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Hermite Transform for Distribution and Boehmian Space

Deshna Loonker

abstract: Hermite transform involves weigth function and Hermite polynomial as its kernel is discussed.
The Hermite transform and its basic properties are extended to the distribution spaces and to the space of
integrable Boehmian.
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1. Introduction

Schwartz distribution spaces (also named as generalized functions) have been defined for many integral
transforms such as Foureir, Laplace etc. The Boehmian spaces, which are the generaliztaion of distribution
spaces [12,13], are also extended to integral transforms [1,2,10].

Integral transforms, having the kernel as the weight function have been introduced by many reseachers
with their properties and applications enumerated in different areas. In the present paper, we investigate
distribution spaces and Boehmian spaces for the Hermite transform. Debnath [3], first introduced the
Hemite transform with its basic operational properties in [4].

The Hermite transform of a function f(x), -∞ < x < ∞, is defined by the integral

H{f(x)} = fH(n) =

∫ ∞

−∞

f(x)H̃n(x)e−x2

dx, (1.1)

where H̃n(x) is the Hermite polynomial of degree n, standardized in such a manner that

H̃n(x) =

H2k(x)
H2k(0) , if n = 2k, k ∈ N0

H2k+1(x)
DH2k+1(0) , if n = 2k + 1,

}
(1.2)

where Hn(x) = (−1)nex
2

Dn(e−x2

), n ∈ N0, D = d
dx .

The basic operational properties and the convolution for Hermite and generalized Hermite transform
for Lebesgue spaces are known [4,5,6,7,8,9]. The inverse Hermite transform is given by

H−1{fH(n)} = f(x) =

∞∑

n=0

(δn)−1fH(n)H̃n(x), (1.3)

where δn = 2nn!
√
π.

The function f(x) is the expansion

f(x) =

∞∑

n=0

anH̃n(x), (1.4)
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where the coefficients an can be determined from the orthogonal relation of the Hermite polynomials
H̃n(x) as

∫ ∞

−∞

H̃m(x)H̃n(x)e−x2

dx = δnmδn. (1.5)

The relation between the Laguerre and Hermite polynomial is

H̃n(x) =
R

−1/2
k (x2); if n = 2k

xR
1/2
k (x2); if n = 2k + 1

}
(1.6)

where Rαn are the Laguerre polynomails.

We consider the function f(x) which are locally integrable (Lebesgue integrable) and of O(eax
2

) for
large |x| , a < 1. Denote L1,exp(R) = L1,exp of measurable function, by the norm defined by

‖f‖1,exp =

∫ ∞

−∞

|f(x)| e−x2/2dx. (1.7)

From
∫ ∞

−∞
e−x2/2dx =

√
π, it holds ‖1‖1,exp = 1.Markett [11] extended this space to Lp,exp, 1 ≤ p < ∞

for the measurable functions on R having the norm

‖f‖p,exp =
1√
2π

∫ ∞

−∞

∣∣∣f(x)e−x2/2
∣∣∣
p

dx. (1.8)

In what follow are some results
Theorem 1.1 : Let f ∈ L1,exp, k, n ∈ N0.Then H{f(x)} is a linear transform and moreover
(i) |fH(n)| ≤ cn ‖f‖1,exp,

(ii) H [H̃k](n) = h̃nδkn
with cn and h̃n are defined in [9, p.154].
Corollary 1.1 [9] : Let f(x) is a polynomial of degree m, then fH(n) = 0, for n > m, iff f(x) = 0

(a.e.).
Theorem 1.2[9] : Let f, g be continuous and bounded and let fH(n) = gH(n) for every n ∈ N0.Then

f(x) = g(x) (a.e.), i.e. f = g.
Theorem 1.3: (Differentiation) [5,9] : Let f ′(x) is continuous and f ′′(x) is bounded and locally

integrable in −∞ < x < ∞ (in other words, let f, f ′ ∈ L1,exp and f ′′ is differentiable a.e. on R), and if
H{f(x)} = fH(n), then

H{R[f(x)]} = −2nfH(n), (1.9)

where R[f(x)] is the differential form given by

R[f(x)] = exp(x2)
d

dx

[
exp(−x2)

df

dx

]
. (1.10)

Theorem 1.4 [5,9]: If f(x) is bounded and locally integrable in −∞ < x < ∞ (f ∈ L1,exp ) and
fH(0) = 0, then H{f(x)} = fH(n) exists for each constant C,

H−1

[
−fH(n)

2n

]
= R−1[F (x)], (1.11)

where R−1 is the inverse of the differential operator R and n is a positive integer.

Theorem 1.5 [5] : If f(x) has bounded derivatives of order m and if H{f(x)} = fH(x) exists, then

H{f (m)(x)} = fH(n+m). (1.12)

The product formula for Hermite functions is proved [7] by using suitable spaces, and by studying
convolution for the generalized Hermite transform. Debnath [4] defined convolution of Hermite transform
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of odd functions. Dimovski and Kalla [6] extended the convolution for Hermite transform (1.1) for the
odd and even functions for a suitably chosen Lebesgue space. The details for the convolution of Hermite
transform can be referred to [5,6,7,8,9]. In general, if f(x) and g(x) are two arbitrarty functions defined
on R, then the convolution is given by

f ∗ g = fo
o∗ go + fe

e∗ ge (1.13)

where f and g are expressed as sums of even and odd functions, i.e. f(x) = fo(x) + fe(x), g(x) =
go(x) + ge(x), and fe(x) = 1

2 [f(x) + f(−x)]. Then the result [6] follows as
Thorem 1.6 [9] : Let f, g are locally integrable on R and of order O(eax) as |x| → ∞, with a < 1.Then

there exists the Hermite transform (1.1) of f ∗ g, defined by (1.13) as

H [f ∗ g] = H [f ]H [g]. (1.14)

Using the relation connecting Laguerre and Hermite polynomials, the product formula with the norm
estimated on Lebesgue space as symmetry [cf. [11]], assist to define the generalized translation operator
as under

Definition 1.1 [9] : Let f ∈ L1,exp . Then the generalized translation operator Tx is defined by

(Txf)(y) =
1

4
{[f(x+ y) + f(x− y)]e−xy + [f(x − y) + f(y − x)]exy}

+
1√
2π

∫ ∞

−∞

f(z)k(x, y, z)e−z2

dz, (1.15)

where k(x, y, z) is the kernel.
Proposition 1.1 [9] : Let f,

√ |x| f ∈ L1,exp . Then

(i) ‖Txf‖1,exp ≤ Mex
2/2{‖f‖1,exp +

√ |x| ‖√
yf(y)‖1,exp}

(ii) (Txf)(y) = (Tyf)(x)

(iii) (TxH̃n)(y) = H̃n(x)H̃n(y).
Definition 1.2 [9]: Let Tx be translation operator. Then the convolution for Hermite transform

(HT ), f ∗ g is defined by

(f ∗ g)(x) =
1√
2π

∫ ∞

−∞

f(y)(Txg)(y)e−y2

dy (1.16)

provided the integral exists.

Theorem 1.7 [9]: Convolution Theorem : Let
√ |x| f,√ |x| g ∈ L1,exp. Then f ∗ g ∈ L1,exp and

it holds that
(i) H [f ∗ g] = H [f ]H [g],
(ii) f ∗ g = g ∗ f
The convolution appears to be commutative and associative. The convolution theorem of Hermite

transform is proved by using (1.16) and Proposition 1.1.
The proofs of the Theorems 1.1 to 1.7 can be seen in [4,9]. The product and convolution formulae of

generalized Hermite transform is also proved for Lp,µ− spaces, refer [8].

2. Distribution Spaces for Hermite Transform

In this section, the testing function space and its dual, which is known as distribution spaces, are
employed on the Hermite transform. Notations, terminologies and definitions used, follow [15].

The testing function space, which is denoted by D, consists of all complex valued functions ϕ(t) that
are infinitely smooth and vanishes outside some finite interval.

A sequence of testing functions {ϕυ(t)}∞
υ=1 is said to converge in D if ϕυ(t) are in D, if they are

all zero outside some fixed finite interval I, and if for every fixed non - negative integer k the sequence

{ϕ(k)
υ (t)}∞

υ=1 converges uniformly for −∞ < t < ∞.
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The functionals that assign a complex number to every member of D is denoted as 〈f, ϕ〉 possess two
properties, namely linearity and continuity.

Linearity : The functional f on D is said to be linear if testing functions ϕ1 and ϕ2 and any complex
number α form relations

〈f, ϕ1 + ϕ2〉 = 〈f, ϕ1〉 + 〈f, ϕ2〉
〈f, αϕ1〉 = α 〈f, ϕ1〉

}
. (2.1)

Continuity : A functional f on D is said to be continuous if for any sequence of testing functions
{ϕυ(t)}∞

υ=1 that converges to ϕ(t) in D. In other words, if f(t) is a locally integrable function, then the
distribution f the convergent integral (f(t) in D

′), defined by

〈f, φ〉 = 〈f(t), φ(t)〉 ,
∫ ∞

−∞

f(t)φ(t)dt ,

shows that the function f(t) generates a distribution, or we say, f(t) is in D
′ and φ(t) belongs to D,

where D and D
′ denote, respectively, testing function space and its dual .

In other words, a continuous linear functional on the space D is a distribution. The space of all such
distributions is denoted by D

′ (D′ is called the dual (or conjugate) space of D).
2.1 Distributional Hermite Transform
Let f(x) is locally integrable function that is absolutely continuous (or integrable) over −∞ < x < ∞

whose norm is

‖f‖ =

∫ ∞

−∞

|f(x)| e−x2/2dx.

The Hermite transform as defined in (1.1), is bounded and uniformly continuous. Then f(x) generates a
regular distriution in D

′ which is written in the form

H{f(x)} = fH(n) =
〈
f(x), e−x2

H̃n(x))
〉
, (2.11)

where f(x) ∈ D
′ and e−x2

H̃n(x) ∈ D. This is said to be the distributional Hermite transform.
Since a regular distribution determines the function generating it almost everywhere, we may extend

the uniqueness for the Hermite transform in the following:
Corollary 2.11 : If the locally integrable functions f(x) and g(x) are absolutely integrable over

−∞ < x < ∞ (that is, f, g ∈ D
′) and if their fH(n) and gH(n) are equal everywhere, then f = g almost

everywhere.
Proof : Let f and g assign the same value to each ϕ ∈ D. Indeed, by definition of distribution

spaces choosing ϕ ∈ D, inversse Hermite transform (1.3) can be written as

〈
∞∑

n=0

(δn)−1fH(n)H̃n(x), ϕ

〉
= 〈f(x), ϕ(x)〉 ,

which shows that f ∈ D
′. Then, by invoking above equation and by Corollary 1.1, under the same

conditions, we readily get the uniquness theorem (Theorem 1.2), 〈f, ϕ〉 = 〈g, ϕ〉 that is, fH(n) = gH(n)
Therefore ϕ is dense in D, and f, g ∈ D

′ .
Theorem 2.11 : Let f , g ∈ D

′ (f and g are distributions) and fH and gH be their Hermite
transform. Then

H{f ∗ g} = fH(n) gH(n) = H [f ]H [g].

Proof : Let ϕ ∈ D and f , g ∈ D
′.Then the convolution is

〈f ∗ g, ϕ〉 = 〈f(x), 〈g(y), ϕ(x + y)〉〉 .

This makes sense as 〈g(y), ϕ(x+ y)〉 ∈ D, f ∗ g ∈ D
′. Since ϕ ∈ D ⊂L1,exp, using (1.15) and (1.16),

the convolution theorem of Hermite transform in the sense of distribution space holds, that is,
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〈H{f ∗ g}, ϕ〉 = 〈H [f ]H [g], ϕ〉 .

The convolution of Hermite transform that is commutative and associative (as mentioned above), will
also be applicable for distribution space as f ∗ g ∈ D

′.
The Hermite transform fH(n) is defined on distribution spaces when the functional f ∈ D

′. Then
the basic operational formula such as differentation (1.9), (1.10); inverse Hermite transform (1.11), m−
th order of derivative of Hermite transform, and the product formula will be easily applicale for the
distribution spaces D

′.

3. Hermite Transform for Integrable Boehmians

In this section, we define integrable Boehmians and employ it on the Hermite transform.
Construction of Boehmians is given in [12,13,14]. We consider a special case of Boehmian space.

Consider the space L1 of complex valued Lebesgue integrable functions on the real line R, having the
norm L1(‖f‖ =

∫
|f(x)| dx). If f, g ∈ L1. Then the convolution product

(f ∗ g)(x) =

∫

R

f(u)g(x− u)du

is an element of L1 and ‖f ∗ g‖ ≤ ‖f‖ ‖g‖ .
A sequence of continuous real functions δn ∈ L1 will be called a delta sequence if
(i)

∫
R
δn(x)dx = 1 , ∀n ∈ N

(ii) ||δn|| < M , for some M ∈ R and all n ∈ N, and
(iii) lim

n→∞

∫
|x|>ǫ

|δn(x)| dx = 0 , for each ǫ > 0 .

If (ζn) and (ψn) are delta sequences, then we have (ζn ∗ ψn). If f ∈ L1 and (δn) is a delta sequence,
then ‖f ∗ δn − f‖ → 0 as n → ∞. Delta sequences are called approximate identities or summability
kernels.

A pair of the sequences ( fi, ζi) is called a quotient of sequence, denoted by fi/ζi if fi ∈ L1(i =
1, 2, . . .), (ζi) is a delta sequence, whereas two quotients of sequences fi/ζi and gi/ψi are equivalent if
fi ∗ ψi = gi ∗ ζi, for i ∈ N. The equivalence class of quotient of sequences will be called an integrable
Boehmians, which will be denoted by BL1

.
The space BL1

is a convolution algebra when the multiplication by scalar, addition, and convolution
are defined as

(i) λ[fi/ζi] = [λfi/ζi].

(ii) [fi/ζi] + [gi/ψi] =
[
fi∗ψ

i
+gi∗ζ

i

ψ
i
∗ζ

i

]
,

(iii) [fi/ζi] ∗ [gi/ψi] =
[
fi∗gi

ψ
i
∗ζ

i

]
.

A function f ∈ L1 can be identified with Boehmian
[
fi∗δi

δi

]
, where (δi) is any delta sequence. It is

convenient to treat L1 or L1,exp (as considered in previous section) as a subspace of BL1
. If F = [fi/δi],

then F ∗ δi = fi and hence F ∗ δi ∈ BL1
, for every n ∈ N.

There are two types of convergence, δ− convergence and ∆ - convergence for Boehmian space. Simi-
larly, for convergence in BL1

, we have
(1) A sequence of Boehmians (Fi) is δ - convergent to a Boehmain F in BL1

, denoted by Fi δ−→F, if there

exists a delta sequence (δi) such that (Fi ∗ δk), (F ∗ δk) ∈ L1 for every n, k ∈ N and ‖(Fi − F ) ∗ δk‖ → 0,
for each k ∈ N.

(2) A sequence of Boehmians (Fi) in BL1
is said to be ∆ - convergent, denoted by Fn∆−→F if there

exists a (δi) ∈ ∆ such that (Fi − F ) ∗ δk ∈ L1 and (Fi − F ) ∗ δk → 0 as n → ∞ in L1.
Let F = [fi/δi] ∈ BL1

. Then for each n ∈ N , we have f1 ∗ δi = fi ∗ δ1. Since
∫
δi(x)dx = 1 for

each i ∈ N, we have
∫
f1(x)dx =

∫
R
(f1 ∗ δi)(x)dx =

∫
R
(fi ∗ δ1)(x)dx =

∫
R
fi(x)dx. This property allows

to define the integral of Boehmian: If F = [fi/δi] ∈ BL1
, then

∫
F =

∫
f1. For a function from L1 (or

L1,exp) this integral is the same as the Lebesgue integral.
Lemma 3.1 : If [fi/δi] ∈ BL1

, then the sequence
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H{fi(x)} = [fH(n)]i =

∫ ∞

−∞

fi(x)H̃n(x)e−x2

dx

converges uniformly on each compact set in (−∞,∞).

Proof. If (δi) is a delta sequence, then H [δi] converges uniformly on each compact set to a constant
function. Hence, for each compact set K, H(δk) > 0 on K for almost all k ∈ K and

H(fi) = H(fi)
H(δk)

H(δk)
.

Using definition of Boehmian space and that of the convolution of Hermite transform, we write right side
of above relation

=
H(fi ∗ δk)

H(δk)
=
H(fk ∗ δi)
H(δk)

that is,

H(fi) =
H(fk)

H(δk)
H(δi) on K.

Thus, the lemma is proved.

Theorem 3.1 : If [fi/δi] ∈ BL1
, then the sequnece H(fi) converges in D

′. Moreover, if [fi/δi]
= [gi/δi], then H(fi) and H(gi) converge to the same limit of Hermite transform for an integrable
Boehmian.

Proof : Let [fi/δi], [gi/δi] ∈ BL1
such that [fi/δi] = [gi/δi] or fi ∗ δi = gi ∗ δi. Applying Hermite

convolution to both sides of the above relation, we have

H(fi ∗ δi) = H(gi ∗ δi)
H(fi)H(δi) = H(gi)H(δi)

H [fi/δi] = H [gi/δi]

Hence H [fi/δi] = H [gi/δi] is in BL1
.

Definition 3.1 : The Hermite transform of an integrable Boehmian F = [fi/δi] is defined as the
limit of H(fi) in the space of continuous functions in L1.Thus, the Hermite transform of an integrable
Boehmian is a continuous function.

Theorem 3.2 : Let F and G ∈ BL1
. Then

(1) H(λF ) = λH(F ) (for any complex λ) and H(F +G) = H(F ) +H(G) and

(2) H(F ∗G) = H(F )H(G).

Proof : Let F = [fi/ϕi] and λF = [λfi/ϕi] . Since fi ∈ L1 =⇒ λfi ∈ L1and ϕi ∈ D

H(λF ) = [H(λfi)/H(ϕi)] = λH [fi/ϕi] = λ(HF )

Therefore, λ(HF ) ∈ BL1
.

If F = [fi/ϕi] and G = [gi/ψi] in BL1
, then H(F ) = H [fi/ϕi] and H(G) = H [gi/ϕi] are in BL1

.Now

F +G =

[
(fi ∗ ψi) + (gi ∗ ϕi)

(ϕi ∗ ψi)

]
.

Applying convolution of Hermite transform to both the sides of above relation, we get
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H(F +G) =
H(fi ∗ ψi) +H(gi ∗ ϕi)

H(ϕi ∗ ψi)

=
H(fi)H(ψi) +H(gi)H(ϕi)

H(ϕi)H(ψi)

= H

(
fi
ϕi

)
+H

(
gi
ϕi

)
= HF +HG

These properties show that the Hermite transform for integrable Boehmian is linear.
Proof of (2) is straight forward conclusion from the property of convolution for the Hermite transform

in L1 and distribution space, as given the previous sections.
Theorem 3.3 : The Hermite transform (HF ) is continuous with respect to δ - convergence and ∆ -

convergence, and that HFi → HF in BL1
iff Fi → F in BL1

.
Proof : The proof suffice in showing that F = 0 =⇒ H(F ) = 0 (as in Corollary 1.1). lim Fi δ−→F

implies HFi → HF uniformly on each compact set. Let (δi) be a delta sequence such that Fi ∗δk, F ∗δk ∈
L1 for all i, k ∈ N and ‖(Fi − F ) ∗ δk‖ → 0 as i → ∞ for all k ∈ N, and let K be a compact set in R.
Then H(δk) → 0 on K for some k ∈ N.

Since H(δk) is a continuous function, therefore H(Fi)H(δk) → H(F )H(δk) uniformly on K.
But H(Fi)H(δk) − H(F )H(δk) = H [(Fi − F ) ∗ (δk)] and ‖(Fi − F ) ∗ (δk)‖ → 0 as n → ∞.Thus,

HFi → HF in BL1
.

The basic properties of Hermite transform such as differentiation, integration, and inversion which
are employed for the Lebesgue spaces, can be proved for the distribution spaces and for the Boehmian
spaces as integrable Boehmian.

The distribution (also named as generalized functions) spaces are applied to Hermite polynomails.
There are, arguably, many other types of distribution spaces and Boehmian spaces which are yet to be
ventenured with regard to the Hermite transform.
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