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Left Nil Zero Semicommutative Rings

Sanjiv Subba and Tikaram Subedi

abstract: This paper introduces a class of rings called left nil zero semicommutative rings ( LNZS rings ),
wherein a ring R is said to be LNZS if the left annihilator of every nilpotent element of R is an ideal of R. It is
observed that reduced rings are LNZS but not the other way around. So, this paper provides some conditions
for an LNZS ring to be reduced and among other results, it is proved that R is reduced if and only if T2(R)
is LNZS. Furthermore, it is shown that the polynomial ring over an LNZS may not be LNZS and so is the
case of the skew polynomial over an LNZS ring. Therefore, this paper investigates the LNZS property over
the polynomial extension and skew polynomial extension of an LNZS ring with some additional conditions.
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1. Introduction

Semicommutative rings and their generalizations play an important role in non commutative ring
theory. Different authors over the last several years have studied the extensions of semicommutative
rings using different tools and strategies (see [1], [3], [5] and [10]). In a semicommutative ring R, the
left annihilator of every element of R is an ideal. Therefore, it is of interest to see how a ring behaves if
this property is satisfied by some elements of the ring and not necessarily every element of the ring. In
this context, this paper studies rings in which the left annihilator of every nilpotent element is an ideal.

All rings considered in this paper are associative with identity unless otherwise mentioned. R
represents a ring, and all modules are unital. The symbols Z(R), E(R), J(R), N(R), and Tn(R)
respectively denote the set of all central elements of R, the set of all idempotent elements of R, the
Jacobson radical of R, the set of all nilpotent elements of R, and the ring of upper triangular matrices of
order n × n over R. The notations l(x) (or r(x)) stands for the left (or right) annihilator of an element
x of R.

Let MEl(R) = {e ∈ E(R) | Re is a minimal left ideal of R}. An element e ∈ E(R) is said to be left
(right) semicentral if re = ere (er = ere) for all r ∈ R. Following [9], R is called left min-abel if every
element of MEl(R) is left semicentral in R. R is called left MC2 if aRe = 0 implies eRa = 0 for any
a ∈ R, e ∈ MEl(R). R is said to be NI if N(R) is an ideal of R. Following [8], a left R-module M is
called Wnil − injective if for any w (6= 0) ∈ N(R), there exists a positive integer m such that wm 6= 0
and any left R-homomorphism f : Rwm → M extends to one from R to M . Now, recall that R is said
to be:

1. reduced if N(R) = 0.

2. reversible ( [2]) if wh = 0 implies hw = 0 for any w, h ∈ R.

3. semicommutative ( [3]) if wh = 0 implies wRh = 0 for any w, h ∈ R.

4. nil-semicommutative ( [4]) if for every w, h ∈ N(R), wh = 0 implies wRh = 0.

5. weakly semicommutative ( [3]) if for any w, h ∈ R satisfy wh = 0 then wrh ∈ N(R) for any r ∈ R.

6. abelian if E(R) ⊆ Z(R).

2010 Mathematics Subject Classification: Primary: 16U80, Secondary: 16S34, 16S36.
Submitted March 17, 2022. Published July 25, 2022

1
Typeset by B

S
P
M

style.

© Soc. Paran. de Mat.

www.spm.uem.br/bspm
http://dx.doi.org/10.5269/bspm.62926 


2 S. Subba and T. Subedi

2. LNZS rings

Definition 2.1. We call a ring R left nil zero semicommutative ( LNZS ) if l(a) is an ideal for any
a ∈ N(R).

Clearly, semicommutative rings are LNZS. Nevertheless, not every LNZS ring is semicommutative;
for example, take R = T2(Z2). It is easy to see that R is not semicommutative, whereas R is LNZS in
view of Theorem 2.4.

Remark 2.2. Similarly, we define a ring R to be right nil zero semicommutative ( RNZS ) if r(a) is
an ideal for any a ∈ N(R). The next proposition provides a class of rings in which LNZS property is
equivalent to RNZS property.

Proposition 2.3. Let R be a ring in which every non unit element of R is nilpotent. Then R is LNZS
if and only if R is RNZS.

Proof. Let R be an LNZS ring and a (6= 0) ∈ N(R) and x ∈ R be such that ax = 0. Since xa ∈ N(R) and
R is LNZS, arxa = 0 for all r ∈ R. Note that a(x − xa) = 0. By hypothesis, x − xa ∈ N(R). Therefore,
ar(x − xa) = 0 for all r ∈ R, that is, arx = arxa = 0. Hence, r(a) is an ideal of R, that is, R is RNZS.
Similarly, an RNZS ring turns out to be an LNZS ring. �

Theorem 2.4. T2(R) is LNZS if and only if R is reduced.

Proof. Suppose T2(R) be an LNZS ring. On the contrary, we assume that R is not reduced. Then x2 = 0

for some x (6= 0) ∈ R. So

[

x x + 1
0 −x

]

∈ N(T2(R)). Observe that

[

x 1
0 x

] [

x x + 1
0 −x

]

=

[

0 0
0 0

]

.

Since T2(R) is LNZS,

[

x 1
0 x

] [

1 1
0 0

] [

x x + 1
0 −x

]

=

[

0 0
0 0

]

, that is,

[

0 x
0 0

]

=

[

0 0
0 0

]

. This

implies that x = 0, a contradiction. Therefore R is reduced.

Conversely, assume that R is reduced. Then N(T2(R)) =

[

0 R
0 0

]

. Let

[

x y
0 z

]

∈ T2(R),

[

0 a
0 0

]

∈

N(T2(R)) be such that

[

x y
0 z

] [

0 a
0 0

]

=

[

0 0
0 0

]

, that is, xa = 0. Since R is reduced, xha = 0

for any h ∈ R. For any arbitrary element

[

s t
0 w

]

∈ T2(R), we have

[

x y
0 z

] [

s t
0 w

] [

0 a
0 0

]

=
[

0 xsa
0 0

]

=

[

0 0
0 0

]

. Thus, l

([

0 a
0 0

])

is an ideal. So T2(R) is LNZS. �

Theorem 2.4 cannot be extended to Tn(R) for any integer n ≥ 3 ( see the following example ).

Example 2.5. Take the ring S = T3(R), where R denotes a non zero reduced ring. Let eij denote the
matrix unit whose (i, j)th element is 1 and 0 elsewhere. Observe that e23 ∈ N(T3(R)) and e11e23 = 0 but
e11e12e23 6= 0, that is, l(e23) is not an ideal. So T3(R) is not LNZS. Hence, for any non zero reduced
ring R, Tn(R) is not LNZS for n ≥ 3.

Remark 2.6. In view of Theorem 2.4 and the proof of Example 2.5, one can conclude that for any integer
n ≥ 2, Tn(R) is an LNZS ring if and only if n = 2 and R is reduced.

Proposition 2.7. Let R be an LNZS ring. Then N(R) = W (R), where W (R) denotes the wedderburn
radical of R.

Proof. For any w ∈ N(R), there is exists a positive integer n such that wn = 0. It is trivial in the
case n = 1. Whenever n = 2, from w2 = 0, we have wr1w = 0 for any r1 ∈ R. In the case n = 3,
ww2 = 0 gives (wr1w)w = 0 for any r1 ∈ R, since l(w2) is an ideal of R. Inductively, in the case n > 3,
wr1wr2...wrn−1w = 0. It turns out that wn = 0 implies r1wr2w...rnwrn+1 = 0 for any r1, ..., rn+1 ∈ R.
This means that (RwR)n+1 = 0, and so w ∈ RwR ⊆ W (R). That is, N(R) ⊆ W (R) ⊆ N(R), and so we
are done.

�
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Corollary 2.8. LNZS rings are weakly semicommutative.

Proof. Follows since NI rings are weakly semicommutative ( [10, Proposition 2.1]). �

There exists a weakly semicommutative ring R that is not LNZS ( see the following example ).

Example 2.9. Let F be a field and F 〈x, y〉 the free algebra in non-commuting indeterminates x, y over
F and I denotes the ideal 〈x2〉2 of F 〈x, y〉, where 〈x2〉 is the ideal of F 〈x, y〉 generated by x2. Take
R = F 〈x, y〉/I. Then by [10, Example 2.1], R is weakly semicommutative and N(R) = xRx+Rx2R+Fx.
Hence x ∈ N(R) and (x3)x = 0. But x3y(x) 6= 0. Thus, R is not LNZS.

We write Rn to denote the ring




























a a12 . . . a1n

0 a . . . a2n

...
...

. . .
...

0 0 . . . a











: a, aij ∈ R, i = 1, . . . , n − 1, j = 2, 3, . . . , n



















.

In [3, Example 2.1], it is shown that if R is reduced, then Rn is not semicommutative but weakly
semicommutative for n ≥ 4. So a suspicion arises whether Rn is LNZS for n ≥ 4 whenever R is reduced.
However, the following example obliterates the possibility.

Example 2.10. Let R = R, R4 =























a b c d
0 a e f
0 0 a g
0 0 0 a









: a, b, c, d, e, f, g ∈ R















, where R represents the

field of real numbers. Take A =









0 1 0 1
0 0 0 0
0 0 0 1
0 0 0 0









∈ N(R4).

Now, E =









0 1 0 1
0 0 0 1
0 0 0 1
0 0 0 0









∈ l(A) that is, EA = 0. Take F =









1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1









. Then, EFA =









0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0









. Thus, EF /∈ l(A), that is, l(A) is not an ideal. Therefore, R is not LNZS.

Proposition 2.11. LNZS rings are nil-semicommutative.

Proof. Let R be an LNZS ring. Suppose a, b ∈ N(R) be such that ab = 0. Since R is LNZS, arb = 0 for
all r ∈ R. �

However, the converse is not true (see the following example).

Example 2.12. By [4, Example 2.2], for any reduced ring R, T3(R) is nil-semicommutative ring which
is not LNZS by Theorem 2.4 and the proof of Example 2.5.

Theorem 2.13. Let R be a ring. Then R is a domain if and only if R is an LNZS and prime ring.

Proof. The necessary part is obvious. Conversely, assume R is an LNZS and prime ring and w, h ∈ R be
such that wh = 0. Since R is LNZS and (hw)2 = 0, hwRhw = 0. By hypothesis, hw = 0. So for any
r ∈ R, (wrh)2 = 0, which further implies that wrhRwrh = 0, that is, wrh = 0. Hence w = 0 or h = 0. �

One might suspect that a homomorphic image of an LNZS ring is LNZS. However, there exists an
LNZS ring whose homomorphic image is not LNZS ( see the following example ).
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Example 2.14. Let R = D[x, y, z], where D is a division ring and x, y, and z are non-commuting
indeterminates. Take I =< xy >. As R is a domain, R is LNZS. Clearly, yx ∈ N(R/I) and x(yx) =
xyx = 0. But, (x)(z)yx 6= 0. So R/I is not LNZS.

Theorem 2.15. Let R be an LNZS ring. Then R/l(s) is semicommutative for any s ∈ N(R).

Proof. Let a be an element of R and x ∈ l(as). By Proposition 2.7, N(R) is an ideal and for any r ∈ R,
xr ∈ l(as) as R is LNZS. So xr ∈ l(a), that is, l(a) is an ideal. �

Theorem 2.16. If R is an LNZS ring and H an ideal consisting of all nilpotent elements of bounded
index m in R, then R/H is LNZS.

Proof. Let b ∈ N(R/H), a ∈ R/H be such that ab = 0. Then ab ∈ H , that is, (ab)m = 0. As b ∈ N(R/H),
b ∈ N(R). By Proposition 2.7 and R being LNZS, (ab)m = 0 implies (arb)m = 0 for any r ∈ R. This
implies arb ∈ H . Therefore, R/H is LNZS. �

Let S be an (R, R)-bimodule. The trivial extension of R by S is the ring T (R, S) = R
⊕

S, where
the addition is usual and the multiplication is defined as:
(r1, s1)(r2, s2) = (r1r2, r1s2 + s1r2), si ∈ S, ri ∈ R and i = 1, 2. T (R, S) is isomorphic to the ring
{(

t s
0 t

)

: t ∈ R, s ∈ S

}

, where the operations are usual matrix operations.

Theorem 2.17. If T (R, R) is LNZS, then R is semicommutative.

Proof. Let w, h ∈ R and wh = 0. Then,

(

w 0
0 w

)(

0 h
0 0

)

=

(

0 0
0 0

)

. Since T (R, R) is LNZS,
(

w 0
0 w

)(

r 0
0 r

)(

0 h
0 0

)

=

(

0 0
0 0

)

, for any r ∈ R. This implies that
(

0 wrh
0 0

)

=

(

0 0
0 0

)

, that is, wrh = 0. �

However, the converse is not true.

Example 2.18. Consider H as the Hamilton quaternions over R and R = T (H,H), where R denotes
the field of real numbers. By [2, Proposition 1.6], R is reversible and hence semicommutative. Take

S = T (R, R). Let A =









(

0 i
0 0

) (

j 0
0 j

)

(

0 0
0 0

) (

0 i
0 0

)









∈ S and B =









(

0 1
0 0

) (

k 0
0 k

)

(

0 0
0 0

) (

0 1
0 0

)









∈ N(S). Observe that

A ∈ l(B). Take

C =









(

j i
0 j

) (

0 0
0 0

)

(

0 0
0 0

) (

j i
0 j

)









. It is easy to see that ACB 6= 0. Hence l(B) is not an ideal, that is, S is not

LNZS.

According to [9], R is called quasi-normal if eR(1 − e)Re = 0 for each e ∈ E(R).

Theorem 2.19. LNZS rings are quasi-normal.

Proof. Let r be an arbitrary element in R. Then e(1 − e)re = 0. Clearly, (1 − e)re ∈ N(R). Since R is
LNZS, es(1 − e)re = 0 for any s ∈ R. Thus, eR(1 − e)Re = 0. �

However, there exists a quasi-normal ring which is not LNZS, as shown in the following example.
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Example 2.20. Let Z be the ring of integers, and consider the ring R=
{(

x y
z w

)

: x ≡ w (mod 2), y ≡ z (mod 2), x, y, z, w ∈ Z

}

. By [5, Example 2.7], R is abelian and

hence quasi-normal. Observe that,

(

0 2
0 0

)2

=

(

0 0
0 0

)

. But
(

0 2
0 0

)(

2 2
2 2

)(

0 2
0 0

)

6=

(

0 0
0 0

)

. So, R is not LNZS.

Corollary 2.21. LNZS rings are left min-abel.

Proof. Quasi normal rings are left min-abel ( [9, Theorem 2.4]). �

It is easy to observe that the class of LNZS rings properly contains the class of reduced rings. In the
following proposition, we provide some conditions under which an LNZS ring turns out to be reduced.

Proposition 2.22. Let R be an LNZS ring. Then R is reduced in each of the following cases:

1. R is semiprime.

2. R is left MC2 and every simple singular left R-module is Wnil-injective.

3. Every idempotent in R is right semicentral and every simple singular left R-module is Wnil-
injective.

Proof. Let R be an LNZS ring.

1. Assume that w2 = 0 for some w ∈ R. Since R is LNZS, wRw = 0. By hypothesis, w = 0. Therefore,
R is reduced.

2. Suppose that there exists h (6= 0) ∈ R with h2 = 0. Then l(h) ⊆ H for some maximal left ideal H .
If possible, assume that H is not an essential left ideal of R. Then H = l(e) for some e ∈ MEl(R).
By Corollary 2.21, R is left min-abel. By [7, Theorem 1.8 (3)], e ∈ Z(R). As h ∈ H , eh = 0 and so
e ∈ l(h) ⊆ H = l(e), a contradiction. Hence H is an essential left ideal of R, and R/H is a simple
singular left R-module. By hypothesis, R/H is W nil-injective. Define a left R-homomorphism
Ψ : Rh → R/H via Ψ(rh) = r + H . Then Ψ can be extended from R to R/H. So, 1 − hl ∈ H
for some l ∈ R. Since R is LNZS, h2 = 0 yields hRh = 0. So hl ∈ l(h) ⊆ H , that is, 1 ∈ H , a
contradiction. Therefore, R is reduced.

3. Let w (6= 0) ∈ R with w2 = 0. Then l(w) ⊆ W for some maximal left ideal W of R. If possible,
assume that W is not essential in RR. Then W = l(e) for some e ∈ E(R). So, we = 0 as
w ∈ l(w) ⊆ W = l(e). Since e is right semicentral, ew = ewe = 0. Hence e ∈ l(w) ⊆ l(e),
a contradiction. So W is essential maximal left ideal. This implies R/W is simple singular left
R-module. By hypothesis, R/W is W nil-injective left R-module. As in (2), 1 − ws ∈ W for some
s ∈ R. Since R is LNZS, w2 = 0 implies wRw = 0. So, ws ∈ l(w) ⊆ W . This implies 1 ∈ W , a
contradiction. Thus, w = 0.

�

Proposition 2.23. The subdirect product of an arbitrary family of LNZS rings is LNZS.

Proof. Let {Iδ|δ ∈ ∆} be a family of ideals of R such that ∩δ∈∆Iδ = 0 and R/Iδ is LNZS for each δ, where
∆ is an index set. Take b ∈ N(R) and a ∈ l(b). Clearly, for each δ, b+Iδ ∈ N(R/Iδ) and a+Iδ ∈ l(b+Iδ).
Since R/Iδ is LNZS and (a + Iδ)(x + Iδ)(b + Iδ) = Iδ for any x ∈ R, that is, axb + Iδ = Iδ. This implies
that axb ∈ Iδ for all δ ∈ ∆, that is, axb ∈ ∩δ∈∆Iδ = 0 and so l(a) is an ideal. Therefore, the subdirect
product of LNZS rings is LNZS. �
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Let A be an algebra (not necessarily with identity) over a commutative ring S. The Dorroh extension
of A by S is the ring denoted by A

⊕

D S, with the operations (a, s) + (a1, s1) = (a + a1, s + s1) and
(a, s)(a1, s1) = (aa1 + sa1 + s1a, ss1) where a, a1 ∈ A and s, s1 ∈ S.

Proposition 2.24. Dorroh extension of an LNZS ring R by Z is LNZS.

Proof. Let (a, z) ∈ N(R
⊕

D Z). Clearly, a ∈ N(R) and z = 0. Suppose (s, m) ∈ l(a, 0). Then
((s + m)a, 0) = (0, 0), that is, (s + m) ∈ l(a). Let (r, n) be an arbitrary element of R

⊕

D Z. Now,
(s, m)(r, n)(a, 0) = (s, m)(ra + na, 0) = ((s + m)ra + (s + m)na, 0). Since l(a) is an ideal of R and
(s + m) ∈ l(a), so (s, m)(r, n)(a, 0) = (0, 0). Hence l(a, 0) is an ideal. �

For an endomorphism α of R, R[x; α] denotes the skew polynomial ring over R whose elements are

polynomials
n
∑

i=0

wix
i, wi ∈ R, where the addition is defined as usual and the multiplication is defined by

the law xw = α(w)x for any w ∈ R.
The following examples show that the polynomial ring over an LNZS ring need not be LNZS, and so is
the case of the skew polynomial ring over an LNZS ring.

Example 2.25. :

1. Take Z2 as the field of integers modulo 2 and let A = Z2[a0, a1, a2, b0, b1, b2, c] be the free algebra
of polynomials with zero constant terms in non-commuting indeterminates a0, a1, a2, b0, b1, b2 and c
over Z2. Take an ideal I of the ring Z2 + A generated by a0b0, a0b1 + a1b0, a0b2 + a1b1 + a2b0, a1b2 +
a2b1, a2b2, a0rb0, a2rb2, b0a0, b0a1 +b1a0, b0a2 +b1a1 +b2a0, b1a2 +b2a1, b2a2, b0ra0, b2ra2, (a0 +a1 +
a2)r(b0 + b1 + b2), (b0 + b1 + b2)r(a0 + a1 + a2) and r1r2r3r4 where r, r1, r2, r3, r4 ∈ A. Take
R = (Z2 + A)/I. Then we have R[x] ∼= (Z2 + A)[x]/I[x]. By [2], R is reversible and hence

LNZS. Observe that
(

a0 + a1x + a2x2
)

∈ N(R) and (b0 + b1x + b2x2)(a0 + a1x + a2x2) ∈ I[x]. But

(b0 + b1x + b2x2)c(a0 + a1x + a2x2) /∈ I[x], since b0ca1 + b1ca0 /∈ I. Hence l
(

a0 + a1x + a2x2
)

is

not an ideal. Therefore, R is not LNZS.

2. Let K be a division ring and R = K
⊕

K with componentwise multiplication. Observe that R is
reduced, and so R is LNZS. Define Ψ : R → R via Ψ(h, w) = (w, h). Then Ψ is an automorphism
of R. Let f(x) = (1, 0)x ∈ R[x; Ψ]. Observe that f(x)2 = 0 but f(x)xf(x) 6= 0, that is, l(f(x)) is
not an ideal. Hence R[x; Ψ] is not LNZS.

The proof of the following lemma is trivial.

Lemma 2.26. Let R be a ring and ∆ be a multiplicatively closed subset of R consisting of central non-zero
divisors. For any u−1a ∈ ∆−1R, l(u−1a) is an ideal if and only if l(a) is an ideal.

Proposition 2.27. Let R be a ring and ∆ be a multiplicatively closed subset of R consisting of central
non-zero divisors. Then R is LNZS if and only if ∆−1R is LNZS.

Proof. Obviously, u−1a ∈ N(∆−1R) if and only if a ∈ N(R). By Lemma 2.26, R is LNZS if and only if
so is ∆−1R. �

Corollary 2.28. R[x] is LNZS if and only if R[x, x−1] is so.

Proof. R[x, x−1] = ∆−1R[x], where ∆ = {1, x, x2, ...}. Hence the result follows. �

R is said to satisfy the α-condition ( [3]) for an endomorphism α of R in case ab = 0 if and only if
aα(b) = 0 where a, b ∈ R.

For ease of reference, we state the following lemma.

Lemma 2.29. ( [10, Lemma 3.1]) Let R be a ring which statisfies α-condition for an endomorphism α
of R. Then a1a2...an = 0 ⇐⇒ αk1 (a1)αk2 (a2)...αkn(an) = 0, where k1, k2, ..., kn are arbitrary non
negative integers and a1, a2, ..., an are arbitrary elements in R.
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Proposition 2.30. Let R be an LNZS ring and satisfies α-condition for an endomorphism α of R.
Then N(R)[x; α] ⊆ N(R[x; α]).

Proof. Let f(x) = a0 +a1x+a2x2 +...+anxn ∈ N(R)[x; α]. Then for each i, there exists a positive integer

mi satisfying ami

i = 0. Take k = m0 + m1 + m2 + ... + mn + 1. Then, (f(x))k =
kn
∑

l=0

(

∑

i1+...+ik=l

cl

)

xl,

where cl = ai1
αi1 (ai2

)αi1+i2 (ai3
)...αi1+i2+...+ik−1(aik

) and ai1
, ai2

, ai3
, ..., aik

∈ {a0, a1, a2, ..., an}. There
exists at ∈ {a0, a1, a2, ..., an} such that at appears more than mt in the expression of cl as given above.
Thus, we may assume that at appears s > mt times in cl. So we can rewrite cl as;

cl = b0αj1 (at)b1αj1+j2 (at)...bs−1αj1+...+js(at)bs,
where bi ∈ R for each i and j1, j2, ..., js are non negative integers. Clearly as

t = 0. Since R is LNZS,
b0atb1at...bs−1atbs = 0. By Lemma 2.29,
cl = b0αj1 (at)b1αj1+j2 (at)...bs−1αj1+j2+...+js(at)bs = 0. This implies (f(x))k = 0 and hence N(R)[x; α] ⊆
N(R[x; α]). �

The following lemma is established in the proof of [1, Lemma 3.4].

Lemma 2.31. Let R be an NI ring and satisfies α-condition for an endomorphism α of R. Then
N(R[x; α]) ⊆ N(R)[x; α].

Proposition 2.7, Proposition 2.30 and Lemma 2.31 together yield the following theorem.

Theorem 2.32. Let R be an LNZS ring and satisfies α-condition for an endomorphism α of R. Then
N(R)[x; α] = N(R[x; α]).

According to Rege and Chhawchharia ( [6]), a ring R is called Armendariz if f(x) =
n
∑

i=0

wix
i, g(x) =

m
∑

j=0

hjxj ∈ R[x] satisfy f(x)g(x) = 0, then wihj = 0 for each i, j. Following [1], a ring R is called α-skew

Armendariz for an endomorphism α of R if for any f(x) =
n
∑

i=0

wix
i, g(x) =

m
∑

j=0

hjxj ∈ R[x; α] whenever

f(x)g(x) = 0 then aiα
i(bj) = 0 for all i and j.

Theorem 2.33. Let R be a ring satisfying α-condition for an endomorphism α of R. If R is α-skew
Armendariz, then R is LNZS if and only if R[x; α] is LNZS.

Proof. We prove the necessary part only while the other part follows from the closedness of LNZS rings
under subrings. Let g(x) = b0+b1x+b2x2+...+bmxm ∈ N(R[x; α]) and f(x) = a0+a1x+a2x2+...+anxn ∈
l(g(x)). Then f(x)g(x) = 0. Since R is α-skew Armendariz, aiα

i(bj) = 0 for all i, j. By Lemma 2.29,
aibj = 0 for all i, j. Let h(x) = c0 + c1x + c2x2 + ... + cpxp ∈ R[x; α]. By Theorem 2.32, bj ∈ N(R) for
all j, so l(bj) is an ideal. Therefore, aiclbj = 0 for all l = 0, 1, ..., p. It follows from Lemma 2.29 that
aiα

i(cl)α
i+l(bj) = 0. Hence f(x)h(x)g(x) = 0, that is, l(g(x)) is an ideal. �

Corollary 2.34. For an Armendariz ring R, the following are equivalent:

1. R is LNZS.

2. R[x] is LNZS.

3. R[x, x−1] is LNZS.
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