
t , Ψu

t , Σu
t , Πu

t ).
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Proof. Note that the strict u· embedded into the space V in the sense that u· is corresponding with
the Dirac measure λu·

(dt, da) = δu·
(du) with the propriety: For any bounded and uniformly continuous

function ~(t, y, y′, Y, Y ′, Z, Z ′, u) we have

~(t, y, y′, Y, Y ′, Z, Z ′, ut) =

∫

U

~(t, y, y′, Y, Y ′, Z, Z ′, u)δut
(du)

:= ~̂(t, y, y′, Y, Y ′, Z, Z ′, λu). (4.42)

From the necessary optimality condition for relaxed controls (Theorem 4.4), there exist a unique solution
(Φq

t , Ψq
t , Σq

t , Πq
t ) of (4.28) such that

H(t, yq
t ,E[yq

t ], Y q
t ,E[Y q

t ], Zq
t ,E[Zq

t ], qt, Φq
t , Ψq

t , Σq
t , Πq

t )

≤ H(t, yq
t ,E[yq

t ], Y q
t ,E[Y q

t ], Zq
t ,E[Zq

t ], µt, Φq
t , Ψq

t , Σq
t , Πq

t ), a.e. t, P -a.s., ∀µ ∈ R,

and since Rδ ⊂ R we have

H(t, yq
t ,E[yq

t ], Y q
t ,E[Y q

t ], Zq
t ,E[Zq

t ], qt, Φq
t , Ψq

t , Σq
t , Πq

t )

≤ H(t, yq
t ,E[yq

t ], Y q
t ,E[Y q

t ], Zq
t ,E[Zq

t ], µt, Φq
t , Ψq

t , Σq
t , Πq

t ), a.e. t, P -a.s., ∀µ ∈ R
δ.

(4.43)

Using the fact that if µ ∈ Rδ, then there exist vt ∈ U δ ⊂ U such that µ = δv, and if the optimal relaxed
control qt(du) = δut

(du) with ut an optimal strict control, then we can show that

(yq
t , Y q

t , Zq
t ) = (yu

t , Y u
t , Zu

t ), (yµ
t , Y µ

t , Zµ
t ) = (yv

t , Y v
t , Zv

t ),

(Φq
t , Ψq

t , Σq
t , Πq

t ) = (Φu
t , Ψu

t , Σu
t , Πu

t ), (Φµ
t , Ψµ

t , Σµ
t , Πµ

t ) = (Φv
t , Ψv

t , Σv
t , Πv

t ),

H(t, yq
t ,E[yq

t ], Y q
t ,E[Y q

t ], Zq
t ,E[Zq

t ], qt, Φq
t , Ψq

t , Σq
t , Πq

t )

= H(t, yu
t ,E[yu

t ], Y u
t ,E[Y u

t ], Zu
t ,E[Zu

t ], ut, Φu
t , Ψu

t , Σu
t , Πu

t ),

H(t, yµ
t ,E[yµ

t ], Y µ
t ,E[Y µ

t ], Zµ
t ,E[Zµ

t ], µt, Φµ
t , Ψµ

t , Σµ
t , Πµ

t )

= H(t, yv
t ,E[yv

t ], Y v
t ,E[Y v

t ], Zv
t ,E[Zv

t ], vt, Φv
t , Ψv

t , Σv
t , Πv

t ). (4.44)

Using (4.42) and (4.43) we get (4.41). The proof is completed. �

4.2.2. Sufficient optimality conditions for strict control. We shall try to shows if the necessary optimality
conditions (4.41) for strict control problem {(4.36), (4.37), (4.38)} becomes sufficient.

Theorem 4.7. (Sufficient optimality conditions for strict control.) Assume that the functions α, β, ℓ
and H(t, ·, ·, ·, ·, ut, Φu

t , Ψu
t , Σu

t , Πu
t ) are convex. Then (yu

· , Y u
· , Zu

· , u·) is an optimal solution of the strict
control problem {(4.36), (4.37), (4.38)} if it satisfies (4.41).

Proof. Let ut be an arbitrary element of U δ such that the necessary optimality conditions for strict
control (4.41) hold, i.e.

H(t, yu
t ,E[yu

t ], Y u
t ,E[Y u

t ], Zu
t ,E[Zu

t ], ut, Φu
t , Ψu

t , Σu
t , Πu

t )

≤ H(t, yu
t ,E[yu

t ], Y u
t ,E[Y u

t ], Zu
t ,E[Zu

t ], vt, Φu
t , Ψu

t , Σu
t , Πu

t ), a.e. t, P -a.s., ∀v ∈ U
δ,

and by applying the embedding mentioned in (4.42), one can show that

H(t, yq
t ,E[yq

t ], Y q
t ,E[Y q

t ], Zq
t ,E[Zq

t ], qt, Φq
t , Ψq

t , Σq
t , Πq

t )

≤ H(t, yq
t ,E[yq

t ], Y q
t ,E[Y q

t ], Zq
t ,E[Zq

t ], µt, Φq
t , Ψq

t , Σq
t , Πq

t ), a.e. t, P -a.s., ∀µ ∈ R
δ.

Thus by sufficient optimality conditions for relaxed control (Theorem 4.5) we have

J(q·) = inf
µ

·
∈Rδ

J(µ·),
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and from the fact that the optimal relaxed control is a Dirac measure charging in optimal strict control
(qt(du) = δut

(du)) and by using (4.44), we can show that

J(u·) = inf
v·∈Uδ

J(v·).

The prove is completed. �
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