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ABSTRACT: In this paper we establish in first the existence of strong optimal solutions of a control problem
for dynamics driven by a linear forward-backward doubly stochastic differential equations of mean-field type
(MF-FBDSDESs), with random coefficients and non linear functional cost. Moreover, we establish necessary
as well as sufficient optimality conditions for this kind of control problem. In the second part of this paper,
we establish necessary as well as sufficient optimality conditions for existence of both optimal relaxed control
and optimal strict control for dynamics of nonlinear forward-backward doubly SDEs of mean-field type.
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1. Introduction

The problem of existence of optimal controls for various control systems is a fundamental problem
in stochastic optimal control theory. Also to establish the existence conditions of an optimal control,
which labeled necessary and sufficient conditions for optimality, is one of the important subjects which
has attracted comprehensive attention in the past years. Stochastic optimal control of mean-field type
recently are extensively studied, due to their applications in economics and mathematical finance. In
2009, Buckdahn et al. [6] established the theory of mean-field backward stochastic differential equations
which were derived as a limit of some highly dimensional system of FBSDEs, corresponding to a large
number of particles. Since that, many authors treated the system of this kind of Mckean-Vlasov type
(see [15] and [1]). As it is well-knew that the adjoint equation of a controlled SDEs of mean-field type
is a backward-SDEs of mean-field type, the maximum principle for optimal control systems of mean-field
type (MF-SDEs, MF-BSDEs and MF-FBSDESs) has becomes popular topic. In this regard, Carmona and
Dularue proved in [7] the existence of solution for mean-field FBSDEs systems. One can refer to [[2], [5],
[16], [12] and [14]] for more result on the maximum principles for different types of mean-field systems.
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Mathematical mean-field approaches play a crucial role in diverse areas, such as physics, economics,
finance and games theory, see Lasry and Lions [15], Dawson [8] and Huang et al. [13]. In the other hand,
the existence of optimal relaxed controls and optimal strict controls for systems of mean-field forward
backward stochastic differential equations has been proved by Benbrahim and Gherbal [4], where the
diffusion is controlled. The existence of relaxed solutions to mean field games with singular controls has
been proved by Fu and Horst in [10]. The authors proved approximations of solutions for a particular
class of mean field games with singular controls and relaxed controls by solutions for mean field games
with purely regular controls, on the space of cadlag functions equipped with the Skorokhod M1 topology.
Wu and Liu [17] proved existence and uniqueness of solutions for systems of backward doubly SDEs
driven by It6-Levy processes of mean field type and they established necessary and sufficient optimality
conditions for partial information optimal control problems of BDSDEs driven by Ito-Levy processes of
mean field type. See also in Xu [18] an existence and uniqueness result of the solutions to mean field
BDSDESs with locally monotone coefficients and globally monotone coefficients is established and gives
the probabilistic representation of the solutions for a class of stochastic partial differential equations by
virtue mean field BDSDEs.

Recently, Al-Hussein and Gherbal, [3], established the existence and uniqueness of the solutions of
multidimensional forward-backward doubly SDEs with random jumps. For systems of forward-backward
doubly SDEs of mean field type, Zhu and Shi [19] proved an existence and uniqueness result for measurable
solutions by means of a method of continuation. They given also the probabilistic interpretation for the
solutions to a class of nonlocal stochastic partial differential equations (SPDEs) combined with algebra
equations.

In this work, we consider a control problem for systems governed by the following FBDSDE of mean
field type

dyy = b(t,yi', Elyy'], ue)dt + o (t, yi', Elyt'], ue ) dW;

ay = —f(t,yg‘,E[y}f], Yiqu[Y;,u]’ ngE[Ztu]vut)dt — (1 1)
_g(tv y?v E[y;}’], mua E[Y;u]’ ng E[Ztu]’ ut)dBt + ngWt

vy =z, Y = h(y$, Elyt]), t€0,T],

Brownian motions, defined on a probability space (€2, F,P), taking their values respectively in R% and in
R!, and u. represents a strict control.

The integral with respect to By is a backward It6 integral, while the integral with respect to Wy is a
standard forward It6 integral.

We consider a functional cost to be minimized, over the set of strict controls, as the following:

where b, 0, f,g and h are given functions, (W;)s>0 and (Bs)s>o be two mutually independent standard
t

J(u) =E[a (yhEys]) + B EYED + fy £ty Elyi], Y BV, 20 B(Z0] w)dt],  (1.2)

where «a, f and ¢ are appropriate functions.

The considered system and the cost functional, depend on the state process, and also on the distri-
bution of the state process.

One of our main aims in this paper is to prove existence of strong optimal control (that is adapted to
the initial o-algebra) for systems governed by a linear FBDSDEs of mean-field type. Also we establish
necessary as well as sufficient optimality conditions for a strict control problem. In the second part
of this paper, we establish necessary as well as sufficient optimality conditions for both relaxed and
strict control problems for systems driven by nonlinear mean-field forward-backward doubly stochastic
differential equations.

The paper is organized as follows. In Section 2, we present and prove the first main result concerning
the existence of strong optimal strict controls for linear MF-FBDSDEs. Section 3, is devoted to derive
necessary and sufficient conditions of optimality for this kind of control problem of linear MF-FBDSDEs.
In the last section, we establish necessary as well as sufficient optimality conditions for both relaxed and
strict control problems governed by systems of nonlinear MF-FBDSDEs.
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2. Existence of a strong optimal control for a linear MF-FBDSDEs

In this section, we prove the existence of a strong optimal strict control which is adapted to the initial
o-algebra, under the convexity of the cost functions and the action space U .

2.1. Formulation of the problem and assumptions

Let (2,7, P) be a complete probability space. Let (W;):e0,7) and (B¢)e[o,7] be two Brownian motions
valued in R? and R! respectively, defined on this space.

Let N denote the class of P-null sets of F. For each ¢ € [0,T], we define F;, = F}V v FPp., where for
any process {0;}, we set F3, = 0 (6, — 6558 <7 < t) VN, F) = F .

Note that the collection {F¢, ¢ € [0, T} is neither increasing nor decreasing, then it does not constitute
a classical filtration.

Given £ a square integrable and Fp-measurable process, x a square integrable and Fp-measurable pro-
cess and for any admissible control u, we consider a control problem governed by the following controlled
linear MF-FBDSDE

dyy = b(t, yy', ]E[yi‘], ug)dt + o(t, yi', E[yly]’ up)dW;
—g(t, v, Blyy'], Vi, B[V, Zy B[ Z}], w)dBe + Zy'dWr,
yff =z, Yr = h(y’?“v]E[y%])v
with
b(tvy;LvE[y;L]vut) = aty;,l +at]E [y;,l] + btuta

oty Blyt], ue) = iyt + &E [y2] + beus,

Pt it Blyp), Y EY], Z1 B2 w) = dugit + GE ] + eV + GE[Y)]
+ZE + FE[ZY] 4 giue,

+mi Z 4+ B [ 2] + grug,

h(yt, Elyp]) =&,

and a cost functional:
J(u.) = E[a (y% E[y4]) + 8 (Y¢, EYQ]) + fo £(t 2 Elye], Y B[YE], Z0 BIZ2] u)dt],  (2.2)

where a.,a., b.,g., c.,c,d., c/l\., e,e,f., f,g.,ﬁ., h.,TL., k;.,E.,m. and m. are matrix-valued functions of suit-
able sizes. The solution (y.,Y., Z.) takes values in R” x R™ x R™*4 and . is the control variable values
in subset U of R*. «a, 3,/ are a given functions define by

£:[0,T] x R™® x R x R™ x R™ x R™*4 x R™*4 x I - R,
a:R" xR" = R,
B:R™ xR™ = R.

Definition 2.1. An admissible control u. is a square integrable, Fy-measurable process with values in
some subset U C R*. We denote by Uy, the set of all admissible controls.

Note that we have an additional constraint that a control must be square-integrable just to ensure
the existence of solutions of (2.1) under u.. We say that an admissible control «* € Uz is an optimal
control if

J(w) = inf J(v.). (2.3)

v.eUr
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The following notations are needed
8Z (0,T;R™) : the set of process 7., Fi-adapted with values in R™ such that

T
E[/ |7Tt|2dt] < o0,
0

MZ (0, T;R™) : the set of process 7., F-adapted and R"-valued continuous processes such that

E[ sup [n,|*] < o0,
0<t<T

Uy & {v. € 8% (O,T;Rk) /v €U aet €[0,T],P— a.s.}.
We shall consider in the first part of this paper, the following assumptions

(H1) : the set U C R* is convex and compact and the functions ¢, & and 3
are continuous, bounded and convex,

(H2) : atvatvbta/b\tacta/c\tadtagi\taeta/e\tvfta ftvgta/g\ta ht,ﬁt, k; and /];t are bounded by A > 0 and my, m; are
bounded by v € ]0, % [ That is:

A £ sup |, (w)] and v £ sup oy (w)],
t,w t,w

where ¢, (W) = ag, at, by, by, ¢, T, dy, i,y e, €4, fos [ty Ges Ges Pty By By By and op = my, my.

Proposition 2.2. Under assumptions (H2) the system of linear FBDSDE of mean-field type (2.1), has
a unique strong solution.

Proof. The proof of this proposition is established in Zhu and Shi [19], by using a method of continuation,
and the fact that our system (2.1) is a special case of the one given in [19]. O

Remark 2.3. A special case is that in which both «, § and ¢ are convex quadratic functions. The control
problem {(2.1),(2.2),(2.3)} is then reduced to a stochastic linear quadratic optimal control problem.

2.2. Existence of a strong optimal control

The following theorem confirms the existence of a strong optimal solutions for the control problem

{(2.1), (2.2), (2.3)).

Theorem 2.4. Under either (H1) — (H2), if the strict control problem {(2.1), (2.2),(2.3)} is finite, then
it admits an optimal strong solution.

Proof. Assume that (H1)-(H2) holds. Let (u™) be a minimizing sequence, i.e.,

lim J(u) = inf J(v.).

n—00 v.€UL

With associated trajectories (y,““,y,“fl, Z.u"n) satisfies the linear FBDSDE of mean-field type (2.1).

From the fact that U is a compact set, there exists a subsequence (which is still labeled by (u"),,~,)
such that B

u™ — 7., weakly in 8% ([0, T];R¥).

Applying Mazur’s theorem, there is a sequence of convex combinations

U" =3 00w (with 6, >0, and Y 0,, =1),
7>0 720
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such that
U" — . strongly in 8% ([0, T];RF). (2.4)

Since the set U C Rk is convex and compact, it follows that @w. € Uy,.

Let (y” Y Z "y and (y®, Y, Z%) be the solutions of the lincar MF-FBDSDE (2.1), associated
with U™ and u. rebpectlvely ie.,

dy?n = (atyt + Clt]E[ ] + btUt )dt + (Ctyt + Ct]E[ ] +/b\t[7tn)th

ayy = (dtyt +th[yt ]—l—eth —I—etE[Yt N]+ftZtU'n~+ﬁE[ZtU'n]~+gtﬁﬁ)dt
—(htyt "+ hE[y ]+th +ktE[ T+ mez! + mEZY

+gtU )dBt+Z th,

(2.5)

’(\]/."L ’(\]/."L
Yo = 7T, YT = fa

and
dyt = (atytﬂ' + @By ] + by ) dt + (ctytﬂ' + GE[y"] +3tﬂt)th

(htyt + htE[yt ]+ ktg‘ + ktIE[Y“ ]+ th 4 mt]E[Z 1
—|—gtut)dBt + Zt th,

v =Yy =&
Then let us prove

T~ T
(yg ,YtU' ; zy dWy) converges strongly to (yf,Y}“,/ Z%dWy), (2.7)
0 0

in M3 ([0, T); R™*™) x 83 ([0, T]; R™*4) .
Firstly, we have

~ t
s _
(sup lys —y2 %) S/ (Jas|*( sup. Iyr —y )+|asl2E[ sup Iyr Ak
0<s<t 0 o<r

+|b5|2|ﬁg—ﬂs| ds + sup ( ‘/ cs(y . —ysﬂ)

0<s<t

n

+E(Elys — y™]) + bs(UL —a,))dW; )2,

using the Burkholder-Davis-Gundy inequality to the martingale part, we can show

t ~ t
E| bup |yg —y?'ﬂ SK/ E[ sup y —yf‘ﬂds—FK’E[/ |[78"—ﬂ5|2ds}.
0<s< 0 0<r<s 0

Applying Gronwall’s lemma and using (2.4), we get

lim E[ sup |y£]n —yrP] =o. (2.8)
n—oo 0<s<T
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2

Secondly, applying It6’s formula to YtU'n - Yf' and taking expectation, we get

IN

e T ~n —
E[ sup v, —Yf'FHE[/ 12" — Z%|2ds]
0<t<T 0

T 7 ~n — o~ ~n — ~n —
2E [ / V7 YE oy —yT) + dEy —yT] e (Y — Y
t

Ve Y =Y+ (28 = 75+ REZY - 28] + g (U7 —u,))ds]

n

T ~ ~
+E[ / hs(ys” —y™) + hElys” — g% + ko (Y — YY)
0

FREY —YE 4+ my(28 = Z0) + m B2 — 25 + (U2 —u,)|*ds).

According to the assumption (H2) and by using the Young’s formula, we obtain

~ T —~
E[ sup [V, — Y72 +E[ / |2 — 77| %ds]
0<t<T 0

]. T In _ T ~. _ ~ B
< p—E[/ v - Y 2ds] +14p1)\2E[/ (W —yF P+ Y —yEp
1 0 0

~ _ 1 ~ T o u
—|—||ZSU' - Zg,”? + §|U:l —ﬂs|2)d3] + IOAQE[/ (|yg _yg.|2
0
n _ 1 ~ 9 2 T un . |12
+|Y9 ’ _Ysu.|2+ §|Usn _ﬂs| )ds} + 4~y E[/ ||Z9 - Z:H ds]
0

5Ny T o - on - o -
20 [ (" - P B - P T v
P2 0

FE[V = Y2 U7 — ) ds]

T -~ _
ur . ur .
200 [ (1257 - 2P + B2 - ZF )],
and therefore

N"L — T N’V'L J—
B sup v~ v P] B[ [ 2 - 25 |Pds]
0<t<T 0

1 10\ T o0 oa
< (= 4 14p 3% + 1002 + —V)E[/ v - Y ds]
P1 P2 0

T -
+(14p1)\2+4’yz+4p2/\7)E[/ 127~ 77 |2ds)
0

10 T o g
F(14p, A2 + 1002 + %)E[/ lys" — T [2ds]
2 0

5\ T
+(7Tp A2 + 502 + J)JE[/ U™ — | 2ds].
P2 0
Choosing
1—442 1—442 1
p1= J >0 and py = i > 0 because 0 < vy < —,

28)\? 12\ 2
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the previous inequality becomes

~ _ T ~. _ T ~. _
E[ sup [¥7" — Y7 2] + E| / 120" — 27 |2ds] < oE] / Yy s

0<t<T
T n _ T _
Bl [ - Pas] + wB] [ 107~ ), (29)
0 0
where
1 —4~2
m=—g—>0
2802 1 — 442 , 120 (\9)?
= 102+ =2 >0
Po=q gt TN 20
1— 472 s 120 (M)
[y = +10M + —"2 >0,
’ 1— 442
1492, 60(\)°
py = ——— + 533+ —2L >,
4 4 1 — 42
We derive two inequalities from (2.9),
G T a
B sup [ - Y7 ] < B[ [ v v s
0<t<T 0
T ﬁ" _ T
4B [~y Pas] + B[ [ 107 - s, (2.10)
0 0

and

T ~ _ T - B
mE[ [ 127 - 2T Pds]) < B[ [ 7 - vE P
0 Toon i) T
+”3E[/ v~y s +“4E[/ U2~ [2ds). (2.11)
0 0

Using Burkholder-Davis-Gundy’s inequality, applying Gronwall’s lemma to (2.10) and passing to the limit
as n — 0o, and using the convergence (2.4) and (3.5), we obtain

lim E[ sup |Yo — Y™ 2] =0. (2.12)
n—o0 0<s<T

Then, one can shows directly from (2.4),(2.8) and (2.11) that
T ~"L —
IE[/ ||ZSU — Z¥||*ds] — 0, as n — oo,
0

which gives the result by applying the isometry of Ito.
Finally, let us prove that @. is an optimal control. Using the continuity of functions «, 8 and ¢, we get

J(@) =Ela (;,g-,]E {yﬂ) +8 (Yoﬂ',]E {YOE-D
+ ety R yf} Y™ E [Yf' 7% E [Zﬂ ;) dt]
= nlLII;OE [a <y75“.n JE [yg." + 5 (Yoan JE Yoﬁ.n:| >

ur

i el w7 | Y T 2 e | 2| e
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By the convexity of «, 8 and ¢, it follows that
_ . w T wItn it Wt
0= i o o ) o (0 [ )
720
JIt+n

T Wt I ans T w
+/ é(tvyt 7]E|:yt :|7Y;‘/ 5E|:Y;‘/
0

— J+n j+n
_HILII;OZH m]] u )< lim Mam,]] u Zﬁjn— inf J(v.).

n—001<9<i,, v.€Ur
k>0 >1

J+n

} 27 E [Ztu,””} J+n)dt]

This completes the proof. O

3. Necessary and sufficient conditions for optimality

In this section, we establish necessary as well as sufficient optimality conditions for a strict control
problem driven by a linear MF-FBDSDE. In this end, we use the convex perturbation method because
the domain of control U is convex.

Let (@.,y", Y™, Z") be the optimal solution of the control problem {(2.1),(2.2),(2.3)} obtained in
section 2. Let us define the perturbed control as follow: for each admissible control v.

uy = +e (v — ),

where, £ > 0 is sufficiently small.

It’s clear that u® is admissible control and let (yf‘E,Yf‘E, Zt"‘g) be the solution of (2.1) corresponding
to uf.

The necessary conditions for optimality will be derived by using the optimality of @. and the following
inequality,

0 < lim™ (J (uf) — J (@)

e—=0¢g
= sll_rg%é J@ +ew —u))—-J@))
=({J (u),v.—u).

Considering in this section the following assumptions
(H3) (Regularity conditions)

(7) the function ¢ is continuously differentiable with respect to
(y,v',Y,Y', Z,Z' v), and the mappings o and 3 are continuously
differentiable with respect to (y,y’) and (Y,Y”), respectively,
(7i) the derivatives of ¢, o, § with respect to their arguments are bounded.

The second main result in this paper, is the following

Theorem 3.1. (Necessary and sufficient conditions for optimality). Let u. be an admissible control
(candidate to be optimal) with associated trajectories (y*, Y™, Z%). Then . is an optimal control for the
strict control problem {(2.1), (2.2), (2.3)}, if and only if, there exists a unique solution (®*, W™ X" II*)
of the following adjoint equations of the MF-FBDSDE (2.1),

40} = (36, (4.GF T ) + EIH (667 T )])dt — SFdws,

Ct 7ut7Xt )])dt
¢
) +E[Hyz (t T\ )])th — ¥dB,, (3.1)

”ﬁl/ N

AU = (3y (t @, ?) +E[Jy
(t Ct s Uty X

o =a, (y;’?,E[y?]) +Eloy (7. ElF]))
b =By (Yo EXT) +ElBy. (Y ET),




STOCHASTIC OPTIMAL CONTROL FOR DyNAMICS OF FBDSDES OF MEAN-FIELD TYPE 9

such that
<j{v(ta Ctﬂlaﬂtvxtﬂ.)vvt - ﬂt> 2 07 VU~ S uL; a.e, as, (32)

where Ho (t, C Ty, X2 ) with w == vy,y,Y,Y', Z, Z', is the gradient

Vod(t,y By |, Y, BV, Z E[Z ], 1, @, Uy, 57 1),

(t’ Ctﬂ I ut’ Xti) = (t’ yti ? E[yta]’ }/;E ? E[-Yii]’ Zta ? E[ZF]’Et’ @ti ’ \Ilta ’ Eti ? Hta )7
and the Hamiltonian function is given by
T y,y V.Y, 2,20, 0,0, 5,10 = (W,dy +dy +e¥ + &Y + 2+ FZ + gv)
+(®, ay + Gy’ + bv) + <H,hy+ﬁy’+kY+EY’ +mZ+ffLZ’+§v>

+(Soey ey +ho) + Ly, y V.Y Z,7,0).

Proof. Our control problem is governed by a linear system, so to establish a necessary and sufficient
optimality conditions, we use the following principle: The convex optimization principle (see Ekeland-
Temam ([9], prop 2.1, p 35). Since the domain of control U is convex, the functional J is convex in .,
continuous and Gateaux-differentiable with continuous derivative J', thus, we have

(@. minimize J) < (J' (u.),v. —@.) > 0;Vov. € Up. (3.3)
Firstly, let us calculate the Gateaux derivative of J at a point . and in the direction (v. — @.), we obtain

J (@), v —w) = E[< y(WE ElF]) + Eloy (v Blyg D v — vg)]
+E[(By (3", E[Yg"])) + E[By. (Vg EYg"])], Yy — Yo*)] (3.4)

T

+E[/O< (b, €5 ) + Elly (£, CF 7)) — u )]
T

+E[/O <€Y(tthEvut) + E[ZY’(taCtﬂ"ﬂt)]’Y?' - Y;‘/E>dﬂ
T

+E| / (2t CF ) + Bl (t,CF )], 20 — Z7)df]
0

T
+]E[/ (Lot CF ), vy — W) dt].
0
The adjoint equations (3.1) can be rewritten as follows

—dP} = (Vidy + Dfap + I hy + S + £y (4, ¢ Tr)
+E[Vd + ®Fay + I hy + 56 + Ly (8, ()] ) dt — SEdW,

AUy = (\If,g‘et + Ik + £y (t, Ct ,ut) + E[(\I!“’e\t + H“kt + Uy (t, ¢ ,ut)])dt
(\I/uft + H“mt + éz(t gt ,ﬂt) + E[(\Ij“ft + Hu’f/flt + éZ/ (t gt ,Ut)])th,
—II7dB,

% = ay (v1, Elyf]) + Elay (v JE[yT])]_
U =By (Y§",E [ 1) + [Bw (Yo", E[Y])).
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From (3.1), the equality (3.4) becomes
(J'(@),v.—u)= E[@% yr — Z/zﬂ"ﬂ + E[(Wg, Yy — Yoa'>]
T
+E[/ (€y(t, ¢ ) +Ely (¢ Ty — )] (3.5)
0
T p— p— p—
+E[ / (Oy (4, ¢ ) + Elly (1, G @) Yy — Y™ )dt]
0

T
+E[/ <€Z(ta C?.’Et) + E[@Z/ (tv Ctﬂlvut)]’ ZZJ - ZtH >dt]
0

T
+E /0 (0 (8, CF ) vn — W) de].

Applying integration by part to (V¥ Y, — Y™) and (®F,y’ — y;"), passing to integral on [0,7] and
taking the expectations to deduce

T
E[(@%, g —y%)] = — [/ (U dy + OF ay + I hy + 5 ¢, + £, (¢, 7, 0,)
0
FEUT dy + @y + I by + 576 + Ly (4, ),y — i )dt]
T
+E[/ (@7, ar(yy —yi) + @By — yi ] + be(ve — ) )dt]
0

+]E[/OT<E?'aCt(ytv' —y) FGEy — yi] + be(v — w))dt], (3.6)
and
—_ _ T —_ _ —_
E[(y, Yy —Yy")] = _E[/o (U e + I ke + Ly (¢, C1, Tr)
FE[UF S, + T ke + by (4,CF 0], Y — Y ]
+E[/OT<‘I’?,dt(y? — ) + By —yi ] + e (Y - Y)
+EBY =Y+ 20 = Z0) + REZY — Z7] + ge(v — W) di]
+E[/()T<H?,ht(yt”' —y) + By — ]+ k(Y - Y
FREY = Y+ mo(ZY = Z3) + B2 — 23] 4 Gi(vp — 1) )dt]
_E[/OT@? fe+ T me + Lz (8, CF )
TR fo + T iy + L (8, G )], 20 — Z3 )] (3.7)
Combining (3.5), (3.6) and (3.7), we obtain
(J'(@),v. —u.) = E[/f@?bt FXTb A U g+ T Gr + (4, CF ), v — )Vt

On the other hand, we calculate the Gateaux derivative of 3 at a point @. in the direction (v. —u.), we
have

T T
E[/ (F (b, €O T X ) vr — )] = E[/ (BT by + ST By + UT g, + 7 G,
0 0

+€v(t, Ctﬂ N ﬂt), vy — ﬂt»dt]
— (@), v. —T0). (3.8)
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Combines (3.3) and (3.8), we get

T
(@ minimize J) < E| / (Pt (T X ) 00 — T)d] > 0, . € Up.
0

By a standard argument we get the result. O

4. Necessary and sufficient optimality conditions for both relaxed and strict control
problems for nonlinear MF-FBDSDE

In this section, we establish necessary as well as sufficient optimality conditions for both relaxed and
strict control problems driven by systems of nonlinear MF-FBDSDEs, where the action space U is not
necessary COnvex.

4.1. Necessary and sufficient optimality conditions for relaxed control problems

We start by establish necessary and sufficient optimality conditions for existence of optimal relaxed
control. Let P(U) denote the space of probability measures on B(U) equipped with the topology of weak
convergence, where U is a nonempty Borel compact subset of R*. In a relaxed control problem, the
U-valued process v; is replaced by an P(U)-valued process ¢;. Moreover, if g;(du) = d,,(du) is a Dirac
measure charging v, for each t, then we get a strict control problem as a special case of the relaxed one.

We consider a relaxed control problem governed by the following MF-FBDSDE:

dyi = [ b(t, yt' Blyi'], u) g (du)dt 4 o (t, yi', Elyy']) dW;

AY} = — [, Flt.yl Blyl), Y BV, 20 E(ZE), )y (du)dt

—glt,uf Blyt) VI EIYP) 20 BB, + 24w, oy
o ==Yy = hlyp, Elyr]), t<€[0,T],
and the functional cost is given by
J(p.) = Ela (yp, Elyr]) + 8 (V¢ E[Y5])
I L et B L) Y B, 28R 2], )y )] )
We say that a relaxed control ¢. is an optimal control if
J(g.) = inf J(u.). (4.3)

. ER

According to the fact that the set of relaxed controls is convex, then to establish necessary optimality
condition we use the convex perturbation method. Let ¢. be an optimal relaxed control with associated
trajectories (y{,Y,?, Z{) solution of the MF-FBDSDEs (4.1). Then, we can define a perturbed relaxed
control by

q; = qr +e(py — qr),

where ¢ > 0 is sufficiently small and p. is an arbitrary element of R. Denote by (yi, Y, Z5) the solution
of the system (4.1) corresponding to ¢°.
We shall consider in this section the following assumptions.

e (H4) (Lipschitz condition) 3 C > 0,0 < v < % such that YV y1, y1, y2, vh, Y1, Y, Yo, Y, Z1, 21, Z,
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Zy, u,
2 2 2
b(t, y1,y1,u) = b(t, Y2, y5,w)|” < C (lyr — 2™+ [y1 — ya]"),
2 2 2
lo(t,y1,91) — ot y2,95)|” < C (Jyr — w2l + [yh — v4l"),

2
|f(tay1ay/17Y1aY1/a Zlv Z{,U) - f(tay27yéa}/2a}/2/v ZQa Zévu)|
<C (= wel’ + Iy = wl” + V1 - Yo + Y = 3]

121 = Za|” + 121 = Z3)17),

|€(tvylvyllaY17Y17Z15 Z{vu) - é(tay%yéa}/%}/QIvZQa Zévu)|2
2 2
< C(lyr =2l + s =l + Y1 = Yol + V] = V3|
+121 — Za|? + 1121 — Z3|1),

2
|g(t7y17yiaY17Y1/7Z1aZ{)_g(tay27yévy2a}/2/7227zé)|
2 2 2 2

<C(lyr—wel™+h — "+ M = Y2" + Y] = Y3]7)
(121 = Za|1? + 1121 = Z3|).

o (H5) (Regularity conditions)

(1) the mappings b, h, o, « are bounded and continuously differentiable with
respect to (x,2’), and the functions f,¢g and 8 are bounded and continuously

differentiable with respect to (y,v’,Y,Y’, Z, Z") and (y,y’), respectively,

(7i) the derivatives of b, h, g, o, f with respect to the above arguments are
continuous and bounded,

(41) the derivatives of ¢ are bounded by C(1 + |y| + |¢'| + [Y| + |Y'| + |Z]| + | Z]),

(iv) the derivatives of « and § are bounded by C' (1 + |y| + |y'|) and
C (1+|Y|+]Y’|) respectively,

for some positive constant C.

4.1.1. The variational inequality. Using the optimality of ¢., the variational inequality will be derived
from the following inequality

0<J(¢%) = J(a)-
For this end, we need some results.

Proposition 4.1. Under assumptions (H4) — (H5), we have
s | sup 15 - 322 = (1.0
e—0 L0<t<T

limE | sup |YS — Y;ﬂ =0, (4.5)
e—0 Lo<t<T

=0. (4.6)

e—0

T
limE / | Zs — Z7|%dt
0
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Proof. We calculate E [|yf — y#|?] and using the definition of ¢f to get

t
E[ly; — y{’] < CE[/O

/bm£EMmem)
U

_/b(s v, Eyd], u) gs(du) ds}

2

+Ce’E| ds|

/b S ysa :us du /b S ys? )qG(du)

+CE| / o (5,95, E[y2]) — o (5,52, E [y])[ ds].

Since b and o are uniformly Lipschitz and b is bounded, we can show

t
E [ly; —yil*] < C]E[/O lys — y2|*ds] + Ce>.

Applying Granwall’s lemma and Burkholder-Davis-Gundy inequality, we get (4.4).
On the other hand, applying 1t6’s formula to (Y5 — Y,7)?, taking expectation and applying Young’s
inequality, to obtain
T
|z - zapas
t

T T
/ |Ys€ - qu|2ds + GE[/
t t
2

/fS%E%‘WﬂmmﬁﬂwﬂMMM>m

E[|YE - Y] +E < E [|h(y5, Ely5]) — h(y%, Ely4])?]

1
g
*

/f@ﬁﬂ%hﬁﬂ%%%ﬂwﬂwﬁwo
U

T
+M/|Mm@M@J§Mﬁhﬁﬂww
t
—g (Saygv]E[yg] a}/san [Yrsq] aZgaE [Zg])|2 dS]

Using the definition of ¢, we obtain

T
/Hﬁ—ﬂww
t
T
— S
/Iﬁ y[2d
t

T
Af@@EMHQEWL£EMJW%Mw

E[|YE - Y] +E < E [|h(y5, Ely5]) — h(y%, Ely4])?]

1
g
*9

+CO*E|

2

/fS%, Y E[YE], 22 B (28], u) gp(du)| ds

+COE[

Uf(S,yi,]E[yi],Yf,E[}/:],Z:,]E[ZE] )q‘?(du)

2

_Af(sayng[yg] ’qu’E[qu] ’ZE’E[ZE] ’u) qS(du) ds}

T
+B[ [ 19 (5.0t B[] Y2 B V] 25 E(22)
t

—g(s,yLE[y?) , YLE[YI], 22, E[Z9)[ ds).
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Since f and h are uniformly Lipschitz with respect to their arguments, we have

T
/ |Ys€ - qu|2ds
t

T
/ 122 — z9)ds
t

E[[Y, Y] +E

T
/ |25 — 29)2ds | < (% +2C0 + 20)E
t

+(2C0 +2v)E + ¢,

where
T
¢; = 2CE [|y7 — yL ] + (2C0 + 2C)IE3[/ lys — yi|?ds| + Ceb”.
t

From (4.4) we can show that

i =0
Choose § = ==1 > 0, thus 200 + 2v = 27 + 2y = 1+27 < 1, so the inequality (4.7) becomes

T
122 - zipas| < ce
t

we derive from this inequality, two inequalities

T
E [|vF - v{[*] + / Y5 - YiPds
t

1-2
TW]E + 9%,

B[V - v/P?] < CE + 65,

T
/ Ve~ YaPds
t

and

T T
e|f ||Z§—zz||2ds]<cza [ e - vapas| + 6.
t t

(4.8)

(4.10)

Applying Granwall’s lemma and Burkholder-Davis-Gundy inequality in (4.9) and using (4.4) and (4.8)

to get (4.5). Finally (4.6) derived from (4.5), (4.8) and (4.10).

O

Proposition 4.2. Let (g’jt, ?t, Zg) , be the solution of the following variational equations of MF-FBDSDE

(4-1)

dyt fU t ygv]E yt] )Qt(du)gf/dt
+E [ [y, by tyt,E[yt],U)qt(d) [9:] dt
"‘(Uy (t, ytaE[yt])yt+E[‘7y (t,y¢, [ q])E[@\tH)th

+ (Jy byl Elyf], u) qi(du) — [ b (6 v B lyf], u) py(du)) dt
dY, = ~(Jy fy(t. 7} w)an (@) + B [fy, fy (¢ ], w)an (dw)E[G]
+ [y Syt g (du)Yy + E | [ fyo (67 u)ge(du)E[Y)
+ P20t 7 w)g(dw) Ze + B | [ 20 (78 u)ge (du)E[Z,)
fU tﬂ'ta u) gt (du) — fU tﬂ'ta ) g (du)))dt
(9t 7Y + Elgy (& 7B + gy (6, 7)Ts + E gy (¢, m)E[T]]

~ ~ 1 ~
Yoz (t, 72, + E [gz/ (t, wg)E[Zt]} )dB; + ZidW,,

o = 0,Yr = hy (y5 ElyL]) ir + E [hy (&, Ely) E[Gr]]

(4.11)
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where (t,7f,u) = (t,yl, Eyl],VLEYY, ZLE[Z]],u). We have the following estimates

o~

1
—(y; —vi) — s

2

IimE | sup =0,
e—0 0<t<T g

- . 2
ImE | s “YF-YhH Y, =0,
lgle | sup -V =Y -V,

[ ,T 1 2
lim[E / —(Z; — Zf) — Zy|| dt| =0.
e—0 0 £

Proof. For simplicity, denote by

1 ~ 1 S 1 ~
T5 = (0 —yf) — B Vi = (7 YY) ~ Bz = (2 - 2) - 2,

i) Let us prove (4.12). From (4.1), (4.11) and notations (4.15), we have

/ Vb 595 Elyi] u) da(du) - /b 5,95, Eygl, )qz(du)} ds
/ U bls:yn Elyal,w) g (du) = /b $ yﬁvE[yZ],u)qs(du)] ds
+—/ [0 (5,95, E[ys]) — o (s, 5, E [yd])] dW
[ [ ot Bl ) 0ty
~ [&[ [ b0 Gl 0| as

- [ (0 (s B G+ Eloy (5,02 E ) BRI W,

/ </ b(s,yl, Eyld], u)qs(du) — /b syl Elye], )us(du)> ds.

Using the definition of ¢5 and taking expectation, we obtain

E [|T5]? <CE{///|I) (5, A%, u) T3 qg(du)d)\ds}
///m mmwwmwﬂ
+CE /0 /0 o, (s,Ai)TﬂQdAds}

r t 1
LCE / / IE [0, (s,Ai)]E[Tf]HQd)\ds}+CE[|F§|Q],
L/ O 0

15

(4.12)

(4.13)

(4.14)

(4.15)
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where (s, A, u) == (8,43 + Ae(T5 + Us), Elyd + Ae(Y5 +4s)], u) , and

i = /// (s, A% ) (45 — y?) pg(du)dAds
/ / / (s, A% ) Ely; — yil] uy(du)drds
_///by(S’Aiv“)(yi—yZ)qs(du)dAds
/ / / (5, A5, w) ElyS = y]] g5 (du)dds

/ / / ) T + E [by (5, A%, 1) E[7]]) g5 (du)dAds
" / / (04 (5,A) G + E [0y (5, AZ) E[7L]]) dAdWY,

t
- / / by (5,9, Ely?], u) Fugs(du)ds

/ / (s, y2, Elyd], w) E[Ys]] g5 (du)ds
_/0 (O'y (S,ys,E[ s])ys+E[0y/ (SvygaE[Z/g])E[gj@H)dW?,

since by, by, 0y, 0y are continuous and bounded we have

t
E [|T$]?] < CE V |T§|2ds] + CE [|T57]., (4.16)
0

and
limE [|T5]?] = 0. (4.17)
e—0

By using (4.17), Granwall’s lemma and Burkholder-Davis-Gundy inequality in (4.16), one can show (4.12).
ii) Let us prove (4.13) and (4.14). We put

(5, A%, ) == (5, 4% + Ae(Y5 + Go), Ely? + Ae (Y5 + )], Y+ Ae(Y5 + V5)
VE[YE A+ Ne(YE + Y3)], 29 + Ne(Z2 + Zy), B[Z9 + Ne(ZE + Z,)], u).
From (4.1), (4.11) and (4.15) we have
dY§ = —(FEY; + E [F§ E[YS]] + F5Z§ + E[Fg,E[Z5]] + ©F)dt
—(gv (t, A7) Y5 + E gy (t, A7) E[Y5]] + g2z (¢, AF) Z§
+E (92 (t, A7) E[ZF]] + E7)d By + ZidW, (4.18)

Y5 = L (h (y3, Ely7]) — h (y5, Ely7]))
— (hy (v}, Elyf]) ¥r + E [hy (y7, Ely?]) E[gr]])

where

1
F;’qz/ /fw(t,Ai,u)qt(du)dA, forw=y,y,Y,Y' Z 7',
0o Ju
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O = F9Y5 +E [FE;‘I]E[Tj]] + Fo95, +E [FE;‘IE[@]

/ Fy (6 u) au(du)ge — [/ fyr () g (du)IE[?jt]] + F2,

+E {Fé’,qE[}Aft] —/fy(t,ﬂ'g,u)qt(du)f/t—E /fy/(t,ﬂg,u)qt(du)ﬂi[ﬁ]]
U LJu
+F§7¢Z2t +E {Fz}qE[é\t]} —/ fZ(t,wg,u)qt(du)Z
U

—E [/ fzr (t,ﬂ'g,u)qt(du)E[Z]]
U
FF (5 — yf) + B [FgPEly; — ] + Fo* (v - )
+E[FSFEYS - Y7l + Fg* (28 - 2§) + E[FgEIZS - Z])]
(B (v — vf) + B[P "Bly — vfl] + Fp? (v - Y1)
+E [FyPEIYS — Y1)+ F3 (75 — 28) + E[FSE[Zf - Z{])),

1
R . R R —
2§ = /0 (9y(t, AD) G + E [gy (6, AF)E[G]] — gy (¢, 77) T — E gy (¢, 71 E[7]] ) dNd B,

+/01 (97 (1, 25) Vi + E [gy- (t, A7) EIVi]] — gy (t,78) Vi — B [y (t, 70) B[] | )dAdB,

+/01 (92(t,AF )Zt +E [Qz’ (t, A7)E[Z, ]} S AG Wt)Zt E {ng (t,wf)E[Z]} )d/\d<—Bt.

Using the fact that the derivatives fy, fy/, fv, fy’, fz, fz- are continuous and bounded and from (4.4),
(4.5), (4.6) and (4.12) we show

Applying 1t6’s formula to |Y§

T T
limE [/ |@§|2ds] =0, and imE [/ |E§|2d51 =0. (4.19)
e—0 ¢ - e—0 ¢ -

|2 we obtain

T
E [[V;]’] + E | s 4Ry v+ B[RV Y]
t

T
/ ||Z§||2ds] =E[|Y7[?] +2E
t

T
) [FSZ,E[Zi]] T @i)ds} +E / lgy (t, A7) Y5
t

+E [gy- (t, A7) E[YS]] + g2 (t, AF) Z5 + E gz (t, A7) E[Z3]] + Z5|Pds] .

Applying Young’s inequality and the boundedness of the derivatives FY, FY' FZ FZ' gy gv/, 92,9z
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we obtain
T T

E[YVP)+E | [ IZ)Pds [ wiras
t t
/t " (v B vz + 1z + o) ds]
[ (st [1vs] + =2 s
t
+2°E [ / " (1227 + & 12207 ) as

T
/ (Y2 + B [YE] + 25, Z5 + E [Z2])ds
t

<E[V3?] + S E
1

+5CH0E

+3CE

+2C~E

Applying Young’s inequality again

T T
/ 125 2ds / 1Y% 2ds
t t

+5COLE [ / (sl B 1] + 1z 4 (1207 + 105 ds

+29%E [/T (121 + & [iz:)?)) ds]

E[|Y;"] +E

<E[V3?] + S E
1

+3CE [/tT (1vef +E[IveP] + |55 ds
/ " (v v [1e?] + ) as

/ " (122 + & iz ds] .

6Cy

E
02

+

Hence

E[|Y;"] + E

T
/ |Z§||2ds]
t
12C~

1
SE[V5] + (5 +100 01 +6C + =5 B

T
/ ||zz|2ds]
t

T
6Cy / |E§|2ds]. (4.20)
t

2

T
/ Y2 2ds
t

+(10C 01 + 49 + 8Cy 62)E
T
| 1ezkas
t

1 —4~? 1 —4~?
6, — 0, —
1= 00 702 = ey

+5C 0,E +3C+2DE

We choose

thus

_ 472

1
100 61 +49° + 8Cy b2 = +4y2
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Then the inequality (4.19) becomes

T
/ Y2 2ds
t

E[[Vi[?] + KiE [/ 1Z5)1%ds | < E [[Y3[?) + KoE
t

T T
+K3E / |0%2ds | + K4E [/ |E§|2d51 : (4.21)
t t
with K = 1282 5 0, K, > 0, K3 > 0, Ky > 0.
We derive from (4.21) two inequality
T
E¥;P] <E[V5P]+ K | [ [viPas
t
T T
+K3E / |O%2ds | + K4E / |=5)2ds |, (4.22)
t t

and

[ | ||Z€||2ds] < vl + 22| [ jvspas

T
+K3E [/ |0¢2ds
t

K, /T~ 2
+—E =5|%ds| . 4.23
- [ =) (4.23)

On the other hand we have

B (¥57) =2 [|2 (0 (5. B ~ 1 (- Ely)

— (hy (i Ely3]) T + E by (v, Ely$)) E[gr])) ]
[ @y an - ny (Bl

2-@#]
l ) dX = hy (yh, Elyd)) 2]-E[|27T|2]]
+41EU0 (|hy( P15 +E[|h (A )I} [|T |D }

Since hy, h;, are continuous and bounded, using (4.12) to get

<4E

+4E |E

hmIE (Y% } (4.24)

Now, applying Gronwall’s lemma in (4.22) and using (4.19) and (4.24) to obtain (4.13) and from (4.13),
(4.19) and (4.24) we get (4.14). O

Proposition 4.3 (Variational inequality). Let (H4) — (H5), holds. Let q. be an optimal relaxed control
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with associated trajectories (X, Y, ", Z1). Then, for any element u. of R, we have

0 < E oy (4, Ely4])Ir + Eay (v, E [y E[Gr]]]
+E [y (Y0, EIYS)) o + E [ By (¥, EIYSDER]|]

T
B[ [ [ (00 mt 0 + Bl 4w 0B
0 U
oy (t, 700V, + E [ey, (t, 74, u)E[?t]]

oyt w)Z, +E [ez, (t, 79, u)E[Z]} )i (du)dt]
/ (| ete.5tBigt) ¥ B, 22 B ()

/ 0(t,yd, Blyd], Ytq,E[Y,;q],Zf,E[Zf],u)qt(du))dﬂ. (4.25)

Proof. From the optimality of ¢q. we have
0 < E[a(y5. Ely5]) — a(yh Elyl))] + E [BE, B[YS)) — BV EYZ)]

T

LE[ / ( /U o(t, 5 Elys], Y E[YF), 25, E(Z5], u)a (du)

/ 0ty Elyf), Yo, B[V, 28, BIZ8), u)g; (du)) di]

T

B[ [ ([ et Bl YO B, 28 B2 w)ef ()

0

- / o(t, y? Blyf), Y EVF], 20,2, u)qi(du)) di].

Let us divide this inequality by € and using the definition of ¢f and from the notation (4.15), we have

1
o<k [ [ (b + By (455051 dx}
1
+E [/o (BY(YO’J + Ae (Y5 + o), E[Yy 4 Ae(Yg + Yo)Yo
E By (Y + Ae(¥5 + To), E[YS + Ae(¥5 + T)DE(To]] ) A

o[ [ [ (6 ai0m Bl 0,57 05w

oy (t, A5, 0)Y; +E [Zy/(t, A, u)E[TQ]}
ozt A5 )Y, + E [ez, (t, AZ, u)E[}Aft]} )q (du)dAdt]
T
+E] / ( /U (t, v Blyf], Y7 E[VE], 22, B2, w)py (du)

—/é(t,yE,E[y?],Kq,E[W],ZE,E[ZE],u)qt(dU))dt] + Vi,
U
(4.26)
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where V7 is given by
Vi =2 [ (04575 + Blay (BT
+E [/01 (ﬁy (Yol + Ae(Yg + o), E[Yy + Ae(YQ + }A@)])Yg

+E By (Y + Ae(Y5 + Vo), BIYS + Ae(Yg + ) E[YG]] ) )]

T 1
B[ [ [ (6t 8000 — o)+ B e 1. 57 0B o)

+ey (6, AF, u) (Y = Yy) + E [6y (2, AF, w)E[Yy — Y]
gt DS u)(ZE — Z8) + Bz (t, A5, w)E[ZE — Z8)) 1y (du)dAdt]

/// g (AL w)(yp —yf) +E [y (¢, A7 w)Ely; — yi]]

Oy (1, A5, ) (Y7 = Y1) +E 6y (1, AF, w)E[Y — Y]
gt AF ) (25 — Z0) + E [0z (t, A], w)ELZ - Z]] )ge(du)dAdi]

/ // y(t, AL W) Y] +E [0, (¢, A7, w)E[Y]]]

+lz(t, AT, u)Zf +E[lz(t, AF, u)]E[Zf]] )qe(du)dAdt].
Since the derivatives o, ayr, By, By, by, €y, by, Ly, L7,z are continuous and bounded, then by using
(4.4), (4.5),(4.6), (4.12), (4.13),(4.14) and the Cauchy-Schwartz inequality we show that
: €127 __
lim [ [[V[*] = 0.
Then let € go to 0 in (4.26), we get the variational inequality. O

4.1.2. Necessary optimality conditions for relaxed control. Let us introduce the adjoint equations of the
MF-FBDSDE (4.1) and then gives the maximum principle.
Define the Hamiltonian H from

[0,7] x R™ x R® x R™ x R™ x R™*4 x R™*4 x [J x R™ x R™ x R™*! x R"*4,
to R by

H(t,y,y Y)Y 2,7 pn,® ¥, 5 1) := <I’/ b(t,y, v, u)p(du) + So(t,y.y')
U
+0 [ty VY 2.2 wpldu) + Tg(t. .y V.Y 2.2)
U
+/ Uty Y'Y, Y' Z, 7" u)u(du). (4.27)
U

Theorem 4.4. (Necessary optimality conditions for relazed control) Assume that (H4)—(H5) , holds. Let
q. € R an optimal relazed control. Let (y?,Y9, Z7) be the associated solution of MF-FBDSDE (4.1). Then
there exists a unique solution (97, W1, X9 117) of the following adjoint equations of MF-FBDSDE (/}.1):

d®f = —(Hy(t,¢f qe, xi) + E[Hy (8, ¢, qe, x1)] ) dt + SEdW,
d\Ilg - (HY(tanvqtan) +E|:HY'(t)<gaqt7Xg)} dt

%
+(HZ(ta<qutan)+E[HZ’(ta<gaqtan)})th_HgdBtv ( )
4.28

g = By (Yo, EYS]) + E[ky (Yo, E[Y])],
. = a, (v7, Ely}]) + E[ey (v, Ely7])]
+hy (Y7, ElyT)YTE + Elhy (y7, E[y7]) E[WE]],
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such that

H{t,yi, Blyi], Vi BV, ZE BIZ{], g, @F, U1, 5, 1T)
, a.e.t, P—a.s., Yue PU), (4.29)

where (¢, G2, a1, x¢) = (¢, 98 Elyf ). i EIYY), 2. BIZ{), 1, 9, W, S, 11,
Proof. From (4.28), the inequality variational (4.25) becomes
0 < E[®F,7r)] — E [hy(y7. EyF)VTE + Elhy (v7, Elyr ) E[WE]] ]
+E (w70 + B[ | ' | (@t mt i+ Bl nt )
oy (6,7, )T+ E [y (1, )BT,
gt ) 2o+ E [0t 7 wELZ]] ) ao(du) ]
VL[ ettt B, v B, 22 B W)
/ L, i Elyf), YV, B, 28, B2, u)as (du)) de). (4.30)

Now applying Ito’s formula to compute (®7, ;) and (U] ?t) and taking the expectations we derive

T
E[(@%,7r)] = - E] / (v / (Fy (b 7 ) + B[ fy (18 )] ) o)
12 (g, (1, 78) + E gy (1, 7)]) + /U (64t 7, 0) + B[y (¢, 78, )] ) g (du), Tu) ]
T
+E| / a4 /U b(t, 4 Efy?], )y (du) — /U b(t, . Elyf], u)py (du)) d]
and

E[(¥, Yo)] = E[(WL, V7)]
T
]E[/O <‘I’?,/U (fy(t. 7wl w)ge + E[fy (8, 7], w)E[G]]) g (du))dt]

T

+E| / (I, (g, (6,75, + E gy (6, 7OEG]))de]
T

—]E[/O </U (6 (t, 7%, ) + E[ by (t, 70, )] ) e (du), Vo)el]
T o~

—IE[/O </U (€2(t, 78 u) + E[lz (t, 77, 0)] ) au (du), Z,)d]
T

B [ ([ st - [ et )i

Substitute the above equalities in inequality (4.30) to get, for every p € R,
T
0< B[ [ (HCt.of Blyf), Y/ BV, 20 BIZ), a0, 0, V1, 51,1
0

—H(t,y! Ely{], V! E[YY], Z{ ,E[Z]], jy, @}, O], 5], T1}) ) dt].

Therefore inequality (4.29) follows by a standard arguments. O
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4.1.8. Sufficient optimality conditions for relaxed control. In this subsection we study when the necessary
conditions for optimality in Theorem 4.4 become sufficient as well.

Theorem 4.5. (Sufficient optimality conditions for relazed control) Assume that (H4) hold. Given
q. € R, let (y1,Y9, Z9) and (®F, V], X 11}) be the corresponding solutions of the MF-FBSDFEs (4.1) and
(4.28) respectively. Suppose that o, B, and the function H(t,-, -, - - q, ®{, €, X7 1) are conver.

Then (y1, Y9, Z% q.) is an optimal solution of the control problem (4.1)—(4.3) if it satisfies (4.29).

Proof. Let q. € R be arbitrary (candidate to be optimal), and let (y?,Y.?, Z7) denote the trajectory
associated to ¢.. For any p. € R with associated trajectory (y!*, V", Z"), we have

J(w) —I(q) = B[y, Ely}]) — a(yf, Ely])] + E[B(YS" E[YY']) — B(YSL E[Y))]

T
B[ ([t Bl v B, 20 B2, wi )

- /U 0ty Efy?), Y7L B, 28 27, w)gy(du)) dt).

Since « and [ are convex, we get

oy, Elyr]) — eyt Elyr]) > (o (y7, Elyg)), vr — y7)

+E [y (y, By)), Ely — vi)],
B(Yy", EIYY']) — B(YSLE[YY]) > (By (YY), [ ), Yg = Yo
+E [(By (Y, E[YF]), B[V — Yi)].

Thus

I(w) = I(q) = (e (], ElyF)), v — yF) + E[{ay (v], ElyT]), Elvr — v7))]
+ (By (Y§LE[YY]), Yy — Yo + E[(By (Y, E[YY]), E[YS' — Yi1)]

T
B[ [ ([ oot B) Y2, 28 B2
- / ot i Ly, Y7 B[V, 20 ELZY), u)qi (du)) di).

Therefore after recalling also (4.28) one gets

I(w) = I(g) = E[{®L, vf — vT)

—E[(hy(y], Ely7) OT + E[hy (v, ElyFDECT]], v5 — 7))
+E[(25, Yy - Y]
+E|

/ / 0ty Elyl), Y/ EYF], 28 EIZV), u) sy (du)
- / 0(t, 40, Ely?), Y, EYS), 20, B2, w)go(du)) de]. (4.31)
U
Applying 1t6’s formula to (®7, vt — ) and (¥F, Y} — V), we obtain
T
E[ (8%, — y2)] = E| / (@, /U bt ' Bl w)pe (du)
- / b(t, 8, Ely?), w)ge (du)) ]
U
T
+E[ / (29, (¢, 4" E[tT) — o(t, 42, Elyf))) di]
0

T
0



24 N. BERROUIS, B. GHERBAL AND A. NINOUH
and
E[(W§, Yy = Y5) | =E[(VF, Y7 - Y7) ]
T
- E[/ <HY (tv Cgv qt, Xg) + E[HY’ (tv Cga qt, Xg)]v Y;P« - Y;Sq>dt]
0
T
B[ [ el Bl) Y2 B, 22 B2 )
~ [ e Bl Y B, 2 B2, wa )]
U
T
- E[/ <HZ(tv Cgv qt, Xg) + E[HZ’ (tv Cga qt, Xg)]v Z# - Zg>dﬂ
0
T
+E[ [ (Wglt. B Y BDY), 2t BL2Y)
—9(t, 4, EBly/], Y, E[Y,"), Z{  E[Z]]))dt]. (4.33)

From the convexity of h we have

E[(W, Yy — Y1) | = E[(UF, h(yh, Elyr]) — h(yd, ElyT)) |
> E[ (hy(yF, Ely:) U + E[hy (yf, ETFDEWL]], v — yh) . (4.34)

Replacing (4.32) and (4.33) in inequality (4.31) and using (4.34), we get
T
0
T
0
T
- E[/ <HY (tv ggv qt, Xg) + ]E[HY/(Z‘,‘, QI, qt, Xg)]v }/tp‘ - }/tq>dt]
0
T
0

On the other hand, by the convexity of H(t,y,y',Y,Y' . Z, Z' ¢, ®, ¥, 3 1) in (y,y',Y,Y' Z, Z’) and its
linearity in ¢, then by using the clarke generalized gradient of H evaluated at (y,v',Y,Y’, Z, Z"), we
obtain

H(t, Cf pgs x§) = H(t, CEoae xd) = Hy(t,CE e xd) (i — f)
+E[Hy (t,¢7, a6 XDElY — vi1] + Hy (¢, ¢ a0, x3) (Y = Y1)
+E[Hy(t, ¢ ae xDEYY = Y] + Hz (8¢, X3 (2 — ZF)
+E[Hz (t,¢], a6, xDE[Z{ — Z{]].

Therefore, applying this inequality in (4.35) gives
J(w.) —J(g.) >0,V e R.

The theorem is proved. U

4.2. Necessary and Sufficient optimality conditions for strict control

In this part, we shall derive necessary and sufficient optimality condition for strict control problem
and shows that it follows from the relaxed one. This strict control problem is driven by the following
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MF-FBDSDE

gy =+ [ b(s,y2, Ely],vs)ds + [i o(s,y2, Elyl])dWs

v T v v v v v 436
K =) I B X B2 12 (430

—|—ft (s,y",E[y’], Y2, E[YY], ZV, E[ZY])dB; — ft ZYdWs,

and the functional cost to be minimize over the set of strict controls U is given by
J(v) = Elo (v Ep3]) + 6 (%, E i) )

+f() (t yt7 ]’KU7E[Y?]’Zz}7E[Ztv]7vt)dﬂ'
We say that a strict control u. is an optimal control if

J(u.) = inf J(v.). (4.38)

v.eU

We denote by
RO ={p. €R/ p=2=,:veUl,

the set of all relaxed controls in the form of Dirac measure charging a strict control. Denote by P(U?)
the action set of all relaxed control R°.

4.2.1. Necessary optimality conditions for strict control. Define the Hamiltonian H in the strict control
problem from

[0,7] x R™ x R™ x R™ x R™ x R™*4 x R™*? x [J x R™ x R™ x R™*! x R"*4,
to R by

C}-C(t7y, yl,Y7 YI,Z7 Zl,/l}, ©7 W’ Z, H) :: +¢b(t, y7 y/, /l}) + ZO’(t,y, yl)
+\ij(t7 Y, yla Y7 Y/7 27 Z/7 U) + Hg(t7 Y, yla Y7 Yl7 27 Z/’ ’U)
+l(t,y,y Y, Y Z, 7" v). (4.39)

Theorem 4.6. (Necessary optimality conditions for strict control.) Let u. € U an optimal strict control.
Let (y*, Y, Z") be the associated solution of MF-FBDSDE (4.36). Then there exists a unique solution
(®v, U 3% T1%) of the following adjoint equations of MF-FBDSDE (4.36):

d(I)g = - (J'Cy(t, C::,L7 U, X?) + E[g{y’(t’ C::,La Ut, X?)%)dt + E?dWh
d\II? = (%y(f,(?,’u,t,){?) +]E[%Y’(ta<?7utaxg)} dt —
+(%Z(t, g?a Ut s X?) + ]EI:S{Z, (t7 <?5 Ut, X?)] )th - H?dBtv

(4.40)

Uy = By (Ve E[Yg']) + E[By. (Y, E[Y5'])],

Y = oy (v, Elyit]) + Elay (y4, Elyt])]

+hy (v, Ely#]) U + E[hy (v4, E[y])E[W%]],
such that
j{(ta y;,lv ]E[yzi]v Y;tua E[}/tu]v Ztuv ]E[Ztu]a Ut, (I)?a ‘I’?a E?v H::,L)
< H(t,y' Elyy], V4, B, ZE BIZE ] v, @F, O, S8 1Y), acect, P-a.s., Yo € U,

(4.41)

where (tvg?autaX?) = (taygaE[yg]a}/tuv]E[Y;u]a Z#v]E[Ztu]autvq)ga \I’ga Z?,Hg)
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Proof. Note that the strict u. embedded into the space V in the sense that w. is corresponding with
the Dirac measure \, (dt,da) = ¢, (du) with the propriety: For any bounded and uniformly continuous
function h(t,y,vy',Y,Y', Z, Z' u) we have

Wtysy V.Y 2, 2 ) = / Wty Y, Y, 2, 2 ), (du)
U

= h(t,y, v Y. Y, Z, 7' \). (4.42)

From the necessary optimality condition for relaxed controls (Theorem 4.4), there exist a unique solution
(@7, Wl 37 T17) of (4.28) such that
S H(t’ ytq7 E[yg]’ }/tq7 E[}/th]7 th7 E[th]7 Nt? (P:‘,Iv \:[127 Zg’ H?)’ a.e. t? P‘CL.S., \VIILL e jq’?

and since R® © R we have

H(t,yi Blyf], Y, BV, Z{, BZ{], g, @F, U1, 5, TT)
< H(t,y!, Elyd], Y2, BY,1], Z8 B[ Z]], p,, ®¢, 0, BI TTY), a.e.t, P-a.s., Y € R°.
(4.43)

Using the fact that if 4 € R°, then there exist v; € U° C U such that u = J,, and if the optimal relaxed
control ¢ (du) = d,, (du) with u; an optimal strict control, then we can show that

(y:fzyytqy th) = (ygyytua Zg), (yf,Y;“, Z#) = (yz)?Y;‘,v’ Z;})7
(¢g7wg7zg7ng) = ((I);L7W;L’ E;’/’H/g/)7 ((I)él" g’é"’ Eé}"Hét) = ((P;)) l’;}’ E;)?H;)%
= %(Lyf’E[yg]’ KH7E[Y;5U]’ ZZJJE[Z#]’ Ut, (I)?’ \IﬂtJ’ 2?71_[?)7
H(ta y#7E[yf]a Y;MaE[Y;H]’ Z#aE[Z#]a /J’ta (I)ila \I/f:, EéL?Hg)
- C}-C(t7 yz)’ E[yf]) )/tv7 E[KU]’ Z:? E[ZZ)]’ /l}t) (1)1)7 W?? sz’ H;))' (4'44)

Using (4.42) and (4.43) we get (4.41). The proof is completed. O
4.2.2. Sufficient optimality conditions for strict control. We shall try to shows if the necessary optimality
conditions (4.41) for strict control problem {(4.36), (4.37), (4.38)} becomes sufficient.

Theorem 4.7. (Sufficient optimality conditions for strict control.) Assume that the functions «, 3,/
and FH(t, -, -, -, - up, D3, Ui X3 I1Y) are convex. Then (y*,Y*, Z¥ u.) is an optimal solution of the strict
control problem {(4.36), (4.37), (4.38)} if it satisfies (4.41).

Proof. Let u; be an arbitrary element of U° such that the necessary optimality conditions for strict
control (4.41) hold, i.e.

fH(t’ y?’ E[y?]’ Yiuv E[Y;tu]’ ng E[Ztu]’ Ut, (I)?’ \Ilgv E?? H?)
< H(t,yl Blyl], Y B, 28, B[ ZE), v, @Y, WY, B8 TTY), ace.t, P-a.s., Yo € U°,
and by applying the embedding mentioned in (4.42), one can show that
< H(t,y!, Elyl), Y, B, 21 B[Z{], py, @Y, U, BT 1Y), a.e.t, P-a.s., Y € R.

Thus by sufficient optimality conditions for relaxed control (Theorem 4.5) we have

J(g)= inf J
(¢.) nfs (),
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and from the fact that the optimal relaxed control is a Dirac measure charging in optimal strict control
(gt(du) = 04, (du)) and by using (4.44), we can show that

J(u.) = 1inf J(v.).

v. eUs

The prove is completed. O
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