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Blow up Result for a Viscoelastic Plate Equation with Nonlinear Source ∗

Soh Edwin Mukiawa and Salim A. Messaoudi

abstract: We consider a viscoelastic plate equation with nonlinear source and partially hinged boundary
conditions. Our goal is to show analytically that the solution blows up in finite time. The background of
the problem comes from the modeling of the downward displacement of a suspension bridge using a thin
rectangular plate. This result shows that in the present of a nonlinear source such as the earthquake shocks,
the bridge will collapse in a finite time.
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1. Introduction

In this paper, we consider the following problem















































utt(x, y, t) + ∆2u(x, y, t) −

∫ t

0

g(t − s)∆2u(x, y, s)ds

+ h(ut(x, y, t)) = u(x, y, t)|u(x, y, t)|p−2, in Ω × (0, T ),
u(0, y, t) = uxx(0, y, t) = 0, for (y, t) ∈ (−ℓ, ℓ) × (0, T ),
u(L, y, t) = uxx(L, y, t) = 0, for (y, t) ∈ (−ℓ, ℓ) × (0, T ),
uyy(x, ±ℓ, t) + νuxx(x, ±ℓ, t) = 0, for (x, t) ∈ (0, L) × (0, T ),
uyyy(x, ±ℓ, t) + (2 − ν)uxxy(x, ±ℓ, t) = 0, for (x, t) ∈ (0, L) × (0, T ),
u(x, y, 0) = u0(x, y), ut(x, y, 0) = u1(x, y), in Ω,

(1.1)

where u = u(x, y, t) is the downward displacement of a suspension bridge, Ω = (0, L) × (−ℓ, ℓ) ⊂ R
2,

0 < ν < 1
2 , g and h are given functions to be specified later, p > 2 and u0, u1 are given data. Our aim is

to show that that the solution of problem (1.1) blows up in a finite time. This model is formulated from
the ground work of Ferrero and Gazzola [3], where a suspension bridge is modelled through a rectangular
thin plate Ω assumed to be hinged on the vertical edges

u(0, y) = uxx(0, y) = u(L, y) = uxx(L, y), ∀y ∈ (−ℓ, ℓ)

and free on the horizontal edges

uyy(x, ±ℓ) + νuxx(x, ±ℓ) = uyyy(x, ±ℓ) + (2 − ν)uxxy(x, ±ℓ) = 0, ∀x ∈ (0, L).

The present model (1.1), takes into consideration the viscoelatic damping of the material and also the
appearance of nonlinear external source. In the presence of a non-linear external force such as extreme
earthquake shocks, the suspension bridge is set into unstable oscillations leading to it collapsing. See
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videos available on the web [22] of the Tacoma Narrows bridge collapsing. This, unfortunately, is not
the only case of bridges collapsing, many other bridges have collapsed in history, see for example [1,8].
For g = 0, h(ut) = δut, δ > 0 and a source term f ∈ L2(Ω × (0, T )) in (1.1), Ferrero and Gazzola [3]
established the existence and uniqueness of a global solution and discussed many stationary problems.
Wang [21] studied the following plate equation

utt + δut + ∆2u + au = |u|m−2u, (1.2)

where a = a(x, y, t) is a bounded and measurable sign-changing function and 2 < m < +∞. He
supplemented (1.2) with the boundary conditions of (1.1) and initial data and proved the existence and
uniqueness of a local solution and a finite-time blow-up result. Gazzola and Wang [5] modelled suspension
bridges through the Von Karman quasilinear plate equations. Messaoudi in [20] considered the Petrovsky
system







utt + ∆2u + a|ut|
m−2ut = b|u|p−2u, in Ω × (0, T ),

u = ∂u
∂η

= 0, on ∂Ω × [0, T ),

u(x, 0) = v0(x), ut(x, 0) = v1(x), in Ω,

(1.3)

where a, b > 0 are constants and Ω ⊂ R
N, N ≥ 1, is a bounded domain with a smooth boundary ∂Ω.

For p > m, he established the existence and uniqueness of a weak local solution. In addition, he proved
that for negative initial energy (E(0) < 0), the local solution blows up in finite time. He also established
the existence of global solution when m ≥ p. The result in [20] has been improved by Chen and Zhou
in [2]. We refer the reader to [14,15,12,13,16,17,21] and references therein for results related to problem
(1.1). The paper is organized as follows: In Section 2, we introduce some fundamental materials and
useful assumptions on the relaxation function g and the function h. In Section 3, we state and prove
some technical lemmas. Finally, in Section 4, we establish a blow-up result for problem (1.1).

2. Preliminaries

Throughout the paper, C or c are generic positive constants that may change within lines. We recall
some useful materials and state our assumptions. For this, we assume the functions g and h admit the
following conditions:
(A1) g : R+ −→ R+ is a decreasing C1− function such that

1 −

∫ ∞

0

g(s)ds = l0 > 0. (2.1)

(A2) h : R → R is an increasing C1− function with h(0) = 0 such that







|ξ(s)| ≤ |h(s)| ≤ |ξ−1(s)|, |s| ≤ 1,

c1|s|m−1 ≤ |h(s)| ≤ c2|s|m−1, |s| > 1,

(2.2)

where ξ : [−1, 1] → R is an increasing and odd function, c1, c2 > 0 are constants,
2 ≤ m < p < +∞ and ξ−1 denotes the inverse of ξ.

We consider the Hilbert space (see [3])

H2
∗ (Ω) =

{

w ∈ H2(Ω) : w = 0 on {0, L} × (−ℓ, ℓ)
}

,

together with the inner product

(u, v)H2
∗

(Ω) =

∫

Ω

[(∆u∆v + (1 − ν)(2uxyvxy − uxxvyy − uyyvxx)]dxdy,

and denote by H(Ω) the dual of H2
∗ (Ω).
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Lemma 2.1. [21] Suppose that 1 ≤ p < +∞. Then, there exists an embedding constant Sp = Sp(Ω, p) > 0
such that

‖u‖Lp(Ω) ≤ Sp‖u‖H2
∗

(Ω), ∀ u ∈ H2
∗ (Ω). (2.3)

For completeness, we state without proof a local existence result. The proof can be established using
similar methods as in [6,7,10,18].

Theorem 2.2. Let (u0, u1) ∈ H2
∗ (Ω) × L2(Ω) be given. Assume g and h satisfy (A1) and (A2). Then,

there exists a unique local solution to problem (1.1) in the class

u ∈ L∞
(

[0, Tmax), H2
∗ (Ω)

)

, ut ∈ L∞
(

[0, Tmax), L2(Ω)
)

∩ Lm(Ω × (0, Tmax)),

utt ∈ L∞([0, Tmax),H(Ω)), for some Tmax > 0.

The energy functional associated to problem (1.1) is given by

E(t) =
1

2
‖ut(t)‖

2
L2(Ω) +

1

2

(

1 −

∫ t

0

g(s)ds

)

‖u(t)‖2
H2

∗
(Ω) +

1

2
(g ⋄ u)(t) −

1

p
‖u(t)‖p

Lp(Ω), (2.4)

where

(g ⋄ u)(t) =

∫ t

0

g(t − s)‖u(t) − u(s)‖2
H2

∗
(Ω)ds.

We also define the following functionals:

Φ(t) = Φ(u(t)) =

(

1 −

∫ t

0

g(s)ds

)

‖u(t)‖2
H2

∗
(Ω) + (g ⋄ u)(t) − ‖u(t)‖p

Lp(Ω), (2.5)

χ(t) = χ(u(t)) =
1

2

(

1 −

∫ t

0

g(s)ds

)

‖u(t)‖2
H2

∗
(Ω) +

1

2
(g ⋄ u)(t) −

1

p
‖u(t)‖p

Lp(Ω), (2.6)

and for t ≥ 0, we define
β(t) = inf sup

λ≥0
χ(λu(t)). (2.7)

Next, we state and prove some useful Lemmas needed in the next section.

3. Technical Lemmas

Lemma 3.1. Let u be the solution to problem (1.1) and assume (A1) and (A2) hold. Then, the energy
functional (2.4) satisfies

E′(t) =
1

2
(g′ ⋄ u)(t) −

1

2
g(t)‖u(t)‖2

H2
∗

(Ω) −

∫

Ω

h(ut(x, y, t))ut(x, y, t)dxdy ≤ 0. (3.1)

for almost all t ∈ [0, Tmax).

Proof. Multiplying (1.1)1 by ut and integrating over Ω, using integration by parts and (A2), we obtain
(3.1) for any regular solution. This result remains valid for weak solutions by simple density argument.
The reader is refered to [12,16] for detailed computations. This implies the energy functional E is
non-increasing. �

Lemma 3.2. For t ≥ 0, the following inequality holds:

0 < β1 ≤ β(t) ≤ sup
λ≥0

χ(λu), (3.2)

where

β1 =
(p − 2)

2p

(

l0

S2
q

)
p

p−2

(3.3)

and

sup
λ≥0

χ(λu(t)) =
(p − 2)

2p





(

1 −
∫ t

0
g(s)ds

)

‖u(t)‖2
H2

∗
(Ω) + (g ⋄ u)(t)

‖u(t)‖2
Lp(Ω)





p

p−2

. (3.4)
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Proof. For λ ≥ 0, let

χ(λu(t)) =
λ2

2

(

1 −

∫ t

0

g(s)ds

)

‖u(t)‖2
H2

∗
(Ω) +

λ2

2
(g ⋄ u)(t) −

λp

p
‖u(t)‖p

Lp(Ω). (3.5)

Thus, we have

d [χ(λu(t))]

dλ
= λ

(

1 −

∫ t

0

g(s)ds

)

‖u(t)‖2
H2

∗
(Ω) + λ(g ⋄ u)(t) − λp−1‖u(t)‖p

Lp(Ω). (3.6)

Solving d[χ(λu(t))]
dλ

= 0, we obtain two critical points

λ1 = 0, λ2 =





(

1 −
∫ t

0 g(s)ds
)

‖u(t)‖2
H2

∗
(Ω) + (g ⋄ u)(t)

‖u(t)‖p

Lp(Ω)





1

p−2

.

The second derivative of χ(λu(t)) with respect to λ is given by

d2 [χ(λu(t))]

dλ2 =

(

1 −

∫ t

0

g(s)ds

)

‖u(t)‖2
H2

∗
(Ω) + (g ⋄ u)(t) − (p − 1)λp−2‖u(t)‖p

Lp(Ω). (3.7)

Simple computations gives

d2 [χ(λ1u(t))]

dλ2 > 0 and
d2 [χ(λ2u(t))]

dλ2 < 0.

Thus, we get

sup
λ≥0

χ(λu(t)) = χ(λ2u(t)) =
p − 2

2p





(

1 −
∫ t

0
g(s)ds

)

‖u(t)‖2
H2

∗
(Ω) + (g ⋄ u)(t)

‖u(t)‖2
Lp(Ω)





p

p−2

≥
p − 2

2p

(

l0

S2
q

)

p

p−2

> 0.

(3.8)

This completes the proof. �

Lemma 3.3. Assume (A1) and (A2) hold. For any ǫ < 1 fixed, let (u0, u1) ∈ H2
∗ (Ω) × L2(Ω) and satisfy

Φ(0) < 0 and E(0) < ǫβ1. (3.9)

Assume further that
∫ +∞

0

g(s)ds <
p − 2

p − 2 + 1
(1−ǫ0)2(p−2)+2(1−ǫ0)

, (3.10)

where ǫ0 = max(0, ǫ). Then, there exist T > 0 such that

Φ(t) < 0, ∀t ∈ [0, T ) (3.11)

and

β1 <
p − 2

2p

((

1 −

∫ t

0

g(s)ds

)

‖u(t)‖2
H2

∗
(Ω) + (g ⋄ u)(t)

)

<
p − 2

2p
‖u(t)‖p

Lp(Ω), t ∈ [0, T ). (3.12)
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Proof. Using (3.1) and (3.9), it follows that E(t) < ǫβ1, for all t ∈ [0, T ). Similarly, we can obtain
Φ(t) < 0, for all t ∈ [0, T ). Suppose by contradiction that there exist t∗ > 0 such that

Φ(t∗) = 0 and Φ(t) < 0, 0 ≤ t < t∗.

Using the definition of Φ in (2.5), we obtain

(

1 −

∫ t

0

g(s)ds

)

‖u(t)‖2
H2

∗
(Ω) + (g ⋄ u)(t) < ‖u(t)‖p

Lp(Ω), 0 ≤ t < t∗. (3.13)

Applying lemma 3.2, we get

β1 <
p − 2

2p







(

1 −
∫ t

0
g(s)ds

)

‖u(t)‖2
H2

∗
(Ω) + (g ⋄ u)(t)

[(

1 −
∫ t

0
g(s)ds

)

‖u(t)‖2
H2

∗
(Ω) + (g ⋄ u)(t)

]
2

p







p

p−2

=
p − 2

2p

[(

1 −

∫ t

0

g(s)ds

)

‖u(t)‖2
H2

∗
(Ω) + (g ⋄ u)(t)

]

, 0 ≤ t < t∗.

(3.14)

Combining (3.13) and (3.14), we arrive at

0 < β1 <
p − 2

2p
‖u(t)‖p

Lp(Ω), 0 ≤ t < t∗.

By the continuity of t 7−→ ‖u(t)‖p

Lp(Ω), we have that u(t∗) 6= 0. It follows from lemma 3.2 and (2.6) that

β1 ≤
p − 2

2p
‖u(t∗)‖p

Lp(Ω) = χ(u(t∗)).

But this is impossible because
χ(u(t∗)) ≤ E(u(t∗)) < β1.

By using Lemma 3.2 again, we obtain the estimate (3.12). This completes the proof. �

Lemma 3.4. Under the assumptions of Lemma 3.3, the functional F defined by

F (t) = ǫ0β1 − E(t) (3.15)

is increasing and satisfies

0 < F (0) ≤ F (t) ≤ ǫ0β1 +
1

p
‖u(t)‖p

Lp(Ω) ≤ p0‖u(t)‖p

Lp(Ω), t ∈ [0, T ), (3.16)

where p0 = (p−2)ǫ0

2p
+ 1

p
.

Proof. Using (3.1), (3.9) and (3.12), we obtain the result easily. �

Lemma 3.5. Under the assumptions of Lemma 3.3, the solution of problem (1.1) satisfies

‖u(t)‖s
Lp(Ω) ≤ c

(

−F (t) − ‖ut(t)‖
2
L2(Ω) − (g ⋄ u)(t) + ‖u(t)‖p

Lp(Ω)

)

, ∀ t ∈ [0, T ), 2 ≤ s ≤ p. (3.17)

Proof. We follow the ideas of Messaoudi [10,11]. From (2.1) and (2.4), we have

(1 − l0)

2
‖u(t)‖2

H2
∗

(Ω) ≤

(

1 −

∫ t

0

g(s)ds

)

‖u(t)‖2
H2

∗
(Ω)

≤ E(t) −
1

2
‖ut(t)‖

2
L2(Ω) −

1

2
(g ⋄ u)(t) +

1

p
‖u(t)‖p

Lp(Ω)

≤ ǫ0β1 − F (t) −
1

2
‖ut(t)‖

2
L2(Ω) −

1

2
(g ⋄ u)(t) +

1

p
‖u(t)‖p

Lp(Ω).

(3.18)
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A combination of (3.12) and (3.18) yields

‖u(t)‖2
H2

∗
(Ω) ≤ c

(

−F (t) − ‖ut(t)‖
2
L2(Ω) − (g ⋄ u)(t) + ‖u(t)‖p

Lp(Ω)

)

, ∀t ∈ [0, T ). (3.19)

Now, if ‖u(t)‖Lp(Ω) ≤ 1, it follows from Lemma 2.1 that

‖u(t)‖s
Lp(Ω) ≤ ‖u(t)‖2

Lp(Ω) ≤ S2
q ‖u(t)‖2

H2
∗

(Ω), 2 ≤ s ≤ p. (3.20)

Also, if ‖u(t)‖Lp(Ω) > 1, then we get

‖u(t)‖s
Lp(Ω) ≤ ‖u(t)‖p

Lp(Ω), 2 ≤ s ≤ p. (3.21)

It follows from (3.20) and (3.21) that

‖u(t)‖s
Lp(Ω) ≤ C

(

‖u(t)‖2
H2

∗
(Ω) + ‖u(t)‖p

Lp(Ω)

)

, ∀u ∈ H2
∗ (Ω), 2 ≤ s ≤ p. (3.22)

Thus, we obtain (3.17) from (3.19) and (3.22). This completes the proof. �

4. Blow-up result

In this section, we state and prove the blow-up result for problem (1.1). We adopt the ideas and
method used in [9,10,11,19] with necessary modifications to establish our result. Our result read as
follows:

Theorem 4.1. Assume (A1) and (A2) hold, m < p and the conditions of Lemma 3.3 remain valid.
Furthermore, assume that

ξ−1(1) <

(

θǫ0β1pµ

(p − 1)|Ω|

)
p−1

p

, (4.1)

where

0 < µp−1 < θ < min{k1, k2},

and for some η > 0

k1 = (1 − ǫ0)

(

p − 2

2

)

+ (1 − η) > 0, (4.2)

k2 = (1 − ǫ0)

(

p − 2

2

)

−

(

(1 − ǫ0)

(

p − 2

2

)

+
1

4η

)∫ ∞

0

g(s)ds > 0. (4.3)

Then, there exists a finite time at which the solution of problem (1.1) blows up.

Proof. Define

H(t) = F (1−σ)(t) + ̺

∫

Ω

u(x, y, t)ut(x, y, t)dxdy, (4.4)

for ̺ > 0 small to be chosen later and for

0 < σ < min

{

p − 2

2p
,

p − m

p(m − 1)

}

. (4.5)

Differentiating (4.4) and using Eq. (1.1)1, we obtain

H ′(t) = (1 − σ)F −σ(t)F ′(t) + ̺‖ut(t)‖
2
L2(Ω) − ̺‖u(t)‖2

H2
∗

(Ω) + ̺‖u(t)‖p

Lp(Ω)

+ ̺

∫ t

0

g(t − s) (u(s), u(t))H2
∗

(Ω) ds − ̺

∫

Ω

h(ut(x, y, t)u(x, y, t)dxdy.
(4.6)
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Using Schwarz inequality, we have for any η > 0,

∫ t

0

g(t − s) (u(s), u(t))H2
∗

(Ω) ds

=

∫ t

0

g(t − s) (u(s) − u(t), u(t))H2
∗

(Ω) ds +

(∫ t

0

g(s)ds

)

‖u(t)‖2
H2

∗
(Ω)

≥ −η(g ⋄ u)(t) +

(

1 −
1

4η

)(
∫ t

0

g(s)ds

)

‖u(t)‖2
H2

∗
(Ω).

(4.7)

Thus, the estimate (4.6) becomes

H ′(t) ≥ (1 − σ)F −σ(t)F ′(t) + ̺‖ut(t)‖
2
L2(Ω) − ̺‖u(t)‖2

H2
∗

(Ω) + ̺‖u(t)‖p

Lp(Ω)

− ̺η(g ⋄ u)(t) + ̺

(

1 −
1

4η

)(∫ t

0

g(s)ds

)

‖u(t)‖2
H2

∗
(Ω)

− ̺

∫

Ω

h(ut(x, y, t)u(x, y, t)dxdy.

(4.8)

Substituting ‖u(t)‖p

Lp(Ω) from (2.4), we get

H ′(t) ≥ (1 − σ)F −σ(t)F ′(t) + ̺‖ut(t)‖
2
L2(Ω) − ̺‖u(t)‖2

H2
∗

(Ω) − ̺η(g ⋄ u)(t)

+ ̺

(

−pE(t) +
p

2
‖ut(t)‖

2
L2(Ω) +

p

2

(

1 −

∫ t

0

g(s)ds

)

‖u(t)‖2
H2

∗
(Ω) +

p

2
(g ⋄ u)(t)

)

+ ̺

(

1 −
1

4η

)(∫ t

0

g(s)ds

)

‖u(t)‖2
H2

∗
(Ω) − ̺

∫

Ω

h(ut(x, y, t)u(x, y, t)dxdy.

(4.9)

Using E(t) = ǫ0β1 − F (t), we arrive at

H ′(t) ≥ (1 − σ)F −σ(t)F ′(t) + ̺
(p

2
+ 1
)

‖ut(t)‖
2
L2(Ω)

+ ̺
[p

2
− η − ǫ0

(p

2
− 1
)]

(g ⋄ u)(t) + ̺pF (t)

+ ̺

[

(p

2
− 1
)

−

(

(p

2
− 1
)

+
1

4η

)∫ t

0

g(s)ds

]

‖u(t)‖2
H2

∗
(Ω)

− ̺pǫ0β1 − ̺

∫

Ω

h(ut(x, y, t)u(x, y, t)dxdy.

(4.10)

Using (3.12), then estimate (4.10) takes the form

H ′(t) ≥ (1 − σ)F −σ(t)F ′(t) + ̺
(p

2
+ 1
)

‖ut(t)‖
2
L2(Ω)

+ ̺
[p

2
− η − ǫ0

(p

2
− 1
)]

(g ⋄ u)(t) + ̺pF (t)

+ ̺

[

(p

2
− 1
)

−

(

(p

2
− 1
)

+
1

4η

)∫ t

0

g(s)ds

]

‖u(t)‖2
H2

∗
(Ω)

−
̺ǫ0(p − 2)

2

(

1 −

∫ t

0

g(s)ds

)

‖u(t)‖2
H2

∗
(Ω) −

̺ǫ0(p − 2)

2
(g ⋄ u)(t)

− ̺

∫

Ω

h(ut(x, y, t)u(x, y, t)dxdy,
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which yields

H ′(t) ≥ (1 − σ)F −σ(t)F ′(t) + ̺
(p

2
+ 1
)

‖ut(t)‖
2
L2(Ω)

+ ̺
[

(1 − ǫ0)
(p

2
− 1
)

+ (1 − η)
]

(g ⋄ u)(t) + ̺pF (t)

+ ̺

[

(1 − ǫ0)
(p

2
− 1
)

−

(

(1 − ǫ0)
(p

2
− 1
)

+
1

4η

)∫ t

0

g(s)ds

]

‖u(t)‖2
H2

∗
(Ω)

− ̺

∫

Ω

h(ut(x, y, t)u(x, y, t)dxdy.

(4.11)

Now, choosing η > 0 small enough such that

0 < η < (1 − ǫ0)
(p

2
− 1
)

+ 1

and taking note of (4.2) and (4.3), the estimate in (4.11) becomes

H ′(t) ≥ (1 − σ)F −σ(t)F ′(t) + ̺
(p

2
+ 1
)

‖ut(t)‖
2
L2(Ω) + ̺k1(g ⋄ u)(t)

+ ̺pF (t) + ̺k2‖u(t)‖2
H2

∗
(Ω) − ̺

∫

Ω

h(ut(x, y, t)u(x, y, t)dxdy.
(4.12)

To estimate the last term on right-hand side of (4.12), we partition Ω as follows:

I1 = {(x, y) ∈ Ω : |ut(x, y, t)| ≤ 1} , I2 = {(x, y) ∈ Ω : |ut(x, y, t)| > 1} .

Using Young’s inequality and (2.2), we have the following estimates (see [9] for details on similar com-
putations)

∫

I1

h(ut(x, y, t)u(x, y, t)dxdy ≤
µp−1

p
‖u(t)‖p

Lp(Ω) +
(p − 1)|Ω|

pµ

(

ξ−1(1)
)

p

p−1 , µ > 0 (4.13)

and
∫

I2

h(ut(x, y, t)u(x, y, t)dxdy ≤
m − 1

m
γ− m

m−1 F ′(t) +
γm

m
‖u(t)‖m

Lp(Ω), γ > 0. (4.14)

Substituting (4.13) and (4.14) into (4.12), we obtain

H ′(t) ≥ (1 − σ)F −σ(t)F ′(t) + ̺
(p

2
+ 1
)

‖ut(t)‖
2
L2(Ω) + ̺k1(g ⋄ u)(t) + ̺pF (t)

+ ̺k2‖u(t)‖2
H2

∗
(Ω) −

̺µp−1

p
‖u(t)‖p

Lp(Ω) −
̺(p − 1)|Ω|

pµ

(

ξ−1(1)
)

p

p−1

−
̺(m − 1)

m
γ− m

m−1 F ′(t) −
̺γm

m
‖u(t)‖m

Lp(Ω).

(4.15)

We observe that (4.15) remains valid even if γ is time-dependent since the integral is done over (x, y)
variables. Making use of (2.4) and (3.15), and adding ̺θF (t) − ̺θF (t) to the right-hand side of (4.15),
for some θ to be specified later, we get

H ′(t) ≥

[

(1 − σ)F −σ(t) −
̺(m − 1)

m
γ− m

m−1

]

F ′(t) + ̺

(

p

2
+ 1 −

θ

2

)

‖ut(t)‖
2
L2(Ω)

+ ̺

(

k1 −
θ

2

)

(g ⋄ u)(t) + ̺

(

k2 −
θ

2

(

1 −

∫ t

0

g(s)ds

))

‖u(t)‖2
H2

∗
(Ω)

+ ̺(p − θ)F (t) + ̺

(

θ

p
−

µp−1

p

)

‖ut(t)‖
p

Lp(Ω) −
̺(p − 1)|Ω|

pµ

(

ξ−1(1)
)

p

p−1

−
̺γm

m
‖u(t)‖m

Lp(Ω) + ̺θǫ0β1.

(4.16)
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Now, we set γ− m

m−1 = bF −σ(t), for some b to be chosen properly and substituting in (4.16), we obtain

H ′(t) ≥

[

(1 − σ) −
b̺(m − 1)

m

]

F −σ(t)F ′(t) + ̺

(

p

2
+ 1 −

θ

2

)

‖ut(t)‖
2
L2(Ω)

+ ̺

(

k1 −
θ

2

)

(g ⋄ u)(t) + ̺

(

k2 −
θ

2

(

1 −

∫ t

0

g(s)ds

))

‖u(t)‖2
H2

∗
(Ω)

+ ̺(p − θ)F (t) + ̺

(

θ

p
−

µp−1

p

)

‖ut(t)‖
p

Lp(Ω) −
̺(p − 1)|Ω|

pµ

(

ξ−1(1)
)

p

p−1

−
b1−m̺

m
F σ(m−1)(t)‖u(t)‖m

Lp(Ω) + ̺θǫ0β1.

(4.17)

Using Lemma 3.4, we have

−
b1−m̺

m
F σ(m−1)(t)‖u(t)‖m

Lp(Ω) ≥ −
b1−m̺

m
p

σ(m−1)
0 ‖u(t)‖

σp(m−1)+m

Lp(Ω) . (4.18)

Making use of (4.5), Lemma 3.5 with s = σp(m − 1) + m ≤ p and (4.18), we get from (4.17) that

H ′(t) ≥

[

(1 − σ) −
b̺(m − 1)

m

]

F −σ(t)F ′(t)

+ ̺

[

p

2
+ 1 −

θ

2
+

cb1−m̺

m
p

σ(m−1)
0

]

‖ut(t)‖
2
L2(Ω)

+ ̺

[

k1 −
θ

2
+

cb1−m̺

m
p

σ(m−1)
0

]

(g ⋄ u)(t)

+ ̺

[

k2 −
θ

2

(

1 −

∫ t

0

g(s)ds

)]

‖u(t)‖2
H2

∗
(Ω)

+ ̺

[

p − θ +
cb1−m̺

m
p

σ(m−1)
0

]

F (t)

+ ̺

[

θ

p
−

µp−1

p
−

cb1−m̺

m
p

σ(m−1)
0

]

‖u(t)‖p

Lp(Ω)

−
̺(p − 1)|Ω|

pµ

(

ξ−1(1)
)

p

p−1 + ̺θǫ0β1.

(4.19)

Now, we choose our parameters carefully. First, we select θ small enough such that

0 < θ < min {k1, k2} .

Secondly, we choose µ small enough so that

θ − µp−1 > 0.

Then we select b large enough so that

θ

p
−

µp−1

p
−

cb1−m̺

m
p

σ(m−1)
0 > 0

and select ̺ so small such that

(1 − σ) −
b̺(m − 1)

m
> 0

and, hence, because of (4.1), we deduce that

̺θǫ0β1 −
̺(p − 1)|Ω|

pµ

(

ξ−1(1)
)

p

p−1 > 0.
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With the above choices, we obtain

H ′(t) ≥ λ
(

F (t) + ‖ut(t)‖L2(Ω) + ‖u(t)‖p

Lp(Ω) + (g ⋄ u)(t)
)

, (4.20)

where λ > 0 is a constant. Now, using Schwarz and Young’s inequalities, we have

∣

∣

∣

∣

∫

Ω

u(x, y, t)ut(x, y, t)dxdy

∣

∣

∣

∣

1

1−σ

≤ ‖u(t)‖
1

1−σ

L2(Ω)‖ut(t)‖
1

1−σ

L2(Ω)

≤ C‖u(t)‖
1

1−σ

Lp(Ω)‖ut(t)‖
1

1−σ

L2(Ω)

≤ C

(

‖u(t)‖
r1

1−σ

Lp(Ω) + ‖ut(t)‖
r2

1−σ

L2(Ω)

)

,

(4.21)

such that 1
r1

+ 1
r2

= 1. From (4.5), we need s = r1

1−σ
= 2

1−2σ
≤ p. Therefore we select r2 = 2(1 − σ) and

arrive at
∣

∣

∣

∣

∫

Ω

u(x, y, t)ut(x, y, t)dxdy

∣

∣

∣

∣

1

1−σ

≤ C
(

‖u(t)‖s
Lp(Ω) + ‖ut(t)‖

2
L2(Ω)

)

. (4.22)

Applying Lemma 3.5, we get, for all t ≥ 0,

∣

∣

∣

∣

∫

Ω

u(x, y, t)ut(x, y, t)dxdy

∣

∣

∣

∣

1

1−σ

≤ C
(

F (t) + ‖ut(t)‖L2(Ω) + ‖u(t)‖p

Lp(Ω) + (g ⋄ u)(t)
)

. (4.23)

Thus, using the definition of H(t), we get

H(t)
1

1−σ =

(

F 1−σ(t) + ̺

∫

Ω

u(x, y, t)ut(x, y, t)dxdy

)
1

1−σ

≤ 2
1

1−σ

(

F (t) +

∣

∣

∣

∣

∫

Ω

u(x, y, t)ut(x, y, t)dxdy

∣

∣

∣

∣

1

1−σ

)

≤ C
(

F (t) + ‖ut(t)‖L2(Ω) + ‖u(t)‖p

Lp(Ω) + (g ⋄ u)(t)
)

, ∀t ≥ 0.

(4.24)

A combination of (4.20) and (4.24) leads to

H ′(t) ≥ C (H(t))
1

1−σ , ∀t ≥ 0. (4.25)

Integrating (4.25) over (0, t) gives

H(t) ≥
1

H(0)− σ

1−σ − t Cσ
1−σ

(4.26)

and, consequently, we obtain that H(t) blows up in a finite time

T ∗ ≤
1 − σ

Cσ (H(0))
σ

1−σ

. (4.27)

This completes the proof. �
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