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abstract: In the present investigation, we discuss the sharpness of the bound of the Fekete-Szegö func-
tional |a3 − µa2

2
| for the functions belonging to certain subclass Rǫ

ν,Lg
(ψ) of analytic functions by means of

convolution. The significant and useful consequences with the relevance of this class with some known classes
are also pointed out.
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1. Introduction

Let H be the class of all functions of the form

f(z) = z +

∞
∑

n=2

anz
n, (1.1)

analytic in the open unit disk U = {z ∈ C : |z| < 1}, normalized by f(0) = 0 and f ′(0) = 1. Further the
subclass of H consisting of univalent functions is denoted by S. Flash back that a function f ∈ H

is starlike if f(U) is a starlike domain and convex if f(U) is a convex domain. The classes comprise
of starlike and convex functions are usually denoted by S∗ and C, respectively. The function f(z) is
subordinate to the function g(z), written f(z) ≺ g(z), provided that there is an analytic function w(z)
defined on U with ω(0) = 0 and |ω(z)| < 1 such that f(z) = g(w(z)). A function is starlike if and only
if Re(zf ′(z)/f(z)) > 0, or in other words if zf ′(z)/f(z) ≺ (1 + z)/(1 − z). The superordinate function
φ(z) = (1 + z)/(1 − z) is a convex function. Ma and Minda [16] have given a unification of various
subclasses consisting of starlike and convex functions for which either one of the expressions zf ′(z)/f(z)
or 1 + zf ′′(z)/f ′(z) is subordinate to a more general superordinate function. Literally, they considered
the analytic function ψ with positive real part in the unit disk U, ψ(0) = 1, ψ′(0) > 0, where ψ maps U

onto a region starlike with respect to 1 and symmetric with respect to the real axis. The unified class
S∗(ψ) initiated by Ma and Minda [16] consists of functions f ∈ H satisfying

zf ′(z)

f(z)
≺ ψ(z) (z ∈ U)

They also investigated the corresponding class C(ψ) of convex functions f ∈ H satisfying

1 +
zf ′′(z)

f ′(z)
≺ ψ(z) (z ∈ U).

A function f ∈ S∗(ψ) is said to be starlike function with respect to ψ, and a function f ∈ C(ψ) is a
convex function with respect to ψ. In geometric function theory, bounds for the coefficient |ai| play the
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significant role, as it reveals the geometric properties for the corresponding function. For instance, the
bound for the second coefficient |a2| of given functions in the class S describes the growth and distortion
bounds together with covering theorems. The Fekete-Szegö coefficient functional also comes up obviously
in the exploration of univalency of analytic functions. A number of authors have scrutinized the Fekete-
Szegö functional for functions in various subclasses of univalent, multivalent and close-to-convex functions
[17], [18], [11], [26], [14], [27], [19], [2]] and recently by R. Agrawal et al. [1].

In 1933; Fekete and Szegö [10] obtained the sharp bound for |a3 − µa2
2| as a function of the real

parameter µ and proved that

|a3 − µa2
2| ≤ 1 + 2 exp

(

−
2µ

1 − µ

)

(0 ≤ µ ≤ 1),

for functions in the class S. Later the problem of finding sharp bound for the non-linear functional
|a3 − µa2

2| of any compact family of functions f ∈ S is identified as Fekete-Szegö problem.
If f ∈ H is given by (1.1) and g ∈ H is given by

g(z) = z +

∞
∑

n=2

bnz
n, (1.2)

then the convolution (or Hadamard product) f ∗ g of f and g is defined by

(f ∗ g)(z) = z +

∞
∑

n=2

anbnz
n = (g ∗ f)(z). (1.3)

In this article ψ is assumed to be an analytic function with positive real part in the unit disk U and has
the Taylor’s series expansion of the form

ψ(z) = 1 +B1z +B2z
2 +B3z

3 + ...;

with B1 > 0 and B2 is any real number.
Stimulated by the class Rτ

γ(β) in paper [25], we introduce the following class.

Definition 1.1. Let 0 ≤ ν ≤ 1, ǫ ∈ C\{0}. A function f ∈ H is in the class Rǫ
ν,Lg

(ψ) if

1 +
1

ǫ

(

L
′
gf(z) + νzL′′

gf(z) − 1
)

≺ ψ(z), (1.4)

where Lg(f(z)) = f(z) ∗ g(z) and ψ(z) defined same as the above.
If we set

ψ(z) =
1 +Az

1 +Bz
(−1 ≤ B < A ≤ 1; z ∈ U),

in (1.4), we get

R
ǫ
ν,Lg

(

1 +Az

1 +Bz

)

= R
ǫ
ν,Lg

(A,B) =

{

f ∈ H :

∣

∣

∣

∣

L
′
gf(z) + νzL′′

gf(z) − 1

ǫ(A−B) −B(L′
gf(z) + νzL′′

gf(z) − 1)

∣

∣

∣

∣

< 1

}

which is again a new class. Here we discuss some applications of particular case when g(z) = z
(1−z) of

our class discussed in the literature.

(1) Rτ
γ(1 − 2β,−1) = Rτ

γ(β) for 0 ≤ β < 1, τ = C\{0} was discussed recently by Swaminathan [25].

(2) The class Rτ
γ(1 − 2β,−1) for τ = eiη cos η, where −π/2 < η < π/2 is considered in [20] and the

properties of certain integral transforms of the type

Vλ(f) =

∫ 1

0

λ(t)
f(tz)

t
dt, f ∈ R(eiη cos η)

γ (β)
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under a suitable restriction on λ(t) was discussed using duality techniques for various values of in [20].
(3) The class Rτ

γ(0,−1) with τ = eiη cos η was considered in [12] with reference to the univalencey of
partial sums.

(4) if f ∈ Reiη cos η
γ (1 − 2β,−1) whenever zf ′(z) ∈ P τ

γ (β), the class considered in [24].

Here we list some more particular cases of this class discussed in the literature:

(1) Let g(z) = z +
∑∞

k=2

(

(l+1)+θ(k−1)
l+1

)m

zk, where θ > 0, l ≥ 0 and m ∈ N0 in (1.4), then the class

Rǫ
ν,Lg

(ψ) reduces to the class Rǫ
ν,Ig

(ψ), which is defined by:

1 +
1

ǫ

(

I ′
g(θ, l)f(z) + νzI ′′

g (θ, l)f(z) − 1
)

≺ ψ(z), (1.5)

where Ig(θ, l) is the generalized multiplier transformation which was introduced and studied by Catas et
al. [6].

(2) Let g(z) = z +
∑∞

k=2

(

l+k
l+1

)m

zk, where l ≥ 0 and m ∈ N0 in (1.4), then the class Rǫ
ν,Lg

(ψ)

reduces to the class R
ǫ
ν,Sg

(ψ) which is defined by

1 +
1

ǫ

(

S
′
g(l)f(z) + νzS′′

g(l)f(z) − 1
)

≺ ψ(z), (1.6)

where Sg(l) is the generalized multiplier transformation see [7,8].

(3) Let g(z) = z+
∑∞

k=2 (1 + θ(k − 1))
m
zk, where θ > 0 and m ∈ N0 in(1.4), then the class Rǫ

ν,Lg
(ψ)

reduces to the class Rǫ
ν,Dg

(ψ) which is defined by

1 +
1

ǫ

(

D
′
gf(z) + νzD′′

g(l)f(z) − 1
)

≺ ψ(z), (1.7)

where the operator Dg(θ) is the Salagean operator, see ( [21]).

(4) Let g(z) = z +
∑∞

k=2

(

1+b
k+b

)s

zk where b ∈ C\Z−
0 , s ∈ C in (1.4), then the class Rǫ

ν,Lg
(ψ) reduces

to the class Rǫ
ν,Js,b

(ψ) which is defined by

1 +
1

ǫ

(

J ′
s,bf(z) + νzJ ′′

s,b(l)f(z) − 1
)

≺ ψ(z), (1.8)

where the operator Js,b wae introduced and studied by Srivastava and Attiya [23].

(5) Let g(z) = z+
∑∞

k=2

(

2
k+1

)α

zk where α ≥ 0 in (1.4), then the class Rǫ
ν,Lg

(ψ) reduces to the class

Rǫ
ν,Iα(ψ) which is defined by

1 +
1

ǫ

(

Iα′f(z) + νzIα′′f(z) − 1
)

≺ ψ(z), (1.9)

where the operator Iα was introduced and studied by Jung et al. [13].

(6) Let g(z) = z + Γ(1+α+β)
Γ(1+β)

∑∞
k=2

Γ(k+β)
Γ(k+α+β)z

k where α ≥ 0, β > −1 in (1.4), then the class Rǫ
ν,Lg

(ψ)

reduces to the class Rǫ
ν,Qα

β
(ψ) which is defined by

1 +
1

ǫ

(

Qα
β

′f(z) + νzQα
β

′′f(z) − 1
)

≺ ψ(z), (1.10)

where the operator Qα
β was introduced and studied by Jung et al. [13].
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(7) Let g(z) = z +
∑∞

k=2
(1+µ)ν

(k+µ)ν Γk(a1)zk, where Γk(a1) =
(a1)k−1...(al)k−1

(b1)k−1...(bm)k−1(1)k−1
(

with ai ∈ C, i = 1, 2...l; bj ∈ C\Z−
0 = {0,−1,−2, ...}, j = 1, 2...m, l ≤ m+ 1, l,m,∈ N0, z ∈ U

)

. and (ν)k

is the Pochhammer symbol defined by

(ν)k :=

{

1, (k = 0, ν ∈ C∗ = C\{0}),
ν(ν + 1)...(ν + k − 1), (k ∈ N, ν ∈ C).

Then the class Rǫ
ν,Lg

(ψ) reduces to the class Rǫ
ν,K(a1,b1,l,m,µ,ν

(ψ) which is defined by

1 +
1

ǫ
(K′(a1, b1, l,m, µ, ν)f(z) + νzK′′(a1, b1, l,m, µ, ν)f(z) − 1) ≺ ψ(z), (1.11)

where the operator K(a1, b1, l,m, µ, ν(ψ) wae introduced and studied by Selvaraj and Karthikeyan [22].

(8) Let g(z) = z +
∑∞

k=2

(

1+b
k+b

)s
(k+µ−2)!ρ!

(µ−1)!(k+ρ−1)!z
k (b ∈ C\Z−

0 , s ∈ C, µ > 0, ρ > −1) then the class

Rǫ
ν,Lg

(ψ) reduces to the class Rǫ
ν,J

ρ,µ

s,b

(ψ) which is defined by

1 +
1

ǫ

(

Jρ,µ
s,b

′
f(z) + νzJρ,µ

s,b

′′
f(z) − 1

)

≺ ψ(z), (1.12)

where the operator Jρ,µ
s,b was introduced and studied by Al-Shaqsi etal. [3] and Darus etal. [9].

In the present investigation, we derive the Fekete-Szegö inequality for the class Rǫ
ν,Lg

(ψ) and deduce
the such type of results for some special classes also. Here are lemmas that are required in order to prove
our main results. Lemma 1.2 of Ali et al. [4], is a reformulation of the corresponding result for functions
with positive real part due to Ma and Minda [16].

Let Ω be the class of analytic functions ω, normalized by the condition ω(0) = 0 and satisfying
|ω(z)| < 1.

Lemma 1.2. [4] If ω(z) = ω1z + ω2z
2 + ... ∈ Ω (z ∈ U), then

|ω2 − tω2
1| ≤







−t (t ≤ −1)
1 (−1 ≤ t ≤ 1)
t (t ≥ 1).

(1.13)

For t < −1 or t > 1, equality holds if and only if ω(z) = z or one of its rotations. For −1 < t < 1,
equality holds if and only if ω(z) = z2 or one of its rotations. Equality holds for t = −1 if and only if
ω(z) = z(λ+ z)/(1 + λz) (0 ≤ λ ≤ 1) or one of its rotations, while for t = 1, equality holds if and only
if ω(z) = −z(λ + z)/(1 + λz) (0 ≤ λ ≤ 1) or one of its rotations. Also the sharp upper bound in the
inequality (1.13) can be improved as follows when −1 < t < 1;

|ω2 − tω2
1| + (1 + t)|ω1|2 ≤ 1, (−1 < t ≤ 0) (1.14)

and

|ω2 − tω2
1| + (1 − t)|ω1|2 ≤ 1, (0 < t ≤ 1). (1.15)

Lemma 1.3. (see [15]) If p(z) = 1 + c1z + c2z
2 + c3z

3 + ...(z ∈ U) is a function with positive real part,
then for any complex number µ

|c2 − µc2
1| ≤ 2 max{1, |2µ− 1|},

and the result is sharp for the function given by

p(z) =
1 + z2

1 − z2
, p(z) =

1 + z

1 − z
(z ∈ U).
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2. The Fekete-Szego Inequality

We begin with the following results for the class in Rǫ
ν,Lg

(ψ).

Theorem 2.1. let g(z) be given by (1.2) with b2, b3 non zero real numbers. Also assume that ǫ > 0,
0 ≤ ν ≤ 1 and ψ(z) = 1 +B1z +B2z

2 + · · ·. If f ∈ Rǫ
ν,Lg

(ψ) and µ is any real number then

|a3 − µa2
2| ≤















ǫ
3|b3|(1+2ν)

{

B2 −
3b3µǫB2

1 (1+2ν)

4b2
2
(1+ν)2

}

if µ ≤ σ1

ǫB1

3|b3|(1+2ν) if σ1 ≤ µ ≤ σ2

ǫ
3|b3|(1+2ν)

{

−B2 +
3b3µǫB2

1 (1+2ν)
4b2

2
(1+ν)2

}

if µ ≥ σ2.

(2.1)

where

σ1 =
4b2

2(1 + ν)2

3b3ǫB1(1 + 2ν)

{

−1 +
B2

B1

}

and σ2 =
4b2

2(1 + ν)2

3b3ǫB1(1 + 2ν)

{

1 +
B2

B1

}

.

The inequality (2.1) is sharp.
Further, when σ1 ≤ µ ≤ σ2 the above result can be improved as follows, for this let

σ3 =
4b2

2(1 + ν)2B2

3b3ǫB2
1(1 + 2ν)

.

If σ1 < µ ≤ σ3, then

|a3 − µa2
2| +

4b2
2(1 + ν)2

3|b3|ǫB1(1 + 2ν)

(

1 +
3µǫ(1 + 2ν)B1b3

4(1 + ν)2b2
2

−
B2

B1

)

|a2|2 ≤
ǫB1

3|b3|(1 + 2ν)
(2.2)

and if σ3 ≤ µ < σ2, then

|a3 − µa2
2| +

4b2
2(1 + ν)2

3|b3|ǫB1(1 + 2ν)

(

1 −
3µǫ(1 + 2ν)B1b3

4(1 + ν)2b2
2

+
B2

B1

)

|a2|2 ≤
ǫB1

3|b3|(1 + 2ν)
. (2.3)

Proof. Since f ∈ Rǫ
ν,Lg

(ψ), then there exist an analytic function ω(z) = ω1z + ω2z
2 + ... ∈ Ω with

ω(0) = 0 and |ω(z)| < 1 such that

1 +
1

ǫ

(

L
′
gf(z) + νzL′′

gf(z) − 1
)

= ψ(ω(z)). (2.4)

A calculation shows that

1 +
1

ǫ

[

L
′
gf(z) + νzL′′

gf(z) − 1
]

= 1 +
2a2b2

ǫ
(1 + ν)z +

3a3b3

ǫ
(1 + 2ν)z2 + ... (2.5)

substituting these values in (2.4) and comparing both of the sides we get

2a2b2

ǫ
(1 + ν) = B1ω1 (2.6)

3a3b3

ǫ
(1 + 2ν) = B1ω2 +B2ω

2. (2.7)

Buy using (2.6) and (2.7), we have

a3 − µa2
2 =

ǫB1

3b3(1 + 2ν)

[

ω2 − tω2
1

]

(2.8)

where

t =
3µǫ(1 + 2ν)B1b3

4(1 + ν)2b2
2

−
B2

B1
. (2.9)
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If t ≤ −1, then
3µǫ(1 + 2ν)B1b3

4(1 + ν)2b2
2

−
B2

B1
≤ −1,

which implies

µ ≤
4b2

2(1 + ν)2

3b3ǫB1(1 + 2ν)

{

−1 +
B2

B1

}

=: σ1.

Now an application of Lemma 1.2 gives

|a3 − µa2
2| ≤

ǫ

3|b3|(1 + 2ν)

{

B2 −
3b3µǫB

2
1(1 + 2ν)

4b2
2(1 + ν)2

}

(µ ≤ σ1),

which is the first part of assertion (2.1).
Next, if t ≥ 1, then

3µǫ(1 + 2ν)B1b3

4(1 + ν)2b2
2

−
B2

B1
≥ 1.

Which implies

µ ≥
4b2

2(1 + ν)2

3b3ǫB1(1 + 2ν)

{

1 +
B2

B1

}

=: σ2,

applying Lemma 1.2, we have

|a3 − µa2
2| ≤

ǫ

3|b3|(1 + 2ν)

{

−B2 +
3b3µǫB

2
1(1 + 2ν)

4b2
2(1 + ν)2

}

(µ > σ2),

which is essentially the third part of assertion (2.1).
Finally if −1 ≤ t ≤ 1, then

−1 ≤
3µǫ(1 + 2ν)B1b3

4(1 + ν)2b2
2

−
B2

B1
≤ 1.

Which shows that σ1 ≤ µ ≤ σ2. Thus by an application of Lemma 1.2, we obtain

|a3 − µa2
2| ≤

ǫB1

3|b3|(1 + 2ν)
(σ1 ≤ µ ≤ σ2),

which is the second part of assertion (2.1).
Further when σ1 < µ < σ2 the above result can be improved as follows:

If −1 < t ≤ 0, then

−1 <
3µǫ(1 + 2ν)B1b3

4(1 + ν)2b2
2

−
B2

B1
≤ 0,

which implies that σ1 < µ ≤ σ3, where

σ3 :=
4b2

2(1 + ν)2B2

3b3ǫB2
1(1 + 2ν)

.

Now using (1.14), (2.8) and (2.9), we have

3|b3|(1 + 2ν)

ǫB1
|a3 − µa2

2| +

(

1 +
3µǫ(1 + 2ν)B1b3

4(1 + ν)2b2
2

−
B2

B1

)

|ω1|2 ≤ 1. (2.10)

Substituting the value of ω2
1 from (2.6) to (2.10) and simplifying, we have

|a3 − µa2
2| +

4b2
2(1 + ν)2

3|b3|ǫB1(1 + 2ν)

(

1 +
3µǫ(1 + 2ν)B1b3

4(1 + ν)2b2
2

−
B2

B1

)

|a2|2 ≤
ǫB1

3|b3|(1 + 2ν)
, (σ1 < µ ≤ σ3).

Further if 0 ≤ t < 1, then σ3 ≤ µ < σ2. Now a similar computation using (1.15), (2.6), (2.8) and (2.9)
gives us

|a3 − µa2
2| +

4b2
2(1 + ν)2

3|b3|ǫB1(1 + 2ν)

(

1 −
3µǫ(1 + 2ν)B1b3

4(1 + ν)2b2
2

+
B2

B1

)

|a2|2 ≤
ǫB1

3|b3|(1 + 2ν)
.

This completes the proof. �
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From Theorem 2.1, we deduce the following results:

Corollary 2.2. let g(z) be given by (1.2) with b2, b3 non zero real numbers. Also assume that ǫ > 0 and
−1 ≤ D < C ≤ 1. If f ∈ Rǫ

ν,Lg
( 1+Cz

1+Dz
) and µ is any real number then

|a3 − µa2
2| ≤















ǫ
3|b3|(1+2ν)

{

D(D − C) − 3b3µǫ(C−D)2(1+2ν)
4b2

2
(1+ν)2

}

if µ ≤ σ1

ǫ(C−D)
3|b3|(1+2ν) if σ1 ≤ µ ≤ σ2

ǫ
3|b3|(1+2ν)

{

−D(D − C) + 3b3µǫ(C−D)2(1+2ν)
4b2

2
(1+ν)2

}

if µ ≥ σ2.

(2.11)

where

σ1 =
4b2

2(1 + ν)2

3b3ǫ(1 + 2ν)

{

1 +D

D − C

}

and σ2 =
4b2

2(1 + ν)2

3b3ǫ(1 + 2ν)

{

1 −D

C −D

}

.

The inequality (2.11) is sharp.
The above result can be improved when σ1 ≤ µ ≤ σ2 as follows.

Let

σ3 =
4b2

2(1 + ν)2D

3b3ǫ(1 + 2ν)(D − C)
.

If σ1 < µ < σ3, then

|a3 − µa2
2| +

4b2
2(1 + ν)2

3|b3|ǫ(1 + 2ν)(C −D)

(

1 +D +
3µǫ(1 + 2ν)(C −D)b3

4(1 + ν)2b2
2

)

|a2|2 ≤
ǫ(C −D)

3|b3|(1 + 2ν)
(2.12)

and if σ3 < µ < σ2, then

|a3 − µa2
2| +

4b2
2(1 + ν)2

3|b3|ǫ(1 + 2ν)(C −D)

(

1 −D −
3µǫ(1 + 2ν)(C −D)b3

4(1 + ν)2b2
2

)

|a2|2 ≤
ǫ(C −D)

3|b3|(1 + 2ν)
. (2.13)

By taking D = −1 and C = 1 in the above Corollary 2.2, we obtain the following:
Example let g(z) be given by (1.2) with b2, b3 non zero real numbers. If f ∈ Rǫ

ν,Lg
(1+z

1−z
) and µ is any

real number then

|a3 − µa2
2| ≤















2ǫ
3|b3|(1+2ν)

{

1 − 3b3µǫ(1+2ν)
2b2

2
(1+ν)2

}

if µ ≤ σ1

2ǫ
3|b3|(1+2ν) if σ1 ≤ µ ≤ σ2

2ǫ
3|b3|(1+2ν)

{

−1 + 3b3µǫ(1+2ν)
2b2

2
(1+ν)2

}

if µ ≥ σ2.

(2.14)

where

σ1 = 0 and σ2 =
4b2

2(1 + ν)2

3b3ǫ(1 + 2ν)
.

The inequality (2.14) is sharp.

Using Lemma 1.3 and equation (2.8), we deduce the following:

Theorem 2.3. Let ψ(z) = 1 +B1z +B2z
2 +B3z

3 + ..., where ψ(0) = 0 and ψ′(0) > 0. If f(z) is given
by (1.1) belongs to Rǫ

ν,Lg
(ψ), (0 ≤ ν ≤ 1, ǫ ∈ C\{0} z ∈ U), then for any complex number µ

|a3 − µa2
2| ≤

B1|ǫ|

3|b3|(1 + 2ν)
max

{

1,

∣

∣

∣

∣

B2

B1
−

3

4

b3

b2
2

µǫB1(1 + 2ν)

(1 + ν)2

∣

∣

∣

∣

}

. (2.15)

The result is sharp.

Remark 2.4. If we put g(z) = z
1−z

in (1.4), we have the result( [5], Theorem 2.1.) of D. Bansal.
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Putting B1 = (A−B) and B2 = −B(A−B) in Theorem 2.3, we get the following corollary.

Corollary 2.5. Let ψ(z) = 1+B1z+B2z
2 +B3z

3 + ... . If f(z) is given by (1.1) belongs to Rǫ
ν,Lg

(A,B),

(0 ≤ ν ≤ 1, ǫ ∈ C\{0}, z ∈ U), then for any complex number µ

|a3 − µa2
2| ≤

(A−B)|ǫ|

3|b3|(1 + 2ν)
max

{

1,

∣

∣

∣

∣

B +
3

4

b3

b2
2

µǫ(A−B)(1 + 2ν)

(1 + ν)2

∣

∣

∣

∣

}

. (2.16)

The result is sharp.

Putting g(z) = z +
∑∞

k=2

(

(l+1)+θ(k−1)
l+1

)m

zk, where θ > 0, l ≥ 0 and m ∈ N0 in (1.4), we obtain the

following corollary.

Corollary 2.6. Let ψ(z) = 1+B1z+B2z
2+B3z

3+... . If f(z) is given by (1.1) belongs to Rǫ
ν,Ig

(ψ), (0 ≤

ν ≤ 1, ǫ ∈ C\{0} z ∈ U), then

|a3 − µa2
2| ≤

B1|ǫ||l + 1|m

3(1 + 2ν)|l + 1 + 2θ|m
max

{

1,

∣

∣

∣

∣

B2

B1
−

3

4

(l + 1)m(l + 1 + 2θ)m

(l + 1 + θ)m

µǫB1(1 + 2ν)

(1 + ν)2

∣

∣

∣

∣

}

. (2.17)

Putting g(z) = z +
∑∞

k=2

(

l+k
l+1

)m

zk, where l ≥ 0 and m ∈ N0 in (1.4), then the class Rǫ
ν,Lg

(ψ) we

get the following corollary.

Corollary 2.7. Let ψ(z) = 1+B1z+B2z
2+B3z

3+... . If f(z) is given by (1.1) belongs to Rǫ
ν,Sg

(ψ), (0 ≤

ν ≤ 1, ǫ ∈ C\{0}, m ∈ N0, z ∈ U), then

|a3 − µa2
2| ≤

B1|ǫ||l + 1|m

3(1 + 2ν)|l + 3|m
max

{

1,

∣

∣

∣

∣

B2

B1
−

3

4

(l + 3)m(l + 1)m

(l + 2)2m

µǫB1(1 + 2ν)

(1 + ν)2

∣

∣

∣

∣

}

. (2.18)

Putting g(z) = z+
∑∞

k=2 (1 + θ(k − 1))
m
zk, where θ > 0 and m ∈ N0, we get the following corollary.

Corollary 2.8. Let ψ(z) = 1 +B1z +B2z
2 +B3z

3 + ... . If f(z) is given by (1.1) belongs to Rǫ
ν,Dg

(ψ),

(0 ≤ ν ≤ 1, ǫ ∈ C\{0}, m ∈ N0, z ∈ U), then

|a3 − µa2
2| ≤

B1|ǫ|

3(1 + 2ν)|(1 + 2θ)|m
max

{

1,

∣

∣

∣

∣

B2

B1
−

3

4

(1 + 2θ)m

(1 + θ)m

µǫB1(1 + 2ν)

(1 + ν)2

∣

∣

∣

∣

}

. (2.19)

3. Concluding Remarks and Observations

In this article we define a new subclass Rǫ
ν,Lg

(ψ) of analytic function by means of convolution. We
discuss the relevance of this class with some known subclasses of analytic functions.

The results depicted (see Theorem 2.1 and Theorem 2.3) which lead to various interesting results. In
Theorem 2.1, we found more improved bound using the relations (1.14) and (1.15).

We deem it proper to point out some of the known special cases which arise from the results proved
above. Similarly for the Theorem 2.3, we deduce the set of corollaries from 2.5 to 2.8.

Regarding the scope of future work, the sharp Fekete-Szego functional for Q-version of the class
Rǫ

ν,Lg
(ψ) using Q-calculus approach may be obtained.
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21. Sălăgean, G. S., Subclasses of univalent functions, Lecture Notes in Math. (Springer-Verlag ) 1013, 362-372, (1983).

22. Selvaraj, C. and Karthikeyan, K. R., Subclasses of analytic functions involving a certain family of linear operators,
Internat. J. Contemp. Math. Sci. 3(13), 615-627, (2008).

23. Srivastava, H. M. and Attiya, A. A., An integral operator associated with the Hurwitz–Lerch Zeta function and differ-
ential subordination, Integral Transforms Spec. Funct. 18, 207-216, (2007).

24. Swaminathan, A., Certain sufficiency conditions on Gaussian hypergeometric functions J. Inequal. Pure Appl. Math.
5(4), 1-10, (2004).

25. Swaminathan, A., Sufficient conditions for hypergeometric functions to be in a certain class of analytic functions,
Comp. Math. Appl. 59(4), 1578-1583, (2010).

26. Wang, X. Y. and Wang, Z. R., Coefficient Inequality for a new subclass of analytic and univalent functions related to
sigmoid function, Int. J. Mod. Math. Sci. 16(1), 51-57, (2018).

27. Wieclaw, K. T., Zaprawa, P., Gregorczyk, M. and Rysak, A., On the fekete-szego type functionals for close-to-convex
functions Symmetry, doi:10.3390/sym11121497, 11, 1497, 1-17, (2019).



10 A. Soni and A. K. Mishra

Amit Soni,

Department of Mathematics,

Govt. Engineering College Bikaner, Bikaner 334004, Rajasthan,

India.

E-mail address: aamitt1981@gmail.com

and

Ambuj Kumar Mishra,

Department of Mathematics,

I.A.H., GLA University, Mathura 281406

India.

E-mail address: ambuj math@rediffmail.com


	Introduction
	The Fekete-Szego Inequality
	Concluding Remarks and Observations

