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1. Introduction

The notion of convergence for double sequences was given by Pringsheim [16]. Some initial works on
double sequence spaces are found in Bromwich [2]. Later on the notion was investigated by Hardy [10],
Moricz [13], Tripathy and Sarma [20,22,24], and many others.

A double sequence (xnk) is said to converge in Pringsheim’s sense if

lim

n, k → ∞
xnk = L, exists.

The notion of regular convergence for double sequences was introduced by Hardy [10]. A double sequence
(xnk) is said to converge regularly if it converges in the pringsheim’s sense and the following limits exist:

lim
k→∞ xnk = Ln exists, for each n ∈ N , and lim

n→∞xnk = Pk exists, for each k ∈ N .

When L = Ln = Pk = θ, for all n, k ∈ N , we say that (xnk) is regularly null.

The notion of uniform convergence of a sequence of functions relative to a scale function was introduced
by E. H. Moore. Chittenden [3] gave the definition of relative uniform convergence of sequence of func-
tions, which is defined as follows.

Definition 1.1. (Chittenden [3]) A sequence (fn) of real, single-valued functions fn of a real variable
x, ranging over a compact subset D of real numbers, converges relatively uniformly on D in case there
exist functions g and σ, defined on D, and for every ε > 0, there exists an integer no (dependent on ε)
such that for every n ≥ no the inequality

| g(x) − fn(x) |< ε | σ(x) |, holds for every element x of D.
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The function σ of the above definition is called a scale function.

The sequence (fn) is said to converge uniformly relative to the scale function σ.

The notion was further studied by [4,5,6,7,8,12] and many others.

An Orlicz function is a function M : [0, ∞) → [0, ∞), which is continuous, non-decreasing and convex
with M(0) = 0, M(x) > 0, for x > 0 and M(x) → ∞, as x → ∞.

An Orlicz function M(x) satisfies the ∆2-condition if for every L > 1, there exists a constant K > 0 and
a positive number x such that M(Lx) ≤ KLM(x).

If the convexity of Orlicz function is replaced by M(x + t) ≤ M(x) + M(t), then this function is called
modulus function.

Remark 1.2. Let M be a convex function and M(0) = 0.Then, the inequality M(λx) ≤ λM(x) holds
true, for all λ, with 0 < λ < 1.

Using Orlicz function M(x), Lindenstrauss and Tzafriri [11] introduced the sequence space ℓM defined
as following.

ℓM =

∞
∑

n=1

M

(

|xn|

ρ

)

< ∞, for some ρ > 0.

The space ℓM is a Banach space with the following norm and is called as Orlicz sequence space.

||(xn)|| = inf

{

ρ > 0 :
∞
∑

n=1

M

(

|xn|

ρ

)

≤ 1

}

.

Later on the notion was studied from different aspects by [1,9,14,15,17,18,19,21,23,25] and many others.

2. Definitions and preliminaries

In this section, we obtain the basic definitions which we shall use in establishing the main results of the
article.

Definition 2.1. A sequence space E is said to be solid or normal if (xnk) ∈ E implies (αnkxnk) ∈ E,
for all (αnk), with | αnk |≤ 1, for all n, k ∈ N .

Definition 2.2. A sequence space E is said to be monotone if it contains the canonical pre-images of all
its step spaces.

Remark 2.3. From the above notions, it follows that if a sequence space E is solid then, E is monotone.

Definition 2.4. A sequence space E is said to be symmetric if (xnk) ∈ E ⇒ (xπ(n,k)) ∈ E, for all
n, k ∈ N × N , where π is a permutation of N , the set of natural numbers.

Definition 2.5. A sequence space E is said to be convergence free if (xnk) ∈ E and xnk = 0 ⇒ ynk =
0, together with (ynk) ∈ E, for all n, k ∈ N .

Definition 2.6. A sequence space E is said to be a sequence algebra if (xnk ∗ ynk) ∈ E whenever (xnk)
and (ynk) belongs to E, for all n, k ∈ N .

Definition 2.7. A sequence of functions fnk : D → R, of a real variable x, where D ∈ R, defined by an
Orlicz function M is said to be relative uniform convergent on D, if there exist limiting function f(x)
and scale function σ(x) defined on D, and for every ε > 0, there exists an integer n0 = n0(ε) such that
for all n, k ≥ n0,

M

(

|fnk(x) − f(x)|

ρ|σ(x)|

)

≤ ε, for some ρ > 0, and for all x ∈ D.
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Remark 2.8. When f = θ, the zero function in the Definition 2.7, we get the definition of relative
uniform null sequence of functions defined by Orlicz function M .

Definition 2.9. A sequence of functions fnk : D → R, of a real variable x, where D ∈ R, defined by
an Orlicz function M is said to be relatively uniformly Cauchy on D if there exists scale function σ(x)
defined on D, and for every ε > 0, there exists an integer n0 = n0(ε) such that for all p ≥ n ≥ no and
q ≥ k ≥ n0,

M

(

|fpq(x) − fnk(x)|

ρ|σ(x)|

)

≤ ε, for some ρ > 0, and for all x ∈ D.

Definition 2.10. A sequence of functions fnk : D → R, of a real variable x, where D ∈ R, defined by
an Orlicz function M is said to be regular relative uniform convergent on D if there exists function f(x)
and scale function σ(x) defined on D, and for every ε > 0, there exists an integer n0 = n0(ε) such that
for all x ∈ D,

M

(

|fnk(x) − f(x)|

ρ|σ(x)|

)

≤ ε, for some ρ > 0, and for all n, k ≥ n0;

M

(

|fnk(x) − fn(x)|

ρ|ξn(x)|

)

≤ ε, for some ρ > 0 ; for each n ∈ N and for all k ≥ n0;

M

(

|fnk(x) − gk(x)|

ρ|ηk(x)|

)

≤ ε, for some ρ > 0 ; for each k ∈ N and for all n ≥ n0.

Remark 2.11. When f = fn = gk = θ, the zero function in the Definition 2.10, we get the definition of
regular relative uniform null sequence of functions defined by Orlicz function M .

Definition 2.12. A double sequence of functions (fnk(x)) defined on a compact domain D ⊆ R is said
to be relatively uniformly bounded if there exists a positive integer G such that

|fnk(x)| < G|σ(x)|, for all x ∈ D, for all n, k ∈ N.

Throughout we denote 2ℓ∞(M, ru), 2c0(M, ru), 2c(M, ru), 2cR
0 (M, ru), 2cR(M, ru) as the class of rela-

tively uniformly bounded, relatively uniformly null, relatively uniformly convergent, regularly relatively
uniformly null, regularly relatively uniformly convergent double sequence of functions respectively.

We define 2cB
0 (M, ru) = 2c0(M, ru) ∩ 2ℓ∞(M, ru); 2cB(M, ru) = 2c(M, ru) ∩ 2ℓ∞(M, ru).

3. Main results

Theorem 3.1. The class of sequence of functions Z(M, ru) is linear, for Z = 2c0, 2c, 2ℓ∞, 2cR
0 ,

2cR, 2cB
0 , 2cB.

Proof. Let (fnk(x)), (gnk(x)) ∈ 2ℓ∞(M, ru) and α, β be the scalars.

Since, (fnk(x)) ∈ 2ℓ∞(M, ru) there exist ρ1 > 0 and scale function σ1(x) on D such that for all x ∈ D,

sup

x ∈ D; n, k ≥ 1
M

(

|fnk(x)|

ρ1|σ1(x)|

)

< ∞. (3.1)

Similarly, for all x ∈ D, there exist ρ2 > 0 and scale function σ2(x) on D such that

sup

x ∈ D; n, k ≥ 1
M

(

|gnk(x)|

ρ2|σ2(x)|

)

< ∞. (3.2)
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Without loss of generality we can consider the same scale function σ(x) = max{σ1(x), σ2(x)} for (fnk(x))
and (gnk(x)).

Let ρ3 = max(2|α|ρ1, 2|β|ρ2). Then, for all x ∈ D,

M

(

|(αfnk(x) + βgnk(x))|

ρ3|σ(x)|

)

≤ M

(

|α| |fnk(x)|

ρ3|σ(x)|

)

+ M

(

|β| |gnk(x)|

ρ3|σ(x)|

)

≤ M

(

|fnk(x)|

ρ1|σ1(x)|

)

+ M

(

|gnk(x)|

ρ2|σ2(x)|

)

.

This implies, sup
x∈D;n,k≥1 M

(

|(αfnk(x)+βgnk(x))|
ρ

3
|σ(x)|

)

≤ sup
x∈D;n,k≥1 M

(

|fnk(x)|
ρ

1
|σ1(x)|

)

+ sup
x∈D;n,k≥1M

(

|gnk(x)|
ρ

2
|σ2(x)|

)

< ∞.

This implies, (αfnk(x) + βgnk(x)) ∈ 2ℓ∞(M, ru).

Hence, 2ℓ∞(M, ru) is a linear space.

Similarly, we can prove for the rest of the classes of sequence of functions. �

Theorem 3.2. The class of sequence of functions Z(M, ru) is a normed space, for Z = 2ℓ∞, 2cR
0 , 2cR,

2cB
0 , 2cB normed by the following norm.

For all x ∈ D,

||(fnk(x))||(σ) = inf

{

ρ > 0 :
sup

x 6= θ; ||x|| ≤ 1; n, k ≥ 1
M

(

||fnk(x)||

ρ||x|| ||σ(x)||

)

≤ 1

}

. (3.3)

Proof. Let (fnk(x)) and (gnk(x)) ∈ 2ℓ∞(M, ru).

Evidently, ||(fnk(x))||(σ) = 0 ⇒ fnk(x) = 0.

Let ρ = ρ1 + ρ2 and ρ1, ρ2 are non-negative since, ρ is non-negative.

Without loss of generality, considering the same scale function σ(x) = max{σ1(x), σ2(x)} for (fnk(x))
and (gnk(x)), we have,

sup

x ∈ D; n, k ∈ N
M

(

|fnk(x)|

ρ|σ(x)|

)

< ∞ and
sup

x ∈ D; n, k ∈ N
M

(

|gnk(x)|

ρ|σ(x)|

)

< ∞.

Then, we have, for all x ∈ D,
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||(fnk(x) + gnk(x))||(σ) = inf

{

ρ > 0 :
sup

x 6= θ; ||x|| ≤ 1; n, k ≥ 1
M

(

||fnk(x) + gnk(x)||

ρ||x|| ||σ(x)||

)

≤ 1

}

= inf

{

ρ1, ρ2 > 0 :
sup

x 6= θ; ||x|| ≤ 1; n, k ≥ 1
M

(

||fnk(x) + gnk(x)||

(ρ1 + ρ2)||x|| ||σ(x)||

)

≤ 1

}

= inf

{

ρ1, ρ2 > 0 :
sup

x 6= θ; ||x|| ≤ 1; n, k ≥ 1

{

ρ1

ρ1 + ρ2

M

(

||fnk(x)||

ρ1||x|| ||σ(x)||

)

+

ρ2

ρ1 + ρ2

M

(

||gnk(x)||

ρ2||x|| ||σ(x)||

)}

≤ 1

}

≤ inf

{

ρ1 > 0 :
sup

x 6= θ; ||x|| ≤ 1; n, k ≥ 1
M

(

||fnk(x)||

ρ1||x|| ||σ(x)||

)

≤ 1

}

+

inf

{

ρ2 > 0 :
sup

x 6= θ; ||x|| ≤ 1; n, k ≥ 1
M

(

||gnk(x)||

ρ2||x|| ||σ(x)||

)

≤ 1

}

≤ ||(fnk(x))||(σ) + ||(gnk(x))||(σ).

For any scalar α > 0, ||(αfnk(x))||(σ) = inf

{

ρ > 0 : sup
x 6=θ;||x||≤1;n,k≥1M

(

||αfnk(x)||
ρ||x|| ||σ(x)||

)

≤ 1

}

.

Let r = ρ
|α| , then,

||(αfnk(x))||(σ) = inf

{

(|α|r) > 0 : sup
x 6=θ;||x||≤1;n,k≥1M

(

||fnk(x)||
r||x|| ||σ(x)||

)

≤ 1

}

.

||(αfnk(x))||(σ) = |α| inf

{

r > 0 : sup
x 6=θ;||x||≤1;n,k≥1M

(

||fnk(x)||
r||x|| ||σ(x)||

)

≤ 1

}

.

Hence proved. �

Theorem 3.3. Let (D, ||.||) be a complete normed space. Then, the class of sequence of functions
Z(M, ru) is complete, for Z = 2ℓ∞, 2cR

0 , 2cR, 2cB
0 , 2cB.

Proof. Let (f i(x)) = (f i
nk(x)) be a relatively uniformly Cauchy double sequences of functions in

2ℓ∞(M, ru). Then, for a given ε > 0, there exists n0 ∈ N such that for all x ∈ D,

||f i
nk(x) − f j

nk(x)||(σ) < ε, for all i, j ≥ n0.

We have, for all x ∈ D,

inf

{

ρ > 0 :
sup

x 6= θ; ||x|| ≤ 1; n, k ≥ 1
M

(

||f i
nk(x) − f j

nk(x))||

ρ||x|| ||σ(x)||

)

≤ 1

}

≤ ε, for all i, j ≥ n0. (3.4)

⇒ (f i
nk(x)) defined by Orlicz function M is relatively uniformly Cauchy on D for each n, k ∈ N.

⇒ (f i
nk(x)) defined by Orlicz function M is relatively uniformly convergent on D for each n, k ∈ N.

Therefore,

lim

i → ∞
M

(

|f i
nk(x)|

ρ |σ(x)|

)

= fnk(x)
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on D, for each n, k ∈ N.

From (3.4), for all i ≥ n0, taking limit when j → ∞, we get,

sup

x 6= θ; ||x|| ≤ 1; n, k ≥ 1
M

(

||f i
nk(x) − fnk(x))||

ρ||x|| ||σ(x)||

)

≤ 1, for some ρ > 0.

On taking infimum on ρ in the above expression by (3.4), we get, for all i ≥ n0,

inf

{

ρ > 0 :
sup

x 6= θ; ||x|| ≤ 1; n, k ≥ 1
M

(

||f i
nk(x) − fnk(x)||

ρ||x|| ||σ(x)||

)

≤ 1

}

≤ ε, for all x ∈ D.

Hence, (f i
nk(x) − fnk(x)) ∈ 2ℓ∞(M, ru), for all i ≥ n0.

Since, 2ℓ∞(M, ru) is a linear space, for all i ≥ n0 and for all x ∈ D,

fnk(x) = f i
nk(x) − (f i

nk(x) − fnk(x)) ∈ 2ℓ∞(M, ru).

Hence, 2ℓ∞(M, ru) is complete.

Similarly, we can prove for the rest of the cases. �

Result 3.1The class of sequence of functions Z(M, ru) is not monotone and hence, not solid, for Z =

2c0, 2c, 2ℓ∞, 2cR
0 , 2cR, 2cB

0 , 2cB.

The result follows from the example below.

Example 3.4. Let M(x) = x, for all x ∈ [0, ∞). Consider the double sequences of functions (fnk(x)),
fnk : [a, b] → R, a ≥ 0 and a < b; a, b ∈ R defined by

fnk(x) =
nk

nk + x
, for all n, k ∈ N.

Then, (fnk(x)) ∈ Z(M, ru), for Z = 2c, 2ℓ∞, 2cR, 2cB.

Let (gnk(x)) be the preimage of (fnk(x)) and defined by

gnk(x) =

{

fnk(x), for n is even;

0, otherwise.

This implies, (gnk(x)) /∈ Z(M, ru), for Z = 2c, 2ℓ∞, 2cR, 2cB.

Hence, Z(M, ru) is not monotone and therefore, not solid, for Z = 2c, 2ℓ∞, 2cR, 2cB.

Similarly, we can establish for the rest of the cases.

Result 3.2The class of sequence of functions Z(M, ru) is not symmetric, for Z = 2c0, 2c, 2ℓ∞, 2cR
0 ,

2cR, 2cB
0 , 2cB.

The result follows from the example below.

Example 3.5. Let M(x) = x, for all x ∈ [0, ∞). Consider the double sequences of functions (fnk(x)),
fnk : [a, b] → R, a > 0 and a < b; a, b ∈ R defined by

fnk(x) =
nkx

nkx + 1
, for all n, k ∈ N.
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This implies, (fnk(x)) ∈ Z(M, ru), for Z = 2c, 2ℓ∞, 2cR, 2cB.

Let (gnk(x)) be the rearranged double sequences of functions of (fnk(x)) defined by

gnk(x) =

{

nkx
nkx+1 , for k is even;

n2k2x
n4k4x+1 , otherwise.

This implies, (gnk(x)) /∈ Z(M, ru), for Z = 2c, 2ℓ∞, 2cR, 2cB.

Hence, Z(M, ru) is not symmetric, for Z = 2c, 2ℓ∞, 2cR, 2cB.

Similarly, we can establish for the rest of the cases.

Result 3.3 The class of sequence of functions Z(M, ru) is not convergence free, for Z = 2c0, 2c, 2ℓ∞,

2cR
0 ,2 cR, 2cB

0 , 2cB .

The result follows from the following example.

Example 3.6. Consider fnk : [a, 1] → R, gnk : [a, 1] → R, 0 < a < 1; a ∈ R and M(x) = x2, for all
x ∈ [0, ∞) defined by

fnk(x) = 1
nkx

, and gnk(x) = 1
nkx

, for n is even;

= nk+x
nk

, otherwise.

Then, (fnk(x)) ∈ Z(M, ru) w.r.t the scale function σ(x) = 1
x2 , for x ∈ [a, 1], 0 < a < 1, for which

Z = 2c0, 2c, 2ℓ∞, 2cR
0 , 2cR, 2cB

0 , 2cB but, (gnk(x)) /∈ Z(M, ru), for Z = 2c0, 2c, 2ℓ∞, 2cR
0 , 2cR, 2cB

0 ,

2cB.
Hence, Z(M, ru) is not convergence free, for which Z = 2c0, 2c,2ℓ∞, 2cR

0 , 2cR, 2cB
0 , 2cB .

Theorem 3.7. The class of sequence of functions Z(M, ru) is sequence algebra, for Z = 2c0, 2c, 2ℓ∞, 2cR
0 ,

2cR, 2cB
0 , 2cB.

Proof. Let (fnk(x)), (gnk(x)) ∈ 2c(M, ru).

Then, for every ε > 0 and for all x ∈ D, there exists an integer n ≥ n0 such that

M

(

|fnk(x) − f(x)|

ρ1|σ1(x)|

)

≤ ε, for some ρ1 > 0.

Similarly, for all x ∈ D,

M

(

|gnk(x) − g(x)|

ρ2|σ2(x)|

)

≤ ε, for some ρ2 > 0.

Without loss of generality, we can consider the same scale function σ(x) = max{σ1(x), σ2(x)}, for (fnk(x))
and (gnk(x)).

Let ρ3 = max{ρ1, ρ2, ρ1.ρ2}.

By term wise addition and multiplication we can show that, for all x ∈ D,

M

(

|fnk(x).gnk(x) − h(x)|

ρ3|σ(x)|

)

≤ ε, for some ρ3 > 0.

Hence, 2c(M, ru) is sequence algebra.
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Similarly, we can establish for the rest of the cases.

The proof of the following theorem is a routine verification and hence omitted. �

Theorem 3.8. The inclusion relation Z(M, ru) ⊂ 2ℓ∞(M, ru) strictly holds, for Z = 2cR
0 , 2cR, 2cB

0 ,

2cB.

The inclusions are strict follows from the example below.

Example 3.9. Consider fnk : [a, 1] → R, 0 < a < 1; a ∈ R and M(x) = x, for all x ∈ [0, ∞) defined by

fnk(x) = 1
1+x2 , for n, k both are odd and even;

= 0, otherwise.

We get (fnk(x)) ∈ 2ℓ∞(M, ru) w.r.t. the constant scale function σ(x) = 1, for all x ∈ [a, 1] but,
(fnk(x)) /∈ Z(M, ru), for Z = 2cR

0 , 2cR, 2cB
0 , 2cB.

In view of the Theorem 3.3 and Theorem 3.8, we formulate the following theorem without proof.

Theorem 3.10. The classes of sequence of functions 2cB
0 (M, ru), 2cB(M, ru), 2cR

0 (M, ru), 2cR(M, ru)
are nowhere dense subsets of 2ℓ∞(M, ru).

Theorem 3.11. Let M , M1 be two Orlicz functions that satisfy the ∆2-condition. Then,

1. Z(M1, ru) ⊆ Z(M.M1, ru),

2. Z(M, ru) ∩ Z(M1, ru) ⊆ Z(M + M1, ru), for Z = 2c0, 2c, 2ℓ∞, 2cR, 2cR
0 , 2cB

0 , 2cB.

Proof. (1) Let (fnk(x)) ∈ 2ℓ∞(M1, ru). Then, there exist ρ > 0 and a scale function σ(x) such that for
all x ∈ D,

sup

x ∈ D; n, k ≥ 1
M1

(

|fnk(x)|

ρ|σ(x)|

)

< ∞. (3.5)

Let 0 < ε < 1, and choose δ, with 0 < δ < 1 such that M(x) < ε, for 0 ≤ x < δ.

Let, gnk(x) = M1

(

|fnk(x)|
ρ|σ(x)|

)

and consider

M(gnk(x)) = M
′

(gnk(x)) + M
′′

(gnk(x)),

where M
′

(gnk(x)) is M(gnk(x)), when gnk(x) ≤ δ, and M
′′

(gnk(x)) is M(gnk(x)), when
gnk(x) > δ.

By the Remark 1.2, for gnk(x) ≤ δ,

M(gnk(x)) ≤ M(1)gnk(x) ≤ M(2)gnk(x) ≤ M(3)gnk(x). (3.6)

For gnk(x) > δ, we have

gnk(x) <
gnk(x)

δ
≤ 1 +

2gnk(x)

δ
.

Since M is an Orlicz function, it follows that

M(gnk(x)) < M

(

1 + 2
gnk(x)

δ

)

<
1

3
M(3) +

2

3
M

(

3gnk(x)

δ

)

.
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Since M satisfies ∆2- condition, we have

M(gnk(x)) <
1

3
K

gnk(x)

δ
M(3) +

2

3
K

gnk(x)

δ
M(3) = K

gnk(x)

δ
M(3).

Hence

M
′′

(gnk(x)) ≤ max(1, Kδ−1M
′′

(3))gnk(x). (3.7)

From Equations (3.5), (3.6) and (3.7), we have,

(fnk(x)) ∈ 2ℓ∞(M.M1, ru).

Thus, 2ℓ∞(M1, ru) ⊆ 2ℓ∞(M.M1, ru).

Similarly, other cases can be established.

(2) Suppose (fnk(x)) ∈ 2ℓ∞(M, ru) ∩ 2ℓ∞(M1, ru). Then, there exist ρ > 0 and scale function σ(x) such
that for all x ∈ D,

sup

x ∈ D; n, k ≥ 1
M

(

|fnk(x)|

ρ|σ(x)|

)

< ∞, and
sup

x ∈ D; n, k ≥ 1
M1

(

|fnk(x)|

ρ|σ(x)|

)

< ∞.

Then,

sup

x ∈ D; n, k ≥ 1
(M + M1)

(

|fnk(x)|

ρ|σ(x)|

)

=
sup

x ∈ D; n, k ≥ 1
M

(

|fnk(x)|

ρ|σ(x)|

)

+
sup

x ∈ D; n, k ≥ 1
M1

(

|fnk(x)|

ρ|σ(x)|

)

< ∞.

This implies, (fnk(x)) ∈ 2ℓ∞(M + M1, ru).

Hence, 2ℓ∞(M, ru) ∩ 2ℓ∞(M1, ru) ⊆ 2ℓ∞(M + M1, ru).

Similarly, the rest of the cases can be established.

Remark 3.12. In Theorem 3.11(1) ∆2- condition is necessary because we cannot consider the inequality
gnk(x) < δ without the ∆2- condition and hence, we cannot obtain the result.

On taking M1(x) = x in Theorem 3.11(1), we get the following result. �

Corollary 3.13. Let M be an Orlicz function that satisfy the ∆2-condition. Then,

Z(ru) ⊆ Z(M, ru), for Z = 2c0, 2c, 2ℓ∞, 2cR, 2cR
0 , 2cB

0 , 2cB.

4. Conclusions

In this article, we studied about the notion of relative uniform convergence of double sequences of functions
defined by using Orlicz function M w.r.t. a scale function σ(x). We defined the classes of double sequences
of functions 2c0(M, ru), 2c(M, ru), 2ℓ∞(M, ru), 2cB

0 (M, ru), 2cB(M, ru), 2cR
0 (M, ru), 2cR(M, ru) and

studied their properties like solid, monotone, symmetric, convergence free, denseness, sequence algebra.
We have also investigated the properties of the above sequence spaces when ∆2- condition is satisfied.
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