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On a New Nonlinear Integro-Differential Fredholm-Chandrasekhar Equation ∗
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abstract: This paper presents an analytical and numerical study of a new integro-differential Fredholm-
Chandrasekhar equation of the second type. We suggest the conditions that ensure the existence and unique-
ness of the nonlinear problem’s solution. Then, we create a numerical technique based on the Nyström’s
method. The numerical application illustrates the efficiency of the proposed process.
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1. Introduction

In many fields of applied mathematics, the equations of various phenomena of chemical, physical or
medical natures, are generally modeled with an integro-differential equation. Therefore, many analytical
studies and numerical applications have been carried out in these fields (see c.f [10,15,14,8]). In a recent
paper [3], the authors treated the following nonlinear integro-differential Fredholm equation of the second
type:

ϕ(t) −
∫ b

a

K2(t, s, ϕ(s), ϕ′(s))ds = f(t), t ∈ [a, b]. (1.1)

In addition, the nonlinear integral equation given by

ϕ(t) − K1(t, ϕ(t))

∫ b

a

K2(t, s, ϕ(s))ds = f(t), t ∈ [a, b], (1.2)

is recently analyzed analytically and numerically in [12,13]. This equation is known in the literature
as, the Chandrasekhar quadratic integral equation of the second type (see [5,4]). On the other hand, in
[7], the authors studied an integro-differential Volterra equation, and in [1], they investigated a general
format, an integro-differential Volterra-Fredholm equation.

In this paper, we study a general format of the equations (1.1) and (1.2) which takes the form















ϕ(t) = K1(t, ϕ(t))

∫ b

a

K2(s, ϕ(s), ϕ′(s))ds + f(t), t ∈ [a, b],

∣

∣ϕ′(t)
∣

∣ ≤ d, ∀t ∈ [a, b], where, d ∈ R
∗
+.

(1.3)

We identify (1.3) as the second type’s nonlinear integro-differential Fredholm-Chandrasekhar equation.
The data f, K1, K2 and d are given. The parameter d, will be considered as a large number which ensures
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the boundedness of the derivative. Our study relates to the originality of the type of this equation which
concretizes the fast development and the interest of the researchers in this field. Finally, for a survey on
the Fredholm integral equations of the second type, see [6].

In this work, we analyze (1.3) analytically and numerically. First, we demonstrate the existence and
uniqueness of the solution by employing ideas based on Picard’s successive method [12,13,3]. After that,
in the numerical sense we use the Nyström’s method [8,3] to approximate the exact solution where, we
present a numerical application to show the accuracy of our approach.

2. Analytical study

In this section, we investigate the existence and uniqueness of the solution of (1.3). We consider the
Banach space C1([a, b],R), consisting of all continuously differentiable real-valued functions defined on
[a, b], which is equipped with the following norm

‖u‖C1([a,b],R) = max
t∈[a,b]

|u(t)| + max
t∈[a,b]

|u′(t)|.

We define the set F as follow

F =
{

u ∈ C1([a, b],R) : max
t∈[a,b]

|u′(t)| < d
}

.

The examination of ϕ, the solution of (1.3), largely depends on the properties of the data f, K1 and K2.
Let be K1 and K2:

K1 : [a, b] × R → R, (t, x) 7→ K1(t, x),

K2 : [a, b] × R
2 → R, (t, x, y) 7→ K2(t, x, y).

In the following, we are going to assume that a = 0 and b = 1. The next hypothesis fixes the framework
such that the functions K1, K2 and f are regular:

(H1)

∥

∥

∥

∥

K2,
∂K1

∂t
,
∂K1

∂x
∈ C0([0, 1] × R,R), K2 ∈ C0([0, 1] × R

2,R) f ∈ C1([0, 1],R).

If we differentiate the equation in (1.3), we obtain

ϕ′(t) = H(t, ϕ(t), ϕ′(t))

∫ 1

0

K2(s, ϕ(s), ϕ′(s))ds + f ′(t), ∀t ∈ [0, 1],

where,

H(t, x, y) =
∂K1

∂t
(t, x) + y

∂K1

∂x
(t, x).

We assume that K1, K2 and H satisfy the following hypotheses:

(H2)

∥

∥

∥

∥

i) ∃M1, M2 ∈ R
∗
+, ∀t ∈ [0, 1], ∀x, y ∈ R : |K1(t, x)| ≤ M1, |K2(t, x, y)| ≤ M2,

ii) ∃M3 ∈ R
∗
+, ∀t ∈ [0, 1], ∀x ∈ R, ∀y ∈ [−d, d] : |H(t, x, y)| ≤ M3.

Now, we define the following operator G, as

G(ϕ̃)(t) = K1(t, ϕ̃(t))

∫ 1

0

K2(s, ϕ̃(s), ϕ̃′(s))ds + f(t), t ∈ [0, 1],

for ϕ̃ ∈ F and f ∈ C1([0, 1],R). Moreover, we can find by differentiating that

[G(ϕ̃)]′(t) = H(t, ϕ̃(t), ϕ̃′(t))

∫ 1

0

K2(s, ϕ̃(s), ϕ̃′(s))ds + f ′(t), t ∈ [0, 1].

The next lemma shows the solution space containing ϕ, the solution of (1.3).

Lemma 2.1. Under the hypotheses (H1) and (H2), the operator G is continuous from F into C1([0, 1],R).
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Proof. Let ϕ̃ ∈ F. It is clear that G(ϕ̃)(·) and [G(ϕ̃)]′(·) are continuous on [0, 1]. In addition, we can find
according to (H2) that,

|G(ϕ̃)(t)| + |[G(ϕ̃)]′(t)| ≤ (M1 + M3)M2 + ‖f‖C1([0,1],R), t ∈ [0, 1].

Now, let be (ϕ̃n)n∈N a sequence in F which converges to ϕ̃ ∈ C1([0, 1],R). Using the hypothesis (H1),
we obtain that, for all t ∈ [0, 1]

lim
n→∞

G(ϕ̃n)(t) = G(ϕ̃)(t), lim
n→∞

[G(ϕ̃n)]′(t) = G(ϕ̃)(t).

�

Our aim now is to construct a sequence which converges to ϕ, the solution of (1.3). We define the
sequence (ϕn)n∈N by







ϕ0(t) = g(t), t ∈ [0, 1],

ϕn+1(t) = K1(t, ϕn(t))

∫ 1

0

K2(s, ϕn(s), ϕ′
n(s))ds + f(t), t ∈ [0, 1],

where g ∈ C1([0, 1],R). Thus, we can easily find that







ϕ′
0(t) = g′(t), t ∈ [0, 1],

ϕ′
n+1(t) = H(t, ϕn(t), ϕ′

n(t))

∫ 1

0

K2(s, ϕn(s), ϕ′
n(s))ds + f ′(t), t ∈ [0, 1].

We add the following hypotheses to demonstrate the existence and uniqueness of the solution of (1.3).

(H3)

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

i) ∃A1 ∈ R
∗
+, ∀t ∈ [0, 1] ∀x, x′ ∈ R :

|K1(t, x) − K1(t, x′)| ≤ A1|x − x′|,
ii) ∃A2, B2 ∈ R

∗
+, ∀s ∈ [0, 1] ∀x, y, x′, y′ ∈ R :

|K2(s, x, x′) − K2(s, y, y′)| ≤ A2|x − y| + B2|x′ − y′|,
iii) ∃A3, B3 ∈ R

∗
+, ∀t ∈ [0, 1] ∀x, x′ ∈ R, ∀y, y′ ∈ [−d, d] :

|H(t, x, y) − H(t, x′, y′)| ≤ A3|x − x′| + B3|y − y′|.

These hypotheses are also similar to assumptions stated in [3]. The next theorem proves that (1.3) has
a unique solution ϕ in C1([0, 1],R).

Theorem 2.2. Assume that (H1), (H2) and (H3) are satisfied, if g ∈ F and the condition







(

M1 max{A2, B2} + A1M2

)

≤ γ <
1

2
,

(

M3 max{A2, B2} + M2 max{A3, B3}
)

≤ γ <
1

2
.

(2.1)

Then the equation (1.3) has a unique solution ϕ ∈ C1([0, 1],R), such that

‖ϕn+1 − ϕn‖C1([0,1],R) ≤ C(2γ)n+1,

‖ϕn − ϕ‖C1([0,1],R) → 0, n → +∞,

where, C is a positive constant.

Proof. It is clear that, for all t ∈ [0, 1] and for n ≥ 1

{

ϕn+1(t) = G(ϕn)(t),
ϕ′

n+1(t) = [G(ϕn)]′(t).

Now, let t ∈ [0, 1] and n ≥ 1:
|ϕn+1(t) − ϕn(t)| =
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∣

∣

∣
K1

(

t, ϕn(t)
)

∫ 1

0

K2

(

s, ϕn(s), ϕ′
n(s)

)

ds − K1

(

t, ϕn−1(t)
)

∫ 1

0

K2

(

s, ϕn−1(s), ϕ′
n−1(s)

)

ds
∣

∣

∣
=

∣

∣

∣

∣

K1

(

t, ϕn(t)
)

(
∫ 1

0

K2

(

s, ϕn(s), ϕ′
n(s)

)

ds −
∫ 1

0

K2

(

s, ϕn−1(s), ϕ′
n−1(s)

)

ds

)

+

(

K1

(

t, ϕn(t)) − K1(t, ϕn−1(t)
)

)

∫ 1

0

K2

(

s, ϕn−1(s), ϕ′
n−1(s)

)

ds

∣

∣

∣

∣

≤

M1

∫ 1

0

(

A2|ϕn(s) − ϕn−1(s)| + B2|ϕ′
n(s) − ϕ′

n−1(s)|
)

ds + A1|ϕn(t) − ϕn−1(t)|
∫ 1

0

M2ds ≤

(

M1 max{A2, B2} + A1M2

)

‖ϕn − ϕn−1‖C1([0,1],R) ≤ γ‖ϕn − ϕn−1‖C1([0,1],R),

and also, we have

|ϕ′
n+1(t) − ϕ′

n(t)| =

∣

∣

∣

∣

H
(

t, ϕn(t), ϕ′
n(t)

)

(
∫ 1

0

K2

(

s, ϕn(s), ϕ′
n(s)

)

ds −
∫ 1

0

K2

(

s, ϕn−1(s), ϕ′
n−1(s)

)

ds

)

+

(

H
(

t, ϕn(t), ϕ′
n(t)

)

− H
(

t, ϕn−1(t), ϕ′
n−1(t)

))

∫ 1

0

K2

(

s, ϕn−1(s), ϕ′
n−1(s)

)

ds

∣

∣

∣

∣

≤

M3

∫ 1

0

(

A2|ϕn(s) − ϕn−1(s)| + B2|ϕ′
n(s) − ϕ′

n−1(s)|
)

ds+

(

A3|ϕn(t) − ϕn−1(t)| + B3|ϕ′
n(t) − ϕ′

n−1(t)|
)

∫ 1

0

M2ds ≤

(

M3 max{A2, B2} + M2 max{A3, B3}
)

‖ϕn − ϕn−1‖C1([0,1],R) ≤ γ‖ϕn − ϕn−1‖C1([0,1],R).

Hence, we find that

‖ϕn+1 − ϕn‖C1([0,1],R) ≤ 2γ‖ϕn − ϕn−1‖C1([0,1],R).

Then,

‖ϕn+1 − ϕn‖C1([0,1],R) ≤ (2γ)n
[

‖g‖C1([0,1],R) + ‖G(g)‖C1([0,1],R)

]

≤ (2γ)n
[

(M1 + M3)M2 + 2‖g‖C1([0,1],R)

]

.

Now, for all n ≥ 0, if ϕn ∈ F then we prove by induction that ϕn+1 ∈ F. Further, we have for all t ∈ [0, 1]

ϕ(t) = lim
n→+∞

ϕn+1(t) = lim
n→+∞

K1(t, ϕn(t))

∫ 1

0

K2(s, ϕn(s), ϕ′
n(s))ds + f(t) =

K1(t, ϕ(t))

∫ 1

0

K2(s, ϕ(s), ϕ′(s))ds + f(t).

Finally for uniqueness, we use the difference technique. So, the desired result is obtained. �

We remark that the condition (2.1) is sufficient but not necessary to establish the existence and
uniqueness of the solution of (1.3). However, we can use the hypotheses (H1) and (H2) to establish only
the existence of the solution of (1.3), by employing Schauder’s fixed point theorem as used in [3] for their
integro-differential equation (1.1). Finally, we can notice that the parameter d has no influence in (1.3),
so we can always choose it as big as we want.
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3. Numerical approximation

In this section, we define a finite-dimensional system of nonlinear equations by using the Nyström’s
method (see [2,11]) where, this system will be an approximation approach to the solution of (1.3). Then,
we use a successive method to solve this algebraic system.

Let n ∈ N
∗, we define the subdivision Ln of the interval [0, 1] as the set

Ln =
{

ti = ih : h =
1

n
, i = 0, 1, · · · , n

}

.

Now, according to (1.3) and for all i = 0, 1, · · · n, we find that

ϕ(ti) = K1(ti, ϕ(ti))

∫ 1

0

K2(s, ϕ(s), ϕ′(s))ds + f(ti),

and similarly that

ϕ′(ti) = H(ti, ϕ(ti), ϕ′(ti))

∫ 1

0

K2(s, ϕ(s), ϕ′(s))ds + f ′(ti).

Then, employing the quadrature formula on the previous equations, we obtain for i = 0, · · · , n

ϕi = fi + K1(ti, ϕi)

n
∑

j=0

wjK2(tj , ϕj , ϕ′
j) + K1(ti, ϕi)R(h), (3.1)

and

ϕ′
i = f ′

i + H(ti, ϕi, ϕ′
i)

n
∑

j=0

wjK2(tj , ϕj , ϕ′
j) + H(ti, ϕi, ϕ′

i)R(h), (3.2)

where, ϕ(ti) = ϕi, ϕ′(ti) = ϕ′
i, f(ti) = fi and f ′(ti) = f ′

i and R(h) is the residual of the quadrature rule
used. R(h) also defines the local consistency error (see c.f. [2]). Neglecting then the local consistency
error R(h), we find the nonlinear algebraic system of dimension 2n + 1,































αi = fi + K1(ti, αi)

n
∑

j=0

wjK2(tj , αj , βj), i = 0, · · · , n

βi = f ′
i + H(ti, αi, βi)

n
∑

j=1

wjK2(tj , αj , βj), i = 0, · · · , n.

(3.3)

The next theorem proves that the system (3.3) has a unique solution (α, β) ∈ R
2n+2.

Theorem 3.1. If the hypotheses (H1), (H2), (H3) and the condition (2.1) are satisfied, then the system

(3.3) has a unique vector solution (α, β) ∈ R
2n+2.

Proof. For all i = 0, · · · , n, we set the functions Φ : R2n+2 → R
n+1 and Ψ : R2n+2 → R

n+1 such that

Φi(α, β) = fi + K1(ti, αi)
n

∑

j=0

wjK2(tj , αj , βj), (3.4)

Ψi(α, β) = f ′
i + H(ti, αi, βi)

n
∑

j=0

wjK2(tj , αj , βj), (3.5)

where, α = (α0, · · · , αn) and β = (β0, · · · , βn). Let α, α1, β and β1 be in R
n+1, we can therefore

conclude that by employing the hypotheses (H1), (H2) and (H3),

∣

∣Φ(α, β) − Φ(α1, β1)
∣

∣

Rn+1 ≤ γ(|α − α1|Rn+1 + |β − β1|Rn+1),



6 A. Khellaf, M. Benssaad and S. Lemita

and in addition,
∣

∣Ψ(α, β) − Ψ(α1, β1)
∣

∣

Rn+1 ≤ γ(|α − α1|Rn+1 + |β − β1|Rn+1).

Now, using the condition (2.1), we prove that the function Φ and Ψ are contractions, so according to the
Banach fixed point theorem, the system (3.3) has a unique solution (α, β) ∈ R

2n+2. �

We define now the errors such that

εi = |αi − ϕ(ti)| + |βi − ϕ′(ti)|, for i = 0, · · · , n

where, ϕ is the solution of (1.3) and (α, β) ∈ R
2n+2 is the vector solution of system (3.3). We also define

the local consistency error as,

R(h) =

∣

∣

∣

∣

∣

∣

∫ 1

0

K2(s, ϕ(s), ϕ′(s))ds −
n

∑

j=0

wjK2(tj , ϕ(tj), ϕ′(tj))

∣

∣

∣

∣

∣

∣

.

We recall that the use of quadrature rule is said to be consistent if the residual satisfies,

lim
n→+∞

R(h) = 0.

Theorem 3.2. If the quadrature rule is consistent, then the approximation method given by (3.3) is

convergent, i.e.

lim
n→+∞

max
0≤i≤n

εi = 0

Proof. Let be ϕ = (ϕ(t0), · · · , ϕ(tn)), ϕ′ = (ϕ′(t0), · · · , ϕ′(tn)). Employing the same strategies (adding
and subtracting) as in the proof of the previous theorems, we show that

{

|α − ϕ|Rn+1 ≤ γ (|α − ϕ|Rn+1 + |β − ϕ′|Rn+1) + M1R(h)
|β − ϕ′|Rn+1 ≤ γ (|α − ϕ|Rn+1 + |β − ϕ′|Rn+1) + M3R(h).

(3.6)

So, we find the estimation

|α − ϕ|Rn+1 + |β − ϕ′|Rn+1 ≤
(

M1 + M3

1 − 2γ

)

R(h),

thus

max
0≤i≤n

εi ≤
(

M1 + M3

1 − 2δ

)

R(h).

So, if the quadrature rule is consistent, then we find the desired result. �

4. Numerical results

In this section, we use the trapezoidal method, since it ensures that the quadrature rule utilized to
find the system (3.3), is consistent (see [2]) i.e.

lim
n→+∞

R(h) = 0.

The terms αi and βi will not be exactly calculated for i = 1, · · · , n. They will be approximated using
Banach’s iteration method with stopping criterion of the type:

‖αnew − αold‖ + ‖βnew − βold‖ ≤ 1

10N
,

where N is a given positive number.
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Example 1: we consider the nonlinear problem,















u(t) = sin
(

t2 + u(t)
)

∫ 1

0

(s + 1)

1 + (u(s) + u′(s))2
ds + f(t) t ∈ [0, 1],

∣

∣u′(t)
∣

∣ ≤ 105, t ∈ [0, 1].

where, f(t) = t − (sin(t2 + t)) ln
(

√
10

2

)

and the exact solution is given by u(t) = t. It is clear that the

hypotheses (H1)-(H3) and the condition (2.1) are well verified. The next table (1) and figure (1) show
the numerical results. These results confirm the theoretical study and show the numerical efficiency of
the system (3.3) built, where we notice that the efficiency is established from n = 10.

Table 1: Numerical Results of Ex.1

n En = max
0≤i≤n

εi

10 2.00E-4
50 8.06E-6
100 2.01E-6
250 3.22E-7
500 8.03E-8

Figure 1: Results of Ex.1 according to n = 50.

Example 2: we consider the nonlinear problem,















u(t) =
1

1 + t + u(t)2

∫ 1

0

cos
(

es +
π

2
s + u(s) − u′(s)

)

ds + f(t), t ∈ [0, 1],

∣

∣u′(t)
∣

∣ ≤ e7, ∀t ∈ [0, 1],

where,

f(t) = tet − 2

π + πt(1 + t)e2t
,
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and the exact solution is u(t) = tet. The next table (2) and the figure (2) show the numerical results. In
this example, we notice that the error is better starting from n = 50.

Table 2: Numerical Results of Ex.2

n En = max
0≤i≤n

εi

10 2.64E-3
50 1.05E-4
100 2.63E-5
250 4.21E-6
500 1.05E-6

Figure 2: Results of Ex.2 according to n = 50.

Conclusion

We build hypotheses and conditions that guarantee the solution’s existence and uniqueness for a new
generalized integro-differential nonlinear Fredholm equation. The developed numerical example shows the
effectiveness of the Nyström method used to approximate the solution of this equation. As perspective,
there still are some interesting points but we will first study the case where the kernel is weakly singular
using a different method as used in [9].
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