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abstract: In this work, we examine super-recurrence and super-rigidity of composition operators acting
on H(D) the space of holomorphic functions on the unit disk D and on H

2(D) the Hardy-Hilbert space. We
characterize the symbols that generate super-recurrent and super-rigid composition operators acting on H(D)
and H2(D).
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1. Introduction and preliminaries

Throughout this paper, C will represent the complex plane, C
∗ the punctured plane C\{0}, and

Ĉ = C ∪ {∞} will be the one-point compactification of C. Moreover, we will write D for the open unit
disk of C and T for its boundary. Finally, we denote by N the set of positive integers.

Let X be a topological vector space over the field K (R or C). Let B(X) be the set of operators
(continuous linear self-maps acting on X).

Hypercyclicity and supercyclicity are among the most studied notions in Linear Dynamics.
An operator T ∈ B(X) is called hypercyclic if we can find some vector x whose orbit under T , that is

Orb(x, T ) := {T nx : n ∈ N},

is dense in X . The vector x is called a hypercyclic vector for T .
On a separable Fréchet space X , Birkhoff proved in [14] that an operator T ∈ B(X) is hypercyclic if and
only if for each pair (U, V ) of nonempty open subsets of X there exists n ∈ N such that

T n(U) ∩ V 6= ∅.

An operator which satisfies the latter property is said to be topological transitive, see [8,31].
The operator T is called supercyclic if there exists some vector x whose projective orbit under T , that

is
K.Orb(x, T ) := {λT nx : λ ∈ K, n ∈ N},

is dense in X , see [33]. Such a vector x is called a supercyclic vector for T .
Again, if we assume that the space X is a separable Fréchet space, then T is supercyclic if and only if
for two of nonempty open subsets U and V of X there exist some scalar λ ∈ K and some positive integer
n such that

λT n(U) ∩ V 6= ∅.

For more information about these two classes of operators, the reader may be referred to K.G. Grosse-
Erdmann and A. Peris’s book [31] and F. Bayart and É. Matheron’s book [8], and the survey article
[29] by K.G. Grosse-Erdmann. In [2,4,5,6] it was studied the dynamics of a set of operators instead of a
single operator.
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Another important notion in Linear Dynamics is that of recurrence. This notion goes back to Poincaré
[36]. Since then, it has been studied by many authors: Gottschalk and Hedlund in [27], and also
Furstenberg in [22]. However, a fundamental systematic study of recurrent operators was done until 2014
in [18] by Costakis, Manoussos, and Parissis.

An operator T ∈ B(X) is called recurrent if for each nonempty open subset U of X , there exists some
positive integer n such that

T n(U) ∩ U 6= ∅.

A vector x ∈ X is said to be a recurrent vector for T if there exists an increasing sequence (nk) of positive
integers such that

T nkx −→ x as k −→ ∞.

The set of all recurrent vectors for T will be denoted by Rec(T ):

Rec(T ) := {x ∈ X : x ∈ Orb(T x, T )}.

The study of the recurrent behaviour of operators has become an active, exciting area in mathematics in
the last few decades.
For more information about this class of operators, see [1,15,17,19,24,28,32,38].

A more robust notion than recurrence is that of rigidity. This notion goes back to Furstenberg and
Weiss [23] in the ergodic theoretic setting. In Topological Dynamics, the notions of rigidity and uniform
rigidity have been introduced and studied by Glasner and Maon [25]. In Linear Dynamics, the rigidity
and uniform rigidity have been studied in [20,21] by Eisner and Grivaux.
An operator T ∈ B(X) is called rigid (resp. uniformly rigid) if there exists a strictly increasing sequence
of positive integers (nk) such that

T nkx −→ x as k −→ ∞, for all x ∈ X

(resp. ‖T nk − I‖ = sup
‖x‖≤1

‖T nkx − x‖ −→ 0 as k −→ ∞).

Motivated by the relationship between hypercyclicity and supercyclicity, a new class of operators has
been introduced in [3]. This class called the class of super-recurrent operators. We say that T is super-
recurrent if, for each nonempty open subset U of X , one can find a scalar λ and a positive integer n such
that

λT n(U) ∩ U 6= ∅.

A vector x is called a super-recurrent vector for T provided that there exist an increasing sequence (nk)
of positive integers and a sequence (λk) of scalars such that

λkT nkx −→ x as k −→ ∞.

SRec(T ) will denotes the set of all super-recurrent vectors for T .
Furthermore, taking into consideration the relationship between the notions of recurrence, rigidity, and

uniform rigidity, in [9] it was introduced the concepts of super-rigid and uniformly super-rigid operators.
We say that T is super-rigid (resp. uniformly super-rigid) if we can provide the existence of a strictly
increasing sequence (nk) of positive integers and a sequence (λk)k of scalars such that

λkT nkx −→ x as k −→ ∞, for all x ∈ X

(resp. ‖λkT nk − I‖ = sup
‖x‖≤1

‖λkT nkx − x‖ −→ 0 as k −→ ∞).

We have the following diagram of the relationship between recurrence, super-recurrence, and their
deviations.
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U.S-Rigidity S-Rigidity S-Recurrence

U. Rigidity Rigidity Recurrence

[3, Remark 2.2][9, Remark 2.3][9, Remark 3.3]

[9, Remark 3.5] [9, Example 2.4]

[9, Theorem 6.4 and 6.5] [18, Example 5.4]
×

×

×

×

× ××

The study of composition operators has gained interest due to its importance as a good supply of
examples for describing and generalizing results to other operators.

Recall that if E ⊂ C and φ : E −→ E, then the composition operator induced by φ is defined by

Cφf = f ◦ φ,

for every f a function acting of E in C. The map φ is called the symbol of the operator Cφ, see [37].
Different authors have studied the linear dynamics of composition operators, see [7,10,11,12,16,18,26,

30].
The super-recurrence, super-rigidity, and uniform super-rigidity of composition operators acting on

C([0, 1]) the space of continuous functions on [0, 1], on H(C) the space of entire functions, and on H(C∗)
the space of holomorphic functions on the punctured plan C∗, were studied in [34]. Here, in this paper,
we aim to study super-recurrence and super-rigidity of composition operators induced by linear fractional
maps on the spaces H(D) and H2(D).

Recall that linear fractional maps are those of the form

φ(z) =
az + b

cz + d
, z ∈ D,

for some a, b, c, d ∈ C satisfying ad − bc 6= 0. The latter condition is necessary and sufficient for f to be
nonconstant. The automorphisms of D are the linear fractional transformations of the form

φ(z) = b
a − z

1 − az
, |a| < 1, |b| = 1,

see [31, Proposition 4.36]. We classify linear fractional maps as:

1. Linear fractional maps without a fixed point in D.

(a) parabolic linear fractional maps: those have a unique, attractive fixed point on T.

(b) hyperbolic maps with an attractive fixed point on T: those having an attractive fixed point α ∈
T and a second fixed point β ∈ Ĉ\D. The linear fractional map is a hyperbolic automorphism
of D if and only if both fixed points are on T.

2. Linear fractional maps having a fixed point in D. Here there are two cases:

(a) either the interior fixed point is attractive, or

(b) the map is an elliptic automorphism: The automorphisms of D having a fixed point α ∈ D and
the second fixed point β ∈ Ĉ\D̄.

For more information about these notions and classification, we refer the reader to [37].
The organization of this paper is as follows. In Section 2, we study the super-recurrence and the

super-rigidity on the space H(D) (the space of holomorphic functions on the disk D). We prove that
both concepts super-recurrence and recurrence of the composition operator Cφ are equivalent to the fact
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that the symbol φ is either univalent without fixed point in D or φ is an elliptic automorphism. As a
result, we show that in the case of composition operator generated by a linear fractional map φ, these
two notions are equivalents to the fact that φ is either parabolic or hyperbolic with no fixed point in D,
or an elliptic automorphism.
In the case of super-rigidity, we prove that the super-rigidity; and the rigidity of Cφ are both equivalent
to the fact that the symbol φ is an elliptic automorphism.

In Section 3, we carry out the characterization of composition operator action on the Hardy space.
We show that the super-recurrence and the recurrence are equal, and both equivalents to that the map
φ is either hyperbolic with no fixed point in D, a parabolic automorphism, or an elliptic automorphism.
Furthermore, we prove that we have equivalence between rigidity and super-rigidity and that they are
equivalents to that φ is an elliptic automorphism.

2. Super-recurrence on H(D)

Let H(D) be the space of holomorphic functions on the disk D endowed with the topology of uniform
convergence on compact subsets of D, which is a Fréchet space. If φ: D −→ D is a holomorphic map,
then Cφ is a well defined continuous linear operator.

The following theorem shows that the hypercyclicity and the supercyclicity of Cφ on simply connected
domains different from C are equivalent.

Theorem 2.1. [12, Theorem 3.3 and Corollary 3.4] Let G 6= C be a simply connected domain, and φ

an automorphism of G and let Cφ : H(G) → H(G) be the composition operator with symbol φ. Then the
following properties are equivalent:

1. (φn(z0)) approximates the boundary of G for some (all, resp.) z0 ∈ G;

2. φ has no fixed point in G.

3. Cφ is hypercyclic on H(G);

4. Cφ is supercyclic on H(G).

In the case of recurrence, we have the following theorem.

Theorem 2.2. [18, Theorem 6.9] Let φ : D → D be a holomorphic function and let Cφ : H(D) → H(D)
be the composition operator with symbol φ. Then the following assertions are equivalent:

1. Cφ is recurrent;

2. φ is either univalent and has no fixed point in D or φ is an elliptic automorphism.

In the case of linear fractional maps, we have the following corollary.

Corollary 2.3. [18, Corollary 6.10] Let φ be a linear fractional map on D and let Cφ : H(D) → H(D)
be the composition operator with symbol φ. The following assertions are equivalent:

1. Cφ is recurrent;

2. φ is either parabolic, or hyperbolic without fixed point in the unit open disk, or an elliptic automor-
phism.

Now we turn into the case of super-recurrent. In the following theorem, we prove that the recurrence
and super-recurrence of composition operators acting on H(D) are equivalent to the fact that φ be either
univalent with no fixed point in D or an elliptic automorphism.

Theorem 2.4. Let φ : D → D be a holomorphic function and let Cφ : H(D) → H(D) be the composition
operator with symbol φ. Then the following assertions are equivalent:

1. Cφ is super-recurrent;
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2. Cφ is recurrent;

3. φ is either univalent and has no fixed point in D or φ is an elliptic automorphism.

Proof: The equivalence between (2) and (3) are due to Theorem 2.2 and The implication (3) ⇒ (1) is
trivial. So to complete the proof, we need only to show that (1) ⇒ (3).
(1) ⇒ (3): Assume that Cφ is super-recurrent. First, we will show that φ is univalent; that is holomorphic
and one-to-one.
We prove it by contradiction. Assume that φ is not one-to-one. Then there exist two elements x1, x2 of
D such that

x1 6= x2 and φ(x1) = φ(x2).

Let f be an arbitrary super-recurrent vector for Cφ. Then there exist a sequence (λk) of numbers and a
strictly increasing sequence (nk) of positive integers such that

λkCnk

φ (f) −→ f, as k −→ ∞.

Hence,
λkf (φnk (x1)) −→ f(x1) and λkf (φnk (x2)) −→ f(x2), as k −→ ∞.

Since φ(x1) = φ(x2), it follows that f(x1) = f(x2). Then

SRec(Cφ) ⊂ {f ∈ H(D) : f(x1) = f(x2)}.

Thus by [3, Theorem 3.8], we have that

H(D) = SRec(Cφ) ⊂ {f ∈ H(D) : f(x1) = f(x2)},

which is a contradiction. This means that φ is one-to-one. Hence φ is univalent. We have then the
following two cases:

Case 1: If φ has no fixed point in D, then there is nothing to prove.
Case 2: If φ has an interior fixed point p ∈ D. In this case, we also have two cases:

(a) If φ is an automorphism of the disk the it is necessarily an elliptic automorphism; see [37].

(b) If φ is not an elliptic automorphism, then the Denjoy-Wolff Iteration Theorem [37, Proposition 1,
Chapter 5], implies that (φn)n∈N converges to p uniformly on compact subsets of D. Thus, the only
super-recurrent vectors of Cφ are constant functions. Hence, Cφ cannot be super-recurrent in this
case.

�

In the case of linear fractional maps, we have the following corollary.

Corollary 2.5. Let φ be a linear fractional map on D and let Cφ : H(D) → H(D) be the composition
operator with symbol φ. The following assertions are equivalent:

1. Cφ is super-recurrent;

2. Cφ is recurrent;

3. φ is either parabolic, or hyperbolic with no fixed point in D, or an elliptic automorphism.

In the case of rigidity, we have the following theorem.

Theorem 2.6. [18, Theorem 6.11] Let φ : D → D be a holomorphic function and let Cφ : H(D) → H(D)
be the composition operator with symbol φ. Then the following assertions are equivalent:

1. Cφ is rigid;
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2. φ is an elliptic automorphism.

We now characterize the super-rigidity of composition operators on H(D). In particular, we prove
that the rigidity and super-rigidity of a composition operator on H(D) are equivalent. We need to recall
the following stronger notion than hypercyclicity to show that.

Definition 2.7. [13, Definition 2.1]. Let X be a Fréchet space, T be an operator acting on X, and
(nk)k≥0 be a strictly increasing sequence of positive integers. The operator T is called hereditarily hyper-
cyclic with respect to (nk)k≥0 if for each subsequence (nkj

)j≥0 of (nk)k≥0, the family {T
nkj } is hypercyclic;

that is, there exists some x ∈ X such that {T
nkj x : j ≥ 0} is dense in X. If T is hereditarily hypercyclic

with respect to the whole sequence of natural numbers, we will say that T is hereditarily hypercyclic.

Remark 2.8. If T is a hereditarily hypercyclic operator, it is recurrent and thus super-recurrent. How-
ever, a hereditarily hypercyclic operator can never be rigid ( [18, Definition 1.5]) or even super-rigid.
Indeed, let (λk)k∈N be a sequence of scalars and (nk)k∈N be a sequence of integers. Then there is a se-
quence (µk)k∈N such that | λk

µk
|= 1 for every k ∈ N. Then the sequence { λk

µk
T k : k ∈ N} is hereditary

hypercyclic. Thus, there is some x0 ∈ X such that

λk

µk

T nkx0 6→ x0.

Hence,
λkT nkx0 6→ x0.

Theorem 2.9. Let φ : D → D be holomorphic and let Cφ : H(D) → H(D) be the composition operator
with symbol φ. The following assertions are equivalent:

1. Cφ is super-rigid;

2. Cφ is rigid;

3. φ is an elliptic automorphism.

Proof: The equivalence between (2) and (3) are due to Theorem 2.6, the implication (3) ⇒ (1) is obvious.
So to complete the proof of the theorem, we need only to show that (1) ⇒ (3).

(1) ⇒ (3): Suppose that Cφ is super-rigid. Then, Theorem 2.4 implies that either φ has no fixed point
in D or that it is an elliptic automorphism. If φ has no fixed point in D, then it follows as in the proof
of [18, Theorem 6.10] that for every compact set K ⊂ D there exists a positive integer n0 such that

φ(K) ∩ K = ∅, for all n ≥ n0.

This implies that Cφ is hereditarily hypercyclic; see [30, Theorem 3.2]. In this case, Cφ cannot be
super-rigid. Thus φ is an elliptic automorphism. �

3. Super-recurrence on H2(D)

Let H2(D) be the Hardy space, that is, the space of holomorphic functions f : D → C satisfying

‖f‖H2(D) = sup
0<r<1

(

1

2π

∫ 2π

0

|f(reit)|2dt

)1/2

is finite. If φ : D → D is a holomorphic map, then Cφ is a well defined a bounded linear operator, which
is a consequence of Littlewood’s Principle ( [35], [37, Chap. 1]).

The hypercyclicity and the supercyclicity of the composition operators on H2(D) are equivalent, as
shown in the following theorem.

Theorem 3.1. [16] Let φ be a linear fractional map of D and let Cφ : H2(D) → H2(D) be the composition
operator with symbol φ. The following assertions are equivalent:
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1. Cφ is hypercyclic;

2. Cφ is supercyclic;

3. φ is either hyperbolic without fixed point on D, or parabolic automorphism.

In the case of recurrence, the authors in [18] gave the following characterization of composition
operators acting on H2(D).

Theorem 3.2. [18, Theorem 6.12] Let φ be a linear fractional map of D and let Cφ : H2(D) → H2(D)
be the composition operator with symbol φ. The following assertions are equivalent:

1. Cφ is recurrent;

2. φ is either hyperbolic with no fixed point in D, or a parabolic automorphism, or an elliptic auto-
morphism.

In the following theorem, we prove that the equivalence between the hypercyclicity and the supercyclic-
ity of composition operators acting on D remains steadfast in the cases of recurrence and super-recurrence.

Theorem 3.3. Let φ be a linear fractional map of D and let Cφ : H2(D) → H2(D) be the composition
operator with symbol φ. The following assertions are equivalent:

1. Cφ is super-recurrent;

2. Cφ is recurrent;

3. φ is either hyperbolic with no fixed point in D, or a parabolic automorphism, or an elliptic auto-
morphism.

Proof: The equivalence between (2) and (3) are due to Theorem 3.2 and The implication (3) ⇒ (1) is
trivial. So to complete the proof, we need only to show that (1) ⇒ (3).
(1) ⇒ (3): Suppose that Cφ is super-recurrent. Then as the proof of Theorem 2.4, φ is either parabolic or
hyperbolic with no fixed point in D or an elliptic automorphism. If φ is a parabolic non-automorphism,
then by [37, The Linear Fractional Hypercyclicity Theorem, p.114], only constant functions can be super-
recurrent vectors. Therefore Cφ is not super-recurrent in this case. �

Theorem 3.4. [18, Theorem 6.13] Let φ be a linear fractional map of D and let Cφ : H2(D) → H2(D)
be the composition operator with symbol φ.

1. Cφ is rigid;

2. φ is an elliptic automorphism.

To characterize the super-rigidity of composition operators acting on H2(D), we prove that the rigidity
and the super-rigidity of these operators are equivalent.

Theorem 3.5. Let φ be a linear fractional map of D and let Cφ : H2(D) → H2(D) be the composition
operator with symbol φ.

1. Cφ is super-rigid;

2. Cφ is rigid;

3. φ is an elliptic automorphism.

Proof: The equivalence between (2) and (3) are due to Theorem 3.4 and The implication (3) ⇒ (1) is
trivial. So to complete the proof, we need only to show that (1) ⇒ (3).
(1) ⇒ (3): Suppose that Cφ is super-rigid, then Cφ is super-recurrent. Thus, by Theorem 3.3 either φ

is hyperbolic with no fixed point in D, or a parabolic automorphism, or an elliptic automorphism. If φ

is hyperbolic with no fixed point in D or a parabolic automorphism, then Cφ is hereditarily hypercyclic;
see [8]. Thus Cφ cannot be super-rigid. �
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