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Operators in Terms of ∗ and ψ

Sk Selim, Takashi Noiri, Shyamapada Modak

abstract: Through this paper we consider three operators in terms of operators ∗ and ψ in an ideal
topological space. Many properties of these operators have been discussed. Characterizations of Hayashi-
Samuel spaces are obtained as applications of the properties.
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1. Introduction and Preliminaries

If (X, τ) is a topological space and I is an ideal on X , then for A ⊆ X , the local function [7] is
defined as A∗(I, τ) = {x ∈ X : Ux ∩A /∈ I for every Ux ∈ τ(x)}, where τ (x) is the collection of all open
sets containing x. A∗(I, τ) is simply denoted as A∗(I) or A∗. For the simplest ideals {∅} and ℘(X), we
observe that A∗({∅}) = cl(A) (cl(A) denotes the closure of A) and A∗(℘(X)) = ∅ for every A ⊆ X .

The complement set-operator of the set-operator ()∗ is ψ [13] and it is defined as ψ(A) = X \(X \A)∗.
It is notable that ()∗ is not a closure operator and ψ is not an interior operator. However, the set operator
C : ℘(X) → ℘(X) defined by C(A) = A∪A∗ makes a closure operator [7,8,16] and it is denoted as ‘cl∗’,
that is cl∗(A) = A ∪ A∗. This closure operator induces a topology on X and it is called ∗-topology
[6,5,4,9,14,1]. This topology is denoted as τ∗ and its interior operator is denoted as ‘int∗’.

In the study of ideal topological spaces, two ideals are important: one is codense ideal [3]; and another
is compatible ideal [12]. An ideal I on a topological space (X, τ) is called a codense ideal if I ∩ τ = {∅}.
Such type of spaces are called Hayashi-Samuel spaces [2]. Some authors called it τ -boundary [4,11].

In this paper, by using ()∗ and ψ-operator, we introduce some new types of set-operators. These new
set-operators give us new characterizations of Hayashi-Samuel spaces and various relationships between
()∗ and ψ-operator. A topological space (X, τ ) with an ideal I on X is called an ideal topological space
and is denoted by (X, τ , I).

Lemma 1.1. [7] Let (X, τ, I) be an ideal topological space. The following are equivalent.

1. X∗ = X,

2. τ ∩ I = {∅},

3. If I ∈ I, then int(I) = ∅, and

4. For every U ∈ τ , U ⊆ U∗.

Lemma 1.2. [10] Let (X, τ , I) be a Hayashi-Samuel space. Then for A ⊆ X, ψ(A) ⊆ A∗.
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Lemma 1.3. [4,7] Let (X, τ , I) be an ideal topological space, and let A and B be subsets of X. Then the
following properties hold:

1. If A ⊆ B, then A∗ ⊆ B∗,

2. A∗ = cl(A∗) ⊆ cl(A),

3. (A∗)∗ ⊆ A∗,

4. (A ∪B)∗ = A∗ ∪B∗,

5. If I ∈ I, then (A ∪ I)∗ = A∗ = (A \ I)∗,

6. If U ∈ τ∗, then U ⊆ ψ(U).

The present authors [15] defined the operators ⊻, ⊼ and ∧ on an ideal topological space (X, τ , I) as
follows: for a subset A of X , ⊻(A) = ψ(A) ∩ψ(X \A), ⊼(A) = A \A∗ and ∧(A) = ψ(A) \A, respectively.
Further they have shown that ⊻(A) = ψ(A) \A∗.

Before starting the main sections, we consider the following definition from literature:

Definition 1.4. A set-valued set function p : ℘(X) → ℘(X) is said to be grounded (resp. idempotent, sub-
additive, additive) if p(∅) = ∅ (resp. p(p(A)) = p(A), p(A∪B) ⊆ p(A)∪p(B), p(

⋃
l∈ΛAl) =

⋃
l∈Λ p(Al)),

where A,B,Al ∈ ℘(X) for all l ∈ Λ(index set).

2. The operator ∆1

We define the operator ∆1 on an ideal topological space (X, τ, I) in the following way: for a subset A
of X , ∆1(A) = ⊻(A) ∪ ∧(A) = (ψ(A) \A∗) ∪ (ψ(A) \A).

For the ideal topological space (X, τ, I), if I = {∅} (resp. I = ℘(X)), then ∆1(A) = ∅ (resp. X) for
every subset A of X .

Lemma 2.1. Let (X, τ, I) be an ideal topological space and A a subset of X. Then ∆1(A) = ψ(A)\ (A∗ ∩
A).

Proof. ∆1(A) = (ψ(A)\A∗)∪(ψ(A)\A) = (ψ(A)∩(X\A∗))∪(ψ(A)∩(X\A)) = ψ(A)∩[(X\A∗)∪(X\A)] =
ψ(A) ∩ [X \ (A∗ ∩A)] = ψ(A) \ (A∗ ∩A).

�

Theorem 2.2. Let (X, τ, I) be an ideal topological space. Then following statements hold:

1. for A, B ⊆ X, ψ(A ∪B) ⊇ ∆1(A) ∪ ∆1(B).

2. for A ⊆ X, ∆1(A) = ψ(A) \ (ψ(A) ∩A∗ ∩A).

3. for A ⊆ X, ∆1(A) = ψ(A) \ (int∗(A) ∩A∗).

4. for U ∈ τ , ∆1(U) ⊇ ∧(U).

5. for U ∈ τ∗, ∆1(U) ⊇ ∧(U).

6. for clopen subset A of X, ∆1(A) = ⊻(A).

7. for A ⊆ X, ∆1(X \A) = ⊻(A) ∪ ⊼(A).

8. for A ⊆ X, ∆1(X \A) ⊇ cl∗(A) \A∗.

9. for J ∈ I, ∆1(J) = X \X∗ = ⊻(A).

10. for J ∈ I, ∆1(X \ J) = X \ (X∗ \ J).
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Proof. 1. We know ψ(A) \ A∗ ⊆ ψ(A ∪B) \A∗, ψ(A) \ A ⊆ ψ(A ∪B) \ A, ψ(B) \ B∗ ⊆ ψ(A ∪ B) \ B∗

and ψ(B) \B ⊆ ψ(A ∪B) \B. Then ∆1(A) ∪ ∆1(B) ⊆ [[ψ(A ∪B) \A∗] ∪ [ψ(A ∪B) \A]] ∪ [[ψ(A ∪B) \
B∗] ∪ [ψ(A ∪B) \B]] ⊆ ψ(A ∪B).

5. ∆1(U) = ψ(U)\(Int∗(U)∩U∗) = ψ(U)\(U ∩U∗), since U ∈ τ∗. Thus, ∆1(U) ⊇ ψ(U)\U = ∧(U).
6. ∆1(A) = ψ(A)\(int∗(A)∩A∗) = ψ(A)\(A∩A∗), since A ∈ τ∗. This implies that ∆1(A) = ψ(A)\A∗

(as A∗ ⊆ cl(A) = A) = ⊻(A).
7. ∆1(X \A) = [ψ(X \A)\(X \A)∗]∪[ψ(X \A)\(X \A)] = [(X \A∗)\(X \A)∗]∪[(X \A∗)\(X \A)] =

(ψ(A) \A∗) ∪ (A \A∗) = ⊻(A) ∪ ⊼(A).
8. ∆1(X \A) = ψ(X \A)\(int∗(X \A)∩(X \A)∗) ⊇ ψ(X \A)\int∗(X \A) = (X \A∗)\(X \cl∗(A)) =

cl∗(A) \A∗.
9. ∆1(J) = ψ(J) \ (ψ(J) ∩ J∗ ∩ J) = (X \X∗) = ⊻(A), since J∗ = ∅.
10. ∆1(X \ J) = ψ(X \ J) \ [(X \ J)∗ ∩ (X \ J)] = (X \ J∗) \ [(X∗ ∩ (X \ J)] = X \ (X∗ \ J).

�

The following example shows that the operator ∆1 is not grounded:

Example 2.3. Let X = {a, b, c}, τ = {∅, X, {a, b}, {c}} and I = {∅, {a}, {c}, {a, c}}. Then ψ(∅) =
X \X∗ = X \ {a, b} = {c}, ∅∗ = ∅. Therefore, ∆1(∅) = {c}.

Therefore we conclude that the operator ∆ is not subadditive and additive.
The following example shows that the operator ∆1 operator is not an idempotent operator.

Example 2.4. Let X = {a, b, c}, τ = {∅, X, {a, b}, {c}} and I = {∅, {a}, {c}, {a, c}}. Let A = {b}. Then
ψ(A) = X \ {a, c}∗ = X \ ∅ = X, int∗(A) = A ∩ ψ(A) = {b} ∩ X = {b} and A∗ = {b}∗ = {a, b}. Thus,
∆1(A) = ψ(A)\ (A∩A∗) = X \ ({b}∩{a, b}) = X \{b} = {a, c}. Now ψ({a, c}) = X \{b}∗ = X \{a, b} =
{c}, {a, c}∗ = ∅ and int∗({a, c}) = {c}. Therefore, ∆1(∆1(A)) = ψ({a, c})\(int∗({a, c})∩{a, c}∗) = {c}.

Theorem 2.5. Let (X, τ, I) be a Hayashi-Samuel space. Then following statements hold:

1. for A ⊆ X, ∆1(A) ⊆ A∗ \A

2. for A ⊆ X, ∆1(A) ⊆ A∗.

3. for A ⊆ X, cl(∆1(A)) ⊆ A∗.

4. for A ⊆ X, cl∗(∆1(A)) ⊆ A∗.

5. for regular open set U , ∆1(U) ⊆ U .

6. for U ∈ τ , ∆1(U) = ∧(U).

7. for J ∈ I, ∆1(J) = ∅.

8. for J ∈ I, ∆1(X \ J) = J .

Proof. 1. By Lemma 1.2, ∆1(A) = (ψ(A) \A∗) ∪ (ψ(A) \A) ⊆ (A∗ \A∗) ∪ (A∗ \A) = A∗ \A.
5. It follows from Theorem 5 of [4] that ∆1(U) = ψ(U) \ (U ∩ U∗) = U \ (U ∩ U∗) ⊆ U .
6. By Lemma 1.1, ∆1(U) = ψ(U) \ (U ∩ U∗) = ψ(U) \ U = ∧(U).
7. From Theorem 2.2(9), ∆1(J) = X \X∗ = ∅, since X = X∗.
8. The proof is obvious from Theorem 2.2(10). �

Theorem 2.6. Let (X, τ, I) be an ideal topological space and J ∈ I. If ∆1(X \ J) = J , then X∗∗ = X∗.

Proof. From Theorem 2.2(10) we have ∆1(X \ J) = X \ (X∗ \ J). Given that X \ (X∗ \ J) = J . Then
X∗ \ J = X \ J . By Lemma 1.3, X∗∗ = (X∗ \ J)∗ = (X \ J)∗ = X∗ and hence X∗∗ = X∗.

�

By the next example, X∗∗ = X∗ need not imply that the space is Hayashi-Samuel.
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Example 2.7. Let X = {a, b, c}, τ = {∅, X, {a}}, I = {∅, {a}}. Then X∗ = {b, c} and X∗∗ = {b, c}.
But the space (X, τ , I) is not Hayashi-Samuel.

Theorem 2.8. Let (X, τ , I) be an ideal topological space. Then the space is Hayashi-Samuel if one of
the following conditions hold:

1. for each J ∈ I, ∆1(J) = ∅;

2. for each U ∈ τ , ∆1(U) = ∅.

Proof. 1. ∆1(J) = X \X∗ = ∅. Then X = X∗. Thus from Lemma 1.1, the space is Hayashi-Samuel.
2. ∆1(U) = ψ(U) \ (int∗(U) ∩ U∗) = ψ(U) \ (U ∩ U∗) = ∅ (given). Thus U ⊆ ψ(U) ⊆ U ∩ U∗ ⊆ U∗.

This implies that U ⊆ U∗. Therefore from Lemma 1.1, the space is Hayashi-Samuel. �

Corollary 2.9. Let (X, τ, I) be an ideal topological space. Then following statements are equivalent:

1. The space (X, τ , I) is Hayashi-Samuel;

2. For J ∈ I, ∆1(J) = ∅;

3. For each U ∈ τ , ∆1(U) = ∅.

3. The operator ∆2

We define the operator ∆2 on an ideal topological space (X, τ, I) in the following way: for a subset A
of X , ∆2(A) = ⊻(A) ∪ ⊼(A) = (ψ(A) \A∗) ∪ (A \A∗).

Lemma 3.1. Let (X, τ, I) be an ideal topological space. Then ∆2(A) = (ψ(A) ∪A) \A∗ for every subset
A of X.

Proof. ∆2(A) = (ψ(A) \A∗) ∪ (A \A∗) = (ψ(A) ∩ (X \A∗)) ∪ (A∩ (X \A∗)) = (ψ(A) ∪A) ∩ (X \A∗) =
(ψ(A) ∪A) \A∗.

�

For the ideal topological space (X, τ, {∅}), the value of ∆2 on any subset A of X is ∅. Further, the
value of ∆2(A) on the ideal topological space (X, τ , ℘(X)) is X .

Theorem 3.2. Let (X, τ, I) be an ideal topological space. Then followings hold:

1. ∆2(∅) = ⊻(A), for any A ⊆ X.

2. ∆2(X) = ∆2(∅) = ⊻(A), for any A ⊆ X.

3. if U ∈ τ∗, then ∆2(U) = ψ(U) \ U∗ = ⊻(U).

4. if A is clopen, then ∧(A) ⊆ ∆2(A) ⊆ ψ(A).

5. if J ∈ I, then ∆2(X \ J) = X \X∗.

6. for any A ⊆ X, ∆2(X \A) = ∆1(A).

Proof. 1. ∆2(∅) = (ψ(∅) ∪ ∅) \ ∅∗ = X \X∗ = ⊻(A).
2. ∆2(X) = (ψ(X) ∪X) \X∗ = X \X∗ = ∆2(∅) = ⊻(A).
3. ∆2(U) = (ψ(U) ∪ U) \ U∗ = ψ(U) \ U∗ (as U ⊆ ψ(U)) = ⊻(U).
4. First, ∧(A) = ψ(A) \A ⊆ ψ(A) \A∗ ⊆ (ψ(A) ∪A) \A∗ = ∆2(A).
Next, we show that ∆2(A) ⊆ ψ(A). Since A is clopen, X \A is clopen and by Lemma 3.1 (X \A)∗ ⊂

cl(X \A) = X \A.
Therefore, ψ(A) = X \ (X \A)∗ ⊇ X \ (X \A) = A ⊇ A∗. Hence A∗ ∪ψ(A) = A ∪ψ(A) = ψ(A) and

hence we have ∆2(A) = (A ∪ ψ(A)) \A∗ = ψ(A) \A∗ ⊆ ψ(A).
5. ∆2(X \ J) = [ψ(X \ J) ∪ (X \ J)] \X∗ = [(X \ J∗) ∪ (X \ J)] \X∗ = X \X∗.
6. ∆2(X \A) = [ψ(X \ A) \ (X \A)∗] ∪ [(X \A) \ (X \ A)∗] = [(X \A∗) \ (X \A)∗] ∪ (ψ(A) \A) =

(ψ(A) \A∗) ∪ (ψ(A) \A) = ∆1(A). �
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In general, the operator ∆2 is neither grounded, nor isotonic, nor subadditive, nor additive.

Theorem 3.3. Let (X, τ, I) be a Hayashi-Samuel space. Then following hold:

1. ∆2(∅) = ∅.

2. ∆2(X) = ∅.

3. for A ⊆ X, then ∆2(A) ⊆ A.

4. if A is clopen, then ∧(A) ⊆ ∆2(A) ⊆ A.

5. if U ∈ τ , then ∆2(U) = ∅.

6. if J ∈ I, then ∆2(J) = J .

7. if J ∈ I, then ∆2(X \ J) = ∅.

Proof. 1. ∆2(∅) = ψ(∅) \ ∅∗ = X \X∗ = ∅, since the space is Hayashi-Samuel.
2. ∆2(X) = X \X∗ = ∅, since the space is Hayashi-Samuel.
3. By Lemma 1.2, ∆2(A) = (ψ(A) ∪A) \A∗ ⊆ (A∗ ∪A) \A∗ ⊆ A.
5. By Lemmas 1.1 and 1.2, ∆2(U) = (ψ(U) ∪ U) \ U∗ ⊆ (U∗ ∪ U) \ U∗ ⊆ U∗ \ U∗ = ∅.
6. Since J∗ = ∅,∆2(J) = (ψ(J) ∪ J) \ J∗ = [X \ (X \ J)∗] ∪ J = (X \X∗) ∪ J = J .
7. By Theorem 3.2(5), ∆2(X \ J) = X \X∗ = ∅.

�

Theorem 3.4. Let (X, τ , I) be an ideal topological space. Then the space is Hayashi-Samuel if one of
the following conditions is hold:

1. ∆2(∅) = ∅;

2. ∆2(X) = ∅;

3. for each U ∈ τ , ∆2(U) = ∅;

4. for each J ∈ I, ∆2(X \ J) = ∅.

Proof. 1. Given that ∆2(∅) = ⊻(A) = X \X∗ = ∅. Then X ⊆ X∗ and hence from Lemma 1.1, the space
is Hayashi-Samuel.

2. Given that ∆2(X) = ∆2(∅) = X \X∗ = ∅. Thus from Lemma 1.1, the space is Hayashi-Samuel.
3. For each U ∈ τ , by Theorem 3.2(3), ∆2(U) = ψ(U) \ U∗ = ⊻(U) = X \ X∗. Since ∆2(U) = ∅,

X \X∗ = ∅. This implies that (X, τ , I) is the Hayashi-Samuel space.
4. By Theorem 3.2(5), ∆2(X \J) = X \X∗ = ∅. Thus from Lemma 1.1, the space is Hayashi-Samuel.

�

Corollary 3.5. Let (X, τ, I) be an ideal topological space. Then following statements are equivalent:

1. The space (X, τ , I) is Hayashi-Samuel;

2. ∆2(∅) = ∅;

3. ∆2(X) = ∅;

4. for each U ∈ τ , ∆2(U) = ∅;

5. for each J ∈ I, ∆2(X \ J) = ∅.

Theorem 3.6. Let (X, τ, I) be an ideal topological space and J ∈ I. If ∆2(J) = J , then X∗ = X∗∗.

Proof. Given that ∆2(J) = ψ(J)∪J = J . Then ψ(J) ⊆ J implies X\X∗ ⊆ J . Thus, (X\X∗)∗ ⊆ J∗ = ∅.
By Lemma 1.3, X∗ = ((X \X∗) ∪X∗)∗ = (X \X∗)∗ ∪X∗∗ = ∅ ∪X∗∗ = X∗∗ and hence X∗ = X∗∗.

�

By Example 2.7, X* = X** need not imply that the space is Hayashi-Samuel.
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4. The operator ∆3

We define the operator ∆3 on an ideal topological space (X, τ, I) in the following way: for any subset
A of X , ∆3(A) = ⊼(A) ∪ ∧(A) = (A \A∗) ∪ (ψ(A) \A).

For the ideal topological space (X, τ, {∅}), the value of ∆3 on any subset A of X is ∅. Further, the
value of ∆3(A) on the ideal topological space (X, τ , ℘(X)) is X .

Theorem 4.1. Let (X, τ, I) be an ideal topological space. Then followings hold:

1. ∆3(∅) = ⊻(A) for any A ⊆ X.

2. ∆3(X) = X \X∗.

3. for U ∈ τ∗, ∆3(U) ⊇ U \ U∗.

4. for J ∈ I, ∆3(J) = (X \X∗) ∪ J .

5. for any A ⊆ X, ∆3(X \A) = ∆3(A).

Proof. 1. ∆3(∅) = X \X∗ = ⊻(A) for any A ⊆ X .
3. ∆3(U) = (U \ U∗) ∪ (ψ(U) \ U) ⊇ (U \ U∗) ∪ (U \ U) = U \ U∗).
4. ∆3(J) = (J \ J∗) ∪ (ψ(J) \ J) = J ∪ ψ(J) = (X \X∗) ∪ J .
5. ∆3(X \ A) = [(X \ A) \ (X \ A)∗] ∪ [(ψ(X \ A) \ (X \ A)] = (ψ(A) \ A) ∪ [(X \ A∗) \ (X \ A)] =

(ψ(A) \A) ∪ (A \A∗) = ∆3(A).
�

Theorem 4.2. Let (X, τ, I) be a Hayashi-Samuel space. Then following hold:

1. ∆3(∅) = ∅.

2. ∆3(X) = ∅.

3. for any subset A of X, ∆3(A) ⊆ A∆A∗ (∆ stands for symmetric difference).

4. for any open set U ∈ τ , ∆3(U) = ψ(U) \ U .

5. for regular open set U , ∆3(U) = ∅.

6. for J ∈ I, ∆3(J) = ∆3(X \ J) = J .

Proof. 1.2. They are obvious from Lemma 1.1.
3. ∆3(A) = (A \A∗) ∪ (ψ(A) \A) ⊆ (A \A∗) ∪ (A∗ \A) (by Lemma 1.2). Thus ∆3(A) ⊆ A∆A∗.
5. ∆3(U) = (U \ U∗) ∪ (ψ(U) \ U) = ∅ ∪ ∅, since U ⊆ U∗ and ψ(U) = U [4]. Thus, ∆3(U) = ∅.
6. By using Theorem 4.1(5), ∆3(J) = ∆3(X \ J) = [(X \ J) \ (X \ J)∗] ∪ [ψ(X \ J) \ (X \ J)] =

[(X \ J) \X∗] ∪ [(X \ J∗) \ (X \ J)] = [∅] ∪ [(X \ ∅) ∩ J ] = J .
�

Corollary 4.3. Let (X, τ, I) be an ideal topological space. Then following statements are equivalent:

1. The space (X, τ , I) is Hayashi-Samuel;

2. ∆3(∅) = ∅;

3. ∆3(X) = ∅.

Theorem 4.4. Let (X, τ, I) be an ideal topological space and J ∈ I. If ∆3(X \ J) = ∆3(J) = J , then
X∗ = X∗∗.

Proof. Given that ∆3(J) = ψ(J)∪J = J . Then ψ(J) ⊆ J implies X \X∗ ⊆ J . Thus, (X \X∗)∗ ⊂ J∗ = ∅
and hence X∗ = ((X \X∗) ∪X∗)∗ = (X \X∗)∗ ∪X∗∗ = X∗∗. Therefore, X∗ = X∗∗.

�

By Example 2.7, X∗ = X∗∗ need not imply that the space is Hayashi-Samuel.
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5. Conclusion

This paper deals three new operators in an ideal topological space which have been induced from ⊻,
⊼ and ∧ operators. The result of this paper is an application of the above mentioned operators. We also
characterize some more results of an ideal topological space through these new operators ∆1, ∆2 and ∆3.
We also consider complement operators of the operator ∆1, ∆2 and ∆3.
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