

Bol. Soc. Paran. Mat. ©SPM -ISSN-2175-1188 ON LINE SPM: www.spm.uem.br/bspm (3s.) **v. 2023 (41)** : 1–7. ISSN-0037-8712 IN PRESS doi:10.5269/bspm.51598

Operators in Terms of * and ψ

Sk Selim, Takashi Noiri, Shyamapada Modak

ABSTRACT: Through this paper we consider three operators in terms of operators * and ψ in an ideal topological space. Many properties of these operators have been discussed. Characterizations of Hayashi-Samuel spaces are obtained as applications of the properties.

Key Words: Ideal, local function, ψ -operator, Hayashi-Samuel space, operator $\Delta_i (i = 1, 2, 3)$.

Contents

1	Introduction and Preliminaries	1
2	The operator Δ_1	2
3	The operator Δ_2	4
4	The operator Δ_3	5
5	Conclusion	6

1. Introduction and Preliminaries

If (X, τ) is a topological space and \mathcal{I} is an ideal on X, then for $A \subseteq X$, the local function [7] is defined as $A^*(\mathcal{I}, \tau) = \{x \in X : U_x \cap A \notin \mathcal{I} \text{ for every } U_x \in \tau(x)\}$, where $\tau(x)$ is the collection of all open sets containing x. $A^*(\mathcal{I}, \tau)$ is simply denoted as $A^*(\mathcal{I})$ or A^* . For the simplest ideals $\{\emptyset\}$ and $\wp(X)$, we observe that $A^*(\{\emptyset\}) = cl(A)$ (cl(A) denotes the closure of A) and $A^*(\wp(X)) = \emptyset$ for every $A \subseteq X$.

The complement set-operator of the set-operator ()* is ψ [13] and it is defined as $\psi(A) = X \setminus (X \setminus A)^*$. It is notable that ()* is not a closure operator and ψ is not an interior operator. However, the set operator $C : \wp(X) \to \wp(X)$ defined by $C(A) = A \cup A^*$ makes a closure operator [7,8,16] and it is denoted as ' cl^* ', that is $cl^*(A) = A \cup A^*$. This closure operator induces a topology on X and it is called *-topology [6,5,4,9,14,1]. This topology is denoted as τ^* and its interior operator is denoted as ' int^* '.

In the study of ideal topological spaces, two ideals are important: one is codense ideal [3]; and another is compatible ideal [12]. An ideal \mathcal{I} on a topological space (X, τ) is called a codense ideal if $\mathcal{I} \cap \tau = \{\emptyset\}$. Such type of spaces are called Hayashi-Samuel spaces [2]. Some authors called it τ -boundary [4,11].

In this paper, by using ()* and ψ -operator, we introduce some new types of set-operators. These new set-operators give us new characterizations of Hayashi-Samuel spaces and various relationships between ()* and ψ -operator. A topological space (X, τ) with an ideal \mathfrak{I} on X is called an ideal topological space and is denoted by (X, τ, \mathfrak{I}) .

Lemma 1.1. [7] Let (X, τ, \mathfrak{I}) be an ideal topological space. The following are equivalent.

- 1. $X^* = X$,
- 2. $\tau \cap \mathfrak{I} = \{\emptyset\},\$
- 3. If $I \in \mathcal{I}$, then $int(I) = \emptyset$, and
- 4. For every $U \in \tau$, $U \subseteq U^*$.

Lemma 1.2. [10] Let (X, τ, J) be a Hayashi-Samuel space. Then for $A \subseteq X$, $\psi(A) \subseteq A^*$.

2010 Mathematics Subject Classification: 54A05. Submitted December 22, 2020. Published September 01, 2020 **Lemma 1.3.** [4,7] Let (X, τ, J) be an ideal topological space, and let A and B be subsets of X. Then the following properties hold:

- 1. If $A \subseteq B$, then $A^* \subseteq B^*$,
- 2. $A^* = cl(A^*) \subseteq cl(A),$
- 3. $(A^*)^* \subseteq A^*$,
- 4. $(A \cup B)^* = A^* \cup B^*$,
- 5. If $I \in \mathcal{I}$, then $(A \cup I)^* = A^* = (A \setminus I)^*$,
- 6. If $U \in \tau^*$, then $U \subseteq \psi(U)$.

The present authors [15] defined the operators $\forall, \overline{\wedge}$ and \wedge on an ideal topological space (X, τ, \mathcal{I}) as follows: for a subset A of $X, \forall (A) = \psi(A) \cap \psi(X \setminus A), \overline{\wedge}(A) = A \setminus A^*$ and $\wedge(A) = \psi(A) \setminus A$, respectively. Further they have shown that $\forall (A) = \psi(A) \setminus A^*$.

Before starting the main sections, we consider the following definition from literature:

Definition 1.4. A set-valued set function $p: \wp(X) \to \wp(X)$ is said to be grounded (resp. idempotent, subadditive, additive) if $p(\emptyset) = \emptyset$ (resp. p(p(A)) = p(A), $p(A \cup B) \subseteq p(A) \cup p(B)$, $p(\bigcup_{l \in \Lambda} A_l) = \bigcup_{l \in \Lambda} p(A_l)$), where $A, B, A_l \in \wp(X)$ for all $l \in \Lambda$ (index set).

2. The operator Δ_1

We define the operator Δ_1 on an ideal topological space (X, τ, \mathcal{I}) in the following way: for a subset A of X, $\Delta_1(A) = \forall (A) \cup \land (A) = (\psi(A) \setminus A^*) \cup (\psi(A) \setminus A)$.

For the ideal topological space (X, τ, \mathcal{I}) , if $\mathcal{I} = \{\emptyset\}$ (resp. $\mathcal{I} = \wp(X)$), then $\Delta_1(A) = \emptyset$ (resp. X) for every subset A of X.

Lemma 2.1. Let (X, τ, \mathfrak{I}) be an ideal topological space and A a subset of X. Then $\Delta_1(A) = \psi(A) \setminus (A^* \cap A)$.

 $\begin{array}{l} Proof. \ \Delta_1(A) = (\psi(A) \setminus A^*) \cup (\psi(A) \setminus A) = (\psi(A) \cap (X \setminus A^*)) \cup (\psi(A) \cap (X \setminus A)) = \psi(A) \cap [(X \setminus A^*) \cup (X \setminus A)] = \psi(A) \cap [X \setminus (A^* \cap A)] = \psi(A) \setminus (A^* \cap A). \end{array}$

Theorem 2.2. Let (X, τ, \mathfrak{I}) be an ideal topological space. Then following statements hold:

- 1. for A, $B \subseteq X$, $\psi(A \cup B) \supseteq \Delta_1(A) \cup \Delta_1(B)$.
- 2. for $A \subseteq X$, $\Delta_1(A) = \psi(A) \setminus (\psi(A) \cap A^* \cap A)$.
- 3. for $A \subseteq X$, $\Delta_1(A) = \psi(A) \setminus (int^*(A) \cap A^*)$.
- 4. for $U \in \tau$, $\Delta_1(U) \supseteq \wedge(U)$.
- 5. for $U \in \tau^*$, $\Delta_1(U) \supseteq \wedge(U)$.
- 6. for clopen subset A of X, $\Delta_1(A) = \forall (A)$.
- 7. for $A \subseteq X$, $\Delta_1(X \setminus A) = \forall (A) \cup \overline{\land}(A)$.
- 8. for $A \subseteq X$, $\Delta_1(X \setminus A) \supseteq cl^*(A) \setminus A^*$.
- 9. for $J \in \mathfrak{I}$, $\Delta_1(J) = X \setminus X^* = \forall (A)$.
- 10. for $J \in \mathfrak{I}$, $\Delta_1(X \setminus J) = X \setminus (X^* \setminus J)$.

Proof. 1. We know $\psi(A) \setminus A^* \subseteq \psi(A \cup B) \setminus A^*$, $\psi(A) \setminus A \subseteq \psi(A \cup B) \setminus A$, $\psi(B) \setminus B^* \subseteq \psi(A \cup B) \setminus B^*$ and $\psi(B) \setminus B \subseteq \psi(A \cup B) \setminus B$. Then $\Delta_1(A) \cup \Delta_1(B) \subseteq [[\psi(A \cup B) \setminus A^*] \cup [\psi(A \cup B) \setminus A]] \cup [[\psi(A \cup B) \setminus B^*] \cup [\psi(A \cup B) \setminus B]] \subseteq \psi(A \cup B)$.

5. $\Delta_{1}(U) = \psi(U) \setminus (Int^{*}(U) \cap U^{*}) = \psi(U) \setminus (U \cap U^{*}), \text{ since } U \in \tau^{*}. \text{ Thus, } \Delta_{1}(U) \supseteq \psi(U) \setminus U = \wedge(U).$ 6. $\Delta_{1}(A) = \psi(A) \setminus (int^{*}(A) \cap A^{*}) = \psi(A) \setminus (A \cap A^{*}), \text{ since } A \in \tau^{*}. \text{ This implies that } \Delta_{1}(A) = \psi(A) \setminus A^{*}$ (as $A^{*} \subseteq cl(A) = A) = \lor(A).$ 7. $\Delta_{1}(X \setminus A) = [\psi(X \setminus A) \setminus (X \setminus A)^{*}] \cup [\psi(X \setminus A) \setminus (X \setminus A)] = [(X \setminus A^{*}) \setminus (X \setminus A)^{*}] \cup [(X \setminus A^{*}) \setminus (X \setminus A)] = (\psi(A) \setminus A^{*}) \cup (A \setminus A^{*}) = \lor(A) \cup \overline{\wedge}(A).$ 8. $\Delta_{1}(X \setminus A) = \psi(X \setminus A) \setminus (int^{*}(X \setminus A) \cap (X \setminus A)^{*}) \supseteq \psi(X \setminus A) \setminus int^{*}(X \setminus A) = (X \setminus A^{*}) \setminus (X \setminus cl^{*}(A)) = (X \setminus A) \setminus (X \setminus cl^{*}(A)) = (X \setminus cl^{*}(A) \setminus cl^{*}(A) \cap cl^{*}(A)) = (X \setminus cl^{*}(A) \setminus cl^{*}(A)) = (X \setminus cl^{*}(A) \cap cl^{*}(A) \cap cl^{*}(A)) = (X \setminus cl^{*}(A) \cap cl^{*}(A)) = (X$

$$cl^*(A) \setminus A$$

9. $\Delta_1(J) = \psi(J) \setminus (\psi(J) \cap J^* \cap J) = (X \setminus X^*) = \forall (A), \text{ since } J^* = \emptyset.$ 10. $\Delta_1(X \setminus J) = \psi(X \setminus J) \setminus [(X \setminus J)^* \cap (X \setminus J)] = (X \setminus J^*) \setminus [(X^* \cap (X \setminus J)] = X \setminus (X^* \setminus J).$

The following example shows that the operator Δ_1 is not grounded:

Example 2.3. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a, b\}, \{c\}\}$ and $\mathfrak{I} = \{\emptyset, \{a\}, \{c\}, \{a, c\}\}$. Then $\psi(\emptyset) = X \setminus X^* = X \setminus \{a, b\} = \{c\}, \emptyset^* = \emptyset$. Therefore, $\Delta_1(\emptyset) = \{c\}$.

Therefore we conclude that the operator Δ is not subadditive and additive.

The following example shows that the operator Δ_1 operator is not an idempotent operator.

Example 2.4. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a, b\}, \{c\}\}$ and $\Im = \{\emptyset, \{a\}, \{c\}, \{a, c\}\}$. Let $A = \{b\}$. Then $\psi(A) = X \setminus \{a, c\}^* = X \setminus \emptyset = X$, $int^*(A) = A \cap \psi(A) = \{b\} \cap X = \{b\}$ and $A^* = \{b\}^* = \{a, b\}$. Thus, $\Delta_1(A) = \psi(A) \setminus (A \cap A^*) = X \setminus \{b\} \cap \{a, b\}) = X \setminus \{b\} = \{a, c\}$. Now $\psi(\{a, c\}) = X \setminus \{b\}^* = X \setminus \{a, b\} = \{c\}, \{a, c\}^* = \emptyset$ and $int^*(\{a, c\}) = \{c\}$. Therefore, $\Delta_1(\Delta_1(A)) = \psi(\{a, c\}) \setminus (int^*(\{a, c\}) \cap \{a, c\}^*) = \{c\}$.

Theorem 2.5. Let (X, τ, \mathfrak{I}) be a Hayashi-Samuel space. Then following statements hold:

- 1. for $A \subseteq X$, $\Delta_1(A) \subseteq A^* \setminus A$
- 2. for $A \subseteq X$, $\Delta_1(A) \subseteq A^*$.
- 3. for $A \subseteq X$, $cl(\Delta_1(A)) \subseteq A^*$.
- 4. for $A \subseteq X$, $cl^*(\Delta_1(A)) \subseteq A^*$.
- 5. for regular open set $U, \Delta_1(U) \subseteq U$.
- 6. for $U \in \tau$, $\Delta_1(U) = \wedge(U)$.
- 7. for $J \in \mathfrak{I}$, $\Delta_1(J) = \emptyset$.
- 8. for $J \in \mathfrak{I}$, $\Delta_1(X \setminus J) = J$.

Proof. 1. By Lemma 1.2, $\Delta_1(A) = (\psi(A) \setminus A^*) \cup (\psi(A) \setminus A) \subseteq (A^* \setminus A^*) \cup (A^* \setminus A) = A^* \setminus A$.

- 5. It follows from Theorem 5 of [4] that $\Delta_1(U) = \psi(U) \setminus (U \cap U^*) = U \setminus (U \cap U^*) \subseteq U$.
- 6. By Lemma 1.1, $\Delta_1(U) = \psi(U) \setminus (U \cap U^*) = \psi(U) \setminus U = \wedge(U)$.
- 7. From Theorem 2.2(9), $\Delta_1(J) = X \setminus X^* = \emptyset$, since $X = X^*$.
- 8. The proof is obvious from Theorem 2.2(10).

Theorem 2.6. Let (X, τ, \mathfrak{I}) be an ideal topological space and $J \in \mathfrak{I}$. If $\Delta_1(X \setminus J) = J$, then $X^{**} = X^*$. *Proof.* From Theorem 2.2(10) we have $\Delta_1(X \setminus J) = X \setminus (X^* \setminus J)$. Given that $X \setminus (X^* \setminus J) = J$. Then $X^* \setminus J = X \setminus J$. By Lemma 1.3, $X^{**} = (X^* \setminus J)^* = (X \setminus J)^* = X^*$ and hence $X^{**} = X^*$.

By the next example, $X^{**} = X^*$ need not imply that the space is Hayashi-Samuel.

Example 2.7. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}\}, \exists = \{\emptyset, \{a\}\}.$ Then $X^* = \{b, c\}$ and $X^{**} = \{b, c\}$. But the space (X, τ, \exists) is not Hayashi-Samuel.

Theorem 2.8. Let (X, τ, \mathfrak{I}) be an ideal topological space. Then the space is Hayashi-Samuel if one of the following conditions hold:

- 1. for each $J \in \mathfrak{I}$, $\Delta_1(J) = \emptyset$;
- 2. for each $U \in \tau$, $\Delta_1(U) = \emptyset$.

Proof. 1. $\Delta_1(J) = X \setminus X^* = \emptyset$. Then $X = X^*$. Thus from Lemma 1.1, the space is Hayashi-Samuel. 2. $\Delta_1(U) = \psi(U) \setminus (int^*(U) \cap U^*) = \psi(U) \setminus (U \cap U^*) = \emptyset$ (given). Thus $U \subseteq \psi(U) \subseteq U \cap U^* \subseteq U^*$. This implies that $U \subseteq U^*$. Therefore from Lemma 1.1, the space is Hayashi-Samuel.

Corollary 2.9. Let (X, τ, \mathfrak{I}) be an ideal topological space. Then following statements are equivalent:

- 1. The space (X, τ, \mathfrak{I}) is Hayashi-Samuel;
- 2. For $J \in \mathcal{I}$, $\Delta_1(J) = \emptyset$;
- 3. For each $U \in \tau$, $\Delta_1(U) = \emptyset$.

3. The operator Δ_2

We define the operator Δ_2 on an ideal topological space (X, τ, \mathcal{I}) in the following way: for a subset A of X, $\Delta_2(A) = \forall (A) \cup \overline{\land}(A) = (\psi(A) \setminus A^*) \cup (A \setminus A^*)$.

Lemma 3.1. Let (X, τ, \mathfrak{I}) be an ideal topological space. Then $\Delta_2(A) = (\psi(A) \cup A) \setminus A^*$ for every subset A of X.

 $\begin{array}{l} Proof. \ \Delta_2(A) = (\psi(A) \setminus A^*) \cup (A \setminus A^*) = (\psi(A) \cap (X \setminus A^*)) \cup (A \cap (X \setminus A^*)) = (\psi(A) \cup A) \cap (X \setminus A^*) = (\psi(A) \cup A) \setminus A^*. \end{array}$

For the ideal topological space $(X, \tau, \{\emptyset\})$, the value of Δ_2 on any subset A of X is \emptyset . Further, the value of $\Delta_2(A)$ on the ideal topological space $(X, \tau, \wp(X))$ is X.

Theorem 3.2. Let (X, τ, \mathfrak{I}) be an ideal topological space. Then followings hold:

- 1. $\Delta_2(\emptyset) = \forall (A), \text{ for any } A \subseteq X.$
- 2. $\Delta_2(X) = \Delta_2(\emptyset) = \forall (A), \text{ for any } A \subseteq X.$
- 3. if $U \in \tau^*$, then $\Delta_2(U) = \psi(U) \setminus U^* = \forall (U)$.
- 4. if A is clopen, then $\wedge(A) \subseteq \Delta_2(A) \subseteq \psi(A)$.
- 5. if $J \in \mathcal{I}$, then $\Delta_2(X \setminus J) = X \setminus X^*$.
- 6. for any $A \subseteq X$, $\Delta_2(X \setminus A) = \Delta_1(A)$.

Proof. 1. $\Delta_2(\emptyset) = (\psi(\emptyset) \cup \emptyset) \setminus \emptyset^* = X \setminus X^* = \forall (A).$

2. $\Delta_2(X) = (\psi(X) \cup X) \setminus X^* = X \setminus X^* = \Delta_2(\emptyset) = \forall (A).$

3. $\Delta_2(U) = (\psi(U) \cup U) \setminus U^* = \psi(U) \setminus U^*$ (as $U \subseteq \psi(U)) = \forall (U)$.

4. First, $\wedge(A) = \psi(A) \setminus A \subseteq \psi(A) \setminus A^* \subseteq (\psi(A) \cup A) \setminus A^* = \Delta_2(A).$

Next, we show that $\Delta_2(A) \subseteq \psi(A)$. Since A is clopen, $X \setminus A$ is clopen and by Lemma 3.1 $(X \setminus A)^* \subset cl(X \setminus A) = X \setminus A$.

Therefore, $\psi(A) = X \setminus (X \setminus A)^* \supseteq X \setminus (X \setminus A) = A \supseteq A^*$. Hence $A^* \cup \psi(A) = A \cup \psi(A) = \psi(A)$ and hence we have $\Delta_2(A) = (A \cup \psi(A)) \setminus A^* = \psi(A) \setminus A^* \subseteq \psi(A)$.

5. $\Delta_2(X \setminus J) = [\psi(X \setminus J) \cup (X \setminus J)] \setminus X^* = [(X \setminus J^*) \cup (X \setminus J)] \setminus X^* = X \setminus X^*.$

6. $\Delta_2(X \setminus A) = [\psi(X \setminus A) \setminus (X \setminus A)^*] \cup [(X \setminus A) \setminus (X \setminus A)^*] = [(X \setminus A^*) \setminus (X \setminus A)^*] \cup (\psi(A) \setminus A) = (\psi(A) \setminus A^*) \cup (\psi(A) \setminus A) = \Delta_1(A).$

In general, the operator Δ_2 is neither grounded, nor isotonic, nor subadditive, nor additive.

Theorem 3.3. Let (X, τ, \mathfrak{I}) be a Hayashi-Samuel space. Then following hold:

- 1. $\Delta_2(\emptyset) = \emptyset$.
- 2. $\Delta_2(X) = \emptyset$.
- 3. for $A \subseteq X$, then $\Delta_2(A) \subseteq A$.
- 4. if A is clopen, then $\wedge(A) \subseteq \Delta_2(A) \subseteq A$.
- 5. if $U \in \tau$, then $\Delta_2(U) = \emptyset$.
- 6. if $J \in \mathfrak{I}$, then $\Delta_2(J) = J$.
- 7. if $J \in \mathcal{I}$, then $\Delta_2(X \setminus J) = \emptyset$.

Proof. 1. $\Delta_2(\emptyset) = \psi(\emptyset) \setminus \emptyset^* = X \setminus X^* = \emptyset$, since the space is Hayashi-Samuel.

- 2. $\Delta_2(X) = X \setminus X^* = \emptyset$, since the space is Hayashi-Samuel.
- 3. By Lemma 1.2, $\Delta_2(A) = (\psi(A) \cup A) \setminus A^* \subseteq (A^* \cup A) \setminus A^* \subseteq A$.
- 5. By Lemmas 1.1 and 1.2, $\Delta_2(U) = (\psi(U) \cup U) \setminus U^* \subseteq (U^* \cup U) \setminus U^* \subseteq U^* \setminus U^* = \emptyset$.
- 6. Since $J^* = \emptyset, \Delta_2(J) = (\psi(J) \cup J) \setminus J^* = [X \setminus (X \setminus J)^*] \cup J = (X \setminus X^*) \cup J = J.$
- 7. By Theorem 3.2(5), $\Delta_2(X \setminus J) = X \setminus X^* = \emptyset$.

Theorem 3.4. Let (X, τ, \mathfrak{I}) be an ideal topological space. Then the space is Hayashi-Samuel if one of the following conditions is hold:

- 1. $\Delta_2(\emptyset) = \emptyset;$
- 2. $\Delta_2(X) = \emptyset;$
- 3. for each $U \in \tau$, $\Delta_2(U) = \emptyset$;
- 4. for each $J \in \mathfrak{I}$, $\Delta_2(X \setminus J) = \emptyset$.

Proof. 1. Given that $\Delta_2(\emptyset) = \forall (A) = X \setminus X^* = \emptyset$. Then $X \subseteq X^*$ and hence from Lemma 1.1, the space is Hayashi-Samuel.

2. Given that $\Delta_2(X) = \Delta_2(\emptyset) = X \setminus X^* = \emptyset$. Thus from Lemma 1.1, the space is Hayashi-Samuel.

3. For each $U \in \tau$, by Theorem 3.2(3), $\Delta_2(U) = \psi(U) \setminus U^* = \forall (U) = X \setminus X^*$. Since $\Delta_2(U) = \emptyset$, $X \setminus X^* = \emptyset$. This implies that (X, τ, \mathcal{I}) is the Hayashi-Samuel space.

4. By Theorem 3.2(5), $\Delta_2(X \setminus J) = X \setminus X^* = \emptyset$. Thus from Lemma 1.1, the space is Hayashi-Samuel.

Corollary 3.5. Let (X, τ, \mathfrak{I}) be an ideal topological space. Then following statements are equivalent:

- 1. The space (X, τ, \mathfrak{I}) is Hayashi-Samuel;
- 2. $\Delta_2(\emptyset) = \emptyset;$
- 3. $\Delta_2(X) = \emptyset;$
- 4. for each $U \in \tau$, $\Delta_2(U) = \emptyset$;
- 5. for each $J \in \mathfrak{I}$, $\Delta_2(X \setminus J) = \emptyset$.

Theorem 3.6. Let (X, τ, \mathfrak{I}) be an ideal topological space and $J \in \mathfrak{I}$. If $\Delta_2(J) = J$, then $X^* = X^{**}$.

Proof. Given that $\Delta_2(J) = \psi(J) \cup J = J$. Then $\psi(J) \subseteq J$ implies $X \setminus X^* \subseteq J$. Thus, $(X \setminus X^*)^* \subseteq J^* = \emptyset$. By Lemma 1.3, $X^* = ((X \setminus X^*) \cup X^*)^* = (X \setminus X^*)^* \cup X^{**} = \emptyset \cup X^{**} = X^{**}$ and hence $X^* = X^{**}$.

By Example 2.7, $X^* = X^{**}$ need not imply that the space is Hayashi-Samuel.

 \Box

4. The operator Δ_3

We define the operator Δ_3 on an ideal topological space (X, τ, \mathcal{I}) in the following way: for any subset A of X, $\Delta_3(A) = \overline{\wedge}(A) \cup \wedge(A) = (A \setminus A^*) \cup (\psi(A) \setminus A)$.

For the ideal topological space $(X, \tau, \{\emptyset\})$, the value of Δ_3 on any subset A of X is \emptyset . Further, the value of $\Delta_3(A)$ on the ideal topological space $(X, \tau, \wp(X))$ is X.

Theorem 4.1. Let (X, τ, J) be an ideal topological space. Then followings hold:

Δ₃(Ø) = ⊻(A) for any A ⊆ X.
Δ₃(X) = X \ X*.
for U ∈ τ*, Δ₃(U) ⊇ U \ U*.
for J ∈ ℑ, Δ₃(J) = (X \ X*) ∪ J.
for any A ⊆ X, Δ₃(X \ A) = Δ₃(A).

Proof. 1. $\Delta_3(\emptyset) = X \setminus X^* = \forall (A) \text{ for any } A \subseteq X.$ 3. $\Delta_3(U) = (U \setminus U^*) \cup (\psi(U) \setminus U) \supseteq (U \setminus U^*) \cup (U \setminus U) = U \setminus U^*).$ 4. $\Delta_3(J) = (J \setminus J^*) \cup (\psi(J) \setminus J) = J \cup \psi(J) = (X \setminus X^*) \cup J.$ 5. $\Delta_3(X \setminus A) = [(X \setminus A) \setminus (X \setminus A)^*] \cup [(\psi(X \setminus A) \setminus (X \setminus A)] = (\psi(A) \setminus A) \cup [(X \setminus A^*) \setminus (X \setminus A)] = (\psi(A) \setminus A) \cup (A \setminus A^*) = \Delta_3(A).$

Theorem 4.2. Let (X, τ, \mathcal{I}) be a Hayashi-Samuel space. Then following hold:

- 1. $\Delta_3(\emptyset) = \emptyset$.
- 2. $\Delta_3(X) = \emptyset$.
- 3. for any subset A of X, $\Delta_3(A) \subseteq A \Delta A^*$ (Δ stands for symmetric difference).
- 4. for any open set $U \in \tau$, $\Delta_3(U) = \psi(U) \setminus U$.
- 5. for regular open set U, $\Delta_3(U) = \emptyset$.
- 6. for $J \in \mathfrak{I}$, $\Delta_3(J) = \Delta_3(X \setminus J) = J$.

Proof. 1.2. They are obvious from Lemma 1.1.

3. $\Delta_3(A) = (A \setminus A^*) \cup (\psi(A) \setminus A) \subseteq (A \setminus A^*) \cup (A^* \setminus A)$ (by Lemma 1.2). Thus $\Delta_3(A) \subseteq A \Delta A^*$.

5. $\Delta_3(U) = (U \setminus U^*) \cup (\psi(U) \setminus U) = \emptyset \cup \emptyset$, since $U \subseteq U^*$ and $\psi(U) = U$ [4]. Thus, $\Delta_3(U) = \emptyset$.

6. By using Theorem 4.1(5), $\Delta_3(J) = \Delta_3(X \setminus J) = [(X \setminus J) \setminus (X \setminus J)^*] \cup [\psi(X \setminus J) \setminus (X \setminus J)] = [(X \setminus J) \setminus X^*] \cup [(X \setminus J^*) \setminus (X \setminus J)] = [\emptyset] \cup [(X \setminus \emptyset) \cap J] = J.$

Corollary 4.3. Let (X, τ, \mathfrak{I}) be an ideal topological space. Then following statements are equivalent:

- 1. The space (X, τ, \mathfrak{I}) is Hayashi-Samuel;
- 2. $\Delta_3(\emptyset) = \emptyset;$
- 3. $\Delta_3(X) = \emptyset$.

Theorem 4.4. Let (X, τ, \mathfrak{I}) be an ideal topological space and $J \in \mathfrak{I}$. If $\Delta_3(X \setminus J) = \Delta_3(J) = J$, then $X^* = X^{**}$.

Proof. Given that $\Delta_3(J) = \psi(J) \cup J = J$. Then $\psi(J) \subseteq J$ implies $X \setminus X^* \subseteq J$. Thus, $(X \setminus X^*)^* \subset J^* = \emptyset$ and hence $X^* = ((X \setminus X^*) \cup X^*)^* = (X \setminus X^*)^* \cup X^{**} = X^{**}$. Therefore, $X^* = X^{**}$.

By Example 2.7, $X^* = X^{**}$ need not imply that the space is Hayashi-Samuel.

5. Conclusion

This paper deals three new operators in an ideal topological space which have been induced from \forall , $\bar{\wedge}$ and \wedge operators. The result of this paper is an application of the above mentioned operators. We also characterize some more results of an ideal topological space through these new operators Δ_1 , Δ_2 and Δ_3 . We also consider complement operators of the operator Δ_1 , Δ_2 and Δ_3 .

Acknowledgments

The authors are thankful to the referee for his/her value suggestions.

References

- 1. Al-Omari, A., Al-Saadi, H., A topology via ω-local functions in ideal spaces, Mathematics, 60 (83), 103-110, (2018).
- 2. Dontchev, J., Idealization of Ganster-Reilly decomposition theorems, arXIV:math. Gn/9901017v1 [math.GN], (1999).
- 3. Dontchev, J., Ganster, M., Rose, D., Ideal resolvability, Topology Appl. 93, 1-16, (1999).
- 4. Hamlett, T. R., Janković, D., Ideals in topological spaces and the set operator ψ , Boll. Un. Mat.Ital. 7 (4-B), 863-874, (1990).
- 5. Hashimoto, H., On the *-topology and its applications, Fund. Math. 91, 5-10, (1976).
- 6. Hayashi, E., Topologies defined by local properties, Math. Ann. 156, 205-215, (1964).
- 7. Janković, D., Hamlett, T. R., New topologies from old via ideals, Amer. Math. Monthly, 97, 295-310, (1990).
- 8. Kuratowski, K., Topology, Vol. I, New York, Academic Press, (1966).
- Modak, S., Some new topologies on ideal topological spaces, Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 82 (3), 233-243, (2012).
- 10. Modak, S., Bandyopadhyay, C., A note on ψ -operator, Bull. Malays. Math. Sci. Soc. (2) 30(1), 43-48, (2007).
- Newcomb, R. L., Topologies which are compact modulo an ideal, Ph. D. Dissertation, Univ. of Cal. at Santa Barbara, (1967).
- 12. Njastad, O., Remarks on topologies defined by local properties, Avh. Norske Vid. Akad. Oslo I(N.S), 8, 1-16, (1966).
- 13. Natkaniec, T., On I-continuity and I-semicontinuity points, Math. Slovaca, 36 (3), 297-312, (1986).
- 14. Samuel, P., A topology formed from a given topology and ideal, J. London Math. Soc. 10, 409-416, (1975).
- 15. Selim, Sk., Noiri, T., Modak, S., Some set-operators on ideal topological spaces (submitted).
- 16. R. Vaidyanathswamy, The localization theory in set-topology, Proc. Indian Acad. Sci. 20, 51-61, (1945).

Sk Selim, Department of Mathematics, University of Gour Banga, India. E-mail address: skselim2012@gmail.com

and

Takashi Noiri, 2949-1 Shiokita-cho, Hinagu, Yatsushiro-shi Kumomoto-ken, 869-5142 Japan. E-mail address: t.noiri@nifty.com

and

Shyamapada Modak, Department of Mathematics, University of Gour Banga, India. E-mail address: spmodak2000@yahoo.co.in