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Weak Solution to p(x)-Kirchoff Type Problems Under no-flux Boundary Condition by
Topological Degree

Soukaina Yacini, Chakir Allalou and Khalid Hilal

abstract: This paper is concerned with the existence of weak solutions of p(x)-Kirchhoff type problems
with no-flux boundary condition. Our technical approach is based on topological degre methods of Berkovits.
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1. Introduction

In this paper, we study the existence of weak solution of the following Kirchhoff type problem,





−M

( ∫

Ω

(A(x,∇u) +
1

p(x)
|∇u|p(x))dx

)[
diva(x,∇u) − |∇u|p(x)−2∇u

]
= λf(x, u,∇u) in Ω,

u = constant on ∂Ω∫

∂Ω

a(x,∇u)νdΓ = 0.

.

(1.1)

where Ω is a smooth bounded domain in R
N (N > 2) with a Lipschitz boundary denoted by ∂Ω,

p ∈ C+(Ω), λ is a real parameter, −diva(x,∇u) is a Leray-Lions operator. In the statement of problem
(1.1). a, f : Ω × R × R

N → R are two Carathéodoryâ€™s functions and M : R
+ → R

+ is continuous
function.

The study of various mathematical problems with variable exponent growth condition has been re-
ceived considerable attention in recent years, we can for example refer to [11,7,4]. This great interest
may be justified by their various physical applications.
As it is well known, problem (1.1) is related to the stationary version of the Kirchhoff equation

ρ
∂2u

∂t2
−

(ρ0

h
+

E

2L

∫ L

0

∣∣∣∂u
∂x

∣∣∣
2

dx
)∂2u

∂x2
= 0 (1.2)

presented by Kirchhoff in 1883 [16], where E, ρ0, ρ, h, L are constants. This equation is an extension
of the classical d’Alembert’s wave equation by considering the effects of the changes in the length of
the strings during the vibrations. Kirchhoff-type boundary value problems model several physical and
biological systems where u describes a process which depend on the average of itself, as for example, the
population density. Recently, Kirchhoff-type problems have been studied in many papers, we refer to see
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[1,7,8,9,14,12,20,19]. In the present work, by using the topological degre methods of Berkovits, which is
frequently utilised in the study of nonlinear equations, particularly elliptic equations, Brouwer created
the first topological degree in 1912 for continuous mappings in finite dimensional Euclidean spaces [6],
Leray and Schauder generalized it in 1934 for compact operators in Banach spaces of infinite dimension
[18], later, the theory was constructed by Berkovits [3,5], the existence of weak solutions for the problem
(1.1) is established.

The remaining part of the paper is the following: In Section 2, we introduce some notations and
functional spaces. In Section 3, we show some basic assumptions and we define the notion of weak
solution. We end in Section 4 by proving the existence of weak solution for problem(1.1).

2. Mathematical background

2.1. Lebesgue-Sobolev spaces with variable exponent

In this subsection we give some definitions and results about Lebesgue-Sobolev spaces Lp(x)(Ω) and
W 1,p(x)(Ω).

Let Ω be a smooth bounded domain in R
N (N ≥ 2), with a Lipschitz boundary denoted by ∂Ω. Set

C+(Ω) =
{
p : p ∈ C(Ω) such that p(x) > 1 for any x ∈ Ω

}
.

For each p ∈ C+(Ω), we define

p+ := max
{
p(x), x ∈ Ω

}
and p− := min

{
p(x), x ∈ Ω

}
.

For every p ∈ C+(Ω), we define

Lp(x)(Ω) =
{
u : Ω → R is measurable such that

∫

Ω

|u(x)|p(x)dx < +∞
}
,

equipped with the Luxemburg norm

|u|p(x) = inf{λ > 0 : ρp(x)

(u
λ

)
≤ 1},

where

ρp(x)(u) =

∫

Ω

|u(x)|p(x)dx, ∀ u ∈ Lp(x)(Ω).

Proposition 2.1. [13] Let (un) and u ∈ Lp(·)(Ω), then

|u|p(x) < 1(resp. = 1;> 1) ⇔ ρp(x)(u) < 1(resp. = 1;> 1) (2.1)

|u|p(x) > 1 ⇒ |u|p
−

p(x) ≤ ρp(x)(u) ≤ |u|p
+

p(x), (2.2)

|u|p(x) < 1 ⇒ |u|p
+

p(x) ≤ ρp(x)(u) ≤ |u|p
−

p(x), (2.3)

lim
n→∞

|un − u|p(x) = 0 ⇔ lim
n→∞

ρp(x)(un − u) = 0. (2.4)

Remark 2.2. According to (2.2) and (2.3), we have

|u|p(x) ≤ ρp(x)(u) + 1, (2.5)

ρp(x)(u) ≤ |u|p
−

p(x) + |u|p
+

p(x). (2.6)

Proposition 2.3. [17] The spaces Lp(x)(Ω) is a separable and reflexive Banach spaces.
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Proposition 2.4. [17] The conjugate space of Lp(x)(Ω) is Lp′(x)(Ω) where 1
p(x) + 1

p′(x) = 1 for all x ∈ Ω.

For any u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω), we have the following Hölder-type inequality

|

∫

Ω

uv dx| ≤

(
1

p−
+

1

p
′
−

)
|u|p(x)|v|p′(x) ≤ 2|u|p(x)|v|p′(x). (2.7)

Remark 2.5. If r1, r2 ∈ C+(Ω) with r1(x) ≤ r2(x) for any x ∈ Ω, then there exists the continuous
embedding Lr2(x)(Ω) →֒ Lr1(x)(Ω).

Now, let p ∈ C+(Ω) and we define W 1,p(x)(Ω) as

W 1,p(x)(Ω) =
{
u ∈ Lp(x)(Ω) such that |∇u| ∈ Lp(x)(Ω)

}
,

equipped with the norm

||u|| = |u|p(x) + |∇u|p(x).

Proposition 2.6. [13,17] The space
(
W 1,p(x)(Ω), | · |1,p(x)

)
is separable and reflexive Banach space.

In this paper we will try to find weak solution for problem (1.1) in the following space

X :=
{
u ∈ W 1,p(x)(Ω) : u|∂Ω = constant

}
. (2.8)

The space X is a closed subspace of the separable and reflexive Banach space W 1,p(x)(Ω) (See [4]) , so X

is also separable and reflexive Banach space with the norm ‖ · ‖.

2.2. Review on some classes of mappings and topological degree theory

Now, we give some results and properties from the Berkovits degree theory for demicontinuous oper-
ators of generalized (S+) type in real reflexive Banach. We start by defining some classes of mappings.
In what follows, let X be a real separable reflexive Banach space with dual X∗ and with continuous
dual pairing 〈 · , · 〉 and given a nonempty subset Ω of X , and ⇀ represents the weak convergence.

Let Y be another real Banach space.

Definition 2.7. The operator F : Ω ⊂ X → Y is said to be bounded, if it takes any bounded set into a
bounded set.

Definition 2.8. The operator F : Ω ⊂ X → Y is said to be demicontinuous, if for any (un) ⊂ Ω, un → u

implies F (un) ⇀ F (u) .

Definition 2.9. The operator F : Ω ⊂ X → Y is said to be compact, if it is continuous and the image
of any bounded set is relatively compact.

Definition 2.10. A mapping F : Ω ⊂ X → X∗ is said to be of type (S+), if for any (un) ⊂ Ω with
un ⇀ u and lim sup

n→∞

〈Fun, un − u〉 ≤ 0, we have un → u.

Definition 2.11. The operator F : Ω ⊂ X → X∗ is said to be quasimonotone, if un ⇀ u implies
lim sup

n→∞

〈Fun, un − u〉 ≥ 0.

Definition 2.12. Let T : Ω1 ⊂ X → X∗ be a bounded operator such that Ω ⊂ Ω1. For any operator F
: Ω ⊂ X → X, we say that F satisfies condition (S+)T , if for any (un) ⊂ Ω with un ⇀ u, yn :=
Tun ⇀ y and lim sup

n→∞

〈Fun, yn − y〉 ≤ 0, we have un → u.

Remark 2.13. (see [22])

1. If a mapping is compact in a set, then it is quasi-monotone in that set.
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2. If the mapping is demi-continuous and satisfies the condition (S+) in a set, then it is quasimonotone
in that set.

In the following, we consider the following classes of operators :

F1(Ω) := {F : Ω → X∗ | F is bounded, demicontinuous and satifies condition(S+)},

FT (Ω) := {F : Ω → X | F is demicontinuous and satifies condition(S+)T },

Lemma 2.14. [5] Lets T ∈ F1(G) be continuous and S : DS ⊂ X∗ → X be demicontinuous such
that T (G) ⊂ Ds, where G is a bounded open set in a real reflexive Banach space X. Then the following
statements are true :

1. If S is quasimonotone, then I + SoT ∈ FT (G), where I denotes the identity operator.

2. If S is of class (S+), then SoT ∈ FT (G).

Definition 2.15. Let G is to be a bounded open subset of a real reflexive Banach space X, T ∈ F1(G)
be continuous and let F, S ∈ FT (G). We define an affine homotopy Λ : [0, 1] ×G → X by

Λ(t, u) := (1 − t)Fu+ tSu for (t, u) ∈ [0, 1] ×G

is called an admissible affine homotopy with the common continuous essential inner map T .

Remark 2.16. [5] The above affine homotopy satisfies condition (S+)T .

Let O be the collection of all bounded open set in X . we give the Berkovits topological degree for a
class of demicontinuous operator satisfying condition (S+)T for more details see [5].

Theorem 2.17. Let M =
{

(F,G, h) | G ∈ O, T ∈ F1(G), F ∈ FT (G), h 6∈ F (∂E)
}
. There exists a

unique degree function d : M −→ Z which satisfies the following properties :

1. ( Normalization) For any h ∈ G, we have d(I, E, h) = 1.

2. ( Additivity) Let F ∈ FT (G). If G1 and G2 are two disjoint open subsets of G such that h 6∈
F (G\(G1 ∪G2)) then we have

d(F,G, h) = d(F,G1, h) + d(F,G2, h) .

3. ( Homotopy invariance) If Λ : [0, 1] × G → X is a bounded admissible affine homotopy with a
common continuous essential inner map and h: [0, 1] → X is a continuous path in X such that
h(t) 6∈ Λ(t, ∂G) for all t ∈ [0, 1], then the value of d(Λ(t, ·), G, h(t)) is constant for all t ∈ [0, 1].

4. ( Existence) if d(F,G, h) 6= 0, then the equation Fu = h has a solution in G.

3. Basic assumptions and technical Lemmas

Definition 3.1. We call that u ∈ X is a weak solution of problem (1.1) if

M

( ∫

Ω

(A(x,∇u) +
1

p(x)
|∇u|p(x)) dx

) [ ∫

Ω

a(x,∇u)∇v +

∫

Ω

|∇u|p(x)−2∇u∇v
]

= λ

∫

Ω

f(x, u,∇u)v dx,

for all v ∈ X.

In this paper, we assume that a(x, ξ) : Ω×R
N −→ R

N is a Carathéodory and a continuous derivative
with respect to ξ of the continuous mapping A(x, ξ) : Ω × R

N −→ R. A = A(x, ξ), a(x, ξ) = ∇ξA(x, ξ),
and for a. e. x in Ω and all ξ, ξ′ ∈ R

N , (ξ 6= ξ′).

(A1) A(x, 0) = 0,



Weak Solution to p(x)-Kirchoff Type Problems 5

(A2) α|ξ|p(x) ≤ a(x, ξ) · ξ ≤ p(x)A(x, ξ),

(A3) |a(x, ξ)| ≤ η
(
k(x) + |ξ|p(x)−1

)

(A4) [a(x, ξ) − a(x, ξ′)] · (ξ − ξ′) > 0,
where α, η are some positive constants and k(x) is a positive function in Lp′(x)(Ω) , (p′(x) is the
conjugate exponent of p(x)).

The Carathéodory’s function f is defined from Ω × R × R
N into R and it is satisfies only the growth

condition, for all t ∈ R
N , s ∈ R and a.e. x ∈ Ω.

(f1) |f(x, s, ξ)| ≤ ̺(e(x) + |s|p(x)−1 + |ξ|p(x)−1),

where ̺ is a positive constant, e(x) is a positive function in Lq′(x)(Ω).

(M1) M : R
+ → R

+ is continuous and non-decreasing function, for which there exist two positive
constant and m1 such that,

tr(x)−1 ≤ M(t) ≤ m1t
r(x)−1

where r(x) ∈ C+(Ω) and 1 ≤ r− ≤ r(x) ≤ r+ ≤ p− ≤ p(x) ≤ p+, for all t ∈ [0,+∞[.

Lemma 3.2. ( [2]) Let g ∈ Lr(x)(Ω) and gn ⊂ Lr(x)(Ω) such that ‖gn‖r(x) ≤ C, If gn(x) → g(x)

a.e. in Ω then gn ⇀ g weakly in Lr(x)(Ω).

Lemma 3.3. ( [2]) Assume that (A2)-(A4) hold, let (un)n be a sequence in W 1,p(x)(Ω) such that un ⇀

u weakly in W 1,p(x)(Ω) and
∫

Ω

[
a(x,∇un) − a(x,∇u)

]
∇(un − u)dx −→ 0, (3.1)

then un −→ u strongly in X.

Let us consider the following functional

J(u) = M̂

( ∫

Ω

(
A(x,∇u) +

1

p(x)
|∇u|p(x)

)
dx

)
, ∀u ∈ X

where M̂ : [0,+∞[−→ [0,+∞[ be the primitive of the function M , defned by

M̂(t) =

∫ t

0

M(ξ)dξ.

It is well known that J is well defined and continuously Gâteaux differentiable whose Gâteaux deriva-
tives at point u ∈ X is the functional J′(u) ∈ X∗ setting by

〈J′(u) , v〉 = M

( ∫

Ω

(A(x,∇u) +
1

p(x)
|∇u|p(x)) dx

) [ ∫

Ω

a(x,∇u)∇v +

∫

Ω

|∇u|p(x)−2∇u∇v
]

for all u, v ∈ X.
On other hand, we consider the functional L : X → R defined by:

L(u) =

∫

Ω

(A(x,∇u) +
1

p(x)
|∇u|p(x)) dx For all v ∈ X

then L ∈ C1(X,R) and,

〈L′(u) , v〉 =

∫

Ω

a(x,∇u)∇v +

∫

Ω

|∇u|p(x)−2∇u∇v.

Let us consider the operator T acting from X to its dual X∗ is defined by

〈Tu , v〉 = 〈J′(u) , v〉

=M

( ∫

Ω

(A(x,∇u) +
1

p(x)
|∇u|p(x)) dx

) [ ∫

Ω

a(x,∇u)∇v +

∫

Ω

|∇u|p(x)−2∇u∇v
]

(3.2)

for all u, v ∈ X.
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Proposition 3.4. Suppose that (M1), (A1) − (A4) hold, then

(i) T is bounded, coercive, continuous operator.

(ii) T is of type (S+).

Proof.

i) It is clear that T is continuous, because T is the Fréchet derivative of J.

Now, we prove that the operator T is bounded.

Let u, v ∈ X, by the Hölder’s inequality and (M1), we obtain

|< Tu, v >| =
∣∣∣M

( ∫

Ω

(A(x,∇u) +
1

p(x)
|∇u|p(x)) dx

) [ ∫

Ω

a(x,∇u)∇v +

∫

Ω

|∇u|p(x)−2∇u∇vdx
]∣∣∣

≤ m1

( ∫

Ω

(A(x,∇u) +
1

p(x)
|∇u|p(x)) dx

)r(x)−1[ ∫

Ω

|a(x,∇u) ∇v| dx+

∫

Ω

|∇u|p(x)−1‖∇v|dx
]

≤ const
(( ∫

Ω

A(x,∇u)dx
)r(x)−1

+
( ∫

Ω

|∇u|p(x)dx
)r(x)−1

)
×

[
|a(x,∇u) |p′(x)|∇v |p(x) +

( ∫

Ω

|∇up(x)−1|p
′(x)dx

)1/θ

|∇v|p(x)

]

≤ const
(( ∫

Ω

A(x,∇u)dx
)r(x)−1

+ ‖u‖γ(r(x)−1)
)

×
[
|a(x,∇u)|p′(x)‖v‖ + ‖u‖γ/θ‖v‖

]
,

wehere

γ =

{
p− if ‖u‖ ≤ 1
p+ if ‖u‖ ≥ 1,

and

θ =

{
p′− if |∇up(x)−1|p′(x) ≤ 1
p′+ if |∇up(x)−1|p′(x) ≥ 1.

By (A1) we have for any x ∈ Ω and ξ ∈ R
n

A(x, ξ) =

∫ 1

0

d

ds
A(x, sξ)ds =

∫ 1

0

a(x, sξ)ξds

and by combining (A3), Fubini’s theorem and Young’s inequality we have

∫

Ω

A(x,∇u)dx =

∫

Ω

∫ 1

0

a(x, s∇u)∇uds dx

=

∫ 1

0

[ ∫

Ω

a(x, s∇u)∇udx
]
ds

≤

∫ 1

0

[
Cp′

∫

Ω

∣∣a(x, s∇u)
∣∣p′(x)

dx+ Cp

∫

Ω

|∇u|p(x)dx
]
ds

≤ C1 + C′

∫ 1

0

∫

Ω

|s∇u|p(x) dx ds + Cp‖u‖γ

≤ C1 + C2

∫

Ω

|∇u|p(x) dx+ Cp‖u‖γ

≤ Cm(‖u‖γ + 1),
(
γ is defined above

)
.

(3.3)

From (A3), we can easily show that |a(x,∇u)|p′(x) is bounded for all u in X. Therefore

|〈Tu, v〉| ≤ const ‖v‖ ,
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as a result the operator T is bounded.

Next, we prove that the operator T is coercive.

Let u ∈ X, from (A2) and (M1), we obtain

〈Tu, u〉

‖u‖
=

M

( ∫

Ω

(A(x,∇u) +
1

p(x)
|∇u|p(x)) dx

) [ ∫

Ω

a(x,∇u)∇u+

∫

Ω

|∇u|p(x)dx
]

‖u‖

≥

( ∫

Ω

(A(x,∇u) +
1

p(x)
|∇u|p(x)) dx

)r(x)−1 [ ∫

Ω

a(x,∇u)∇u+

∫

Ω

|∇u|p(x)dx
]

‖u‖

≥ (

( α

p+

∫

Ω

|∇u|p(x)dx+
1

p+

∫

Ω

|∇u|p(x)) dx
)r(x)−1 [

α

∫

Ω

|∇u|p(x) +

∫

Ω

|∇u|p(x)dx
]

‖u‖

≥ C1

( ∫

Ω

|∇u|p(x) + |u|p(x)dx
)r(x)

‖u‖
− C2

( ∫

Ω

|u|p(x)
)r(x)

‖u‖

≥ C1
‖u‖γr(x)

‖u‖
− C2

|u|βr(x)

‖u‖

≥ C‖u‖γr(x)−1 − C′.

Which means that
〈Tu, u〉

‖u‖
→ ∞ as ‖u‖ → ∞.

Where γ is defined above, and

β =

{
p− if |u|p(x) ≤ 1
p+ if |u|p(x) ≥ 1.

Now, we prove that T is strictly monotone operator. The monotonicity of L follows easily from the
following inequalities By using (A4), and taking into the inequality ( see [15]), For all ξ, η ∈ R

N ,

(|ξ|p−2ξ − |η|p−2η)(ξ − η).(|ξ|p + |η|p)
2−p

p ≥ (p− 1)|ξ − η|p if 1 < p < 2,

(|ξ|p−2ξ − |η|p−2η)(ξ − η) ≥ (
1

2
)p|ξ − η|p if p ≥ 2.

(3.4)

We obtain for all u, v ∈ X with u 6= v,

〈L′(u) − L
′(v), u − v〉 > 0

which implies that L′ is strictly monotone. Thus, by Prop. 25.10 in [22], L is strictly convex.

Furthermore, as M is nondecreasing, then M̂ is convex in [0,+∞[. So, for any u, v ∈ X with u 6= v,
and every s, t ∈ (0, 1) with s+ t = 1, we have

M̂(L(su+ tv)) < M̂(sL(u) + tL(v)) ≤ sM̂(L(u)) + tM̂(L(v)).

This proves that J is strictly convex, since J′(u) = T(u) in X∗ we infer that T is strictly monotone
in X.

ii)− We verify that the operator T is of type (S+).

Assume that (un)n ⊂ X and 


un ⇀ u in X

lim sup
n→∞

〈Tun, un − u〉 ≤ 0.
(3.5)

We will show that un → u in X.
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On the one hand, in fact un ⇀ u in X, so (un)n is a bounded sequence in X, then there exist a
subsequence still denoted by (un)n such that un ⇀ u in X, under the strict monotonicity of T we
get

0 = lim sup
n→∞

〈Tun − Tu, un − u〉 = lim
n→∞

〈Tun − Tu, un − u〉. (3.6)

Then

lim
n→∞

〈Tun, un − u〉 = 0,

which means

lim
n→∞

M(L(un))
[ ∫

Ω

a(x,∇un)∇(un − u) +

∫

Ω

|∇un|p(x)−2∇un(un − u)dx
]

= 0. (3.7)

Since

∫

Ω

1

p(x)
|∇un|p(x) dx is bounded and by (3.3), we infer that L(un) is bounded.

As M is continuous, up to a subsequence there is k ≥ 0 such that

M(L(un)) −→ M(k) ≥ kr(x)−1 as n → ∞. (3.8)

From (3.7) and (3.8), we get

[
lim

n→∞

∫

Ω

a(x,∇un)∇(un − u)dx+

∫

Ω

|∇un|p(x)−2∇un(∇un − ∇u)dx
]

= 0.

Using the continuous embedding W 1,p(x)(Ω) →֒ Lp(x)(Ω), we have

lim
n→∞

∫

Ω

|∇un|p(x)−2∇un(∇un − ∇u)dx = 0. Then

lim
n→∞

∫

Ω

a(x,∇un)∇(un − u)dx = 0

In light of Lemma 3.3, we obtain

un −→ u strongly in X,

which implies that T is of type (S+).

Lemma 3.5. If the condition (f1) hold. Then the operator S : X∗ → X∗ defined by

〈Su, v〉 = −λ

∫

Ω

f(x, u,∇u) v dx, ∀u, v ∈ X

is compact.

Proof.

In ordre to prove this lemma, we proceed in tow steps.
Step 1:
Let us consider the operator ψ : X → Lp′(x)(Ω) defined by

ψu(x) = −λf(x, u,∇u)

Now we show that the operator ψ is bounded and continuous. For this, let u, v ∈ X, using the growth
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condition (f1) we have

|ψ u|θp′(x) ≤

∫

Ω

|λf(x, u,∇u)|p
′(x)dx

≤

∫

Ω

|λ|p
′(x)

∣∣∣̺
(
e(x) + |u|p(x)−1 + |∇u|p(x)−1

)∣∣∣
p′(x)

dx

≤ const(|λ|p
′−

+ |λ|p
′+

)

∫

Ω

(
|e(x)|p

′(x) + |u|(p(x)−1)p′(x) + |∇u|(p(x)−1)p′(x)
)
dx

≤ const(|λ|p
′−

+ |λ|p
′+

)

∫

Ω

(
|e(x)|p

′(x) + |u|p(x) + |∇u|p(x)
)
dx

≤ const

∫

Ω

|e(x)|p
′(x)dx+ const

∫

Ω

|u|p(x) + |∇u|p(x) dx

≤ const|e|θ1

p′(x) + const‖u‖γ

≤ Cmax(‖u‖γ + 1),

(3.9)

where Cmax = max
(
const‖e‖θ1

p′(x), const
)
, and

θ =

{
p′+ if |ψ u|p′(x) ≤ 1
p′− if |ψ u|p′(x) ≥ 1.

θ1 =

{
p′+ if |e|p′(x) ≤ 1
p′− if |e|p′(x) ≥ 1

and, γ =

{
p+ if ‖u‖ ≤ 1
p− if ‖u‖ ≥ 1.

Therefore ψ is bounded on X.
Next, we show that ψ is continuous, Not that if un → u in X, then un → u in Lp(x)(Ω) and ∇un → ∇u

in
(
Lp(x)(Ω)

)N
. Thus there exist a subsequence still denoted by (un) and measurable functions ϕ in

Lp(x)(Ω) and σ in
(
Lp(x)(Ω)

)N
such that

un(x) → u(x) and ∇un(x) → ∇u(x),

|un(x)| ≤ ϕ(x) and |∇un(x)| ≤ |σ(x)|,

for a.e. x ∈ Ω and all n ∈ N. Since satisfies the Carathéodory condition, we obtain

f(x, un(x),∇un(x)) → f(x, u(x),∇u(x)) a.e. x ∈ Ω. (3.10)

Thanks to (f1) we obtain

|f(x, un(x),∇un(x))| ≤ ̺
(
e(x) + |ϕ(x)|p(x)−1 + |σ(x)|p(x)−1

)

for a.e. x ∈ Ω and for all k ∈ N.

Since
e(x) + |ϕ(x)|p(x)−1 + |σ(x)|p(x)−1 ∈ Lp′(x)(Ω),

and from (3.10), we get
∫

Ω

|f(x, uk(x),∇uk(x)) − f(x, u(x),∇u(x))|p
′(x)dx −→ 0,

by using the dominated convergence theorem we have

ψuk → ψu in Lp′(x)(Ω).

Thus the entire sequence (ψun) converges to ψu in Lp′(x)(Ω) and then ψ is continuous.

The canonical linear embedding I : X → Lp(x)(Ω) is compact by Rellichâ€™s embedding theorem, so
the adjoint operator, then I∗ : Lp′(x)(Ω) → X∗ is compact. Hence the compositions I∗ ◦ ψ is compact.
that means S = I∗ ◦ ψ is compact.
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4. Main results

Theorem 4.1. Suppose that the hypotheses (A1) − (A4), (f1) and (M1) hold true. Then there exists at
least one weak solution u in X of the problem (1.1).

Proof.
Let u ∈ X be a weak solutions of the problem (1.1) if and only if

Tu = −Su, (4.1)

where T, S be two operators as defined in (3.2) and Lemma 3.5 respectively.
On the one hand, from Proposition 3.4 the operator T given in (3.2) is strictly monotone, bounded,

continuous, coercive and satisfies condition (S+). Then, by using the Minty-Browder Theorem (see [22],
Theorem 26 A), the inverse operator G = T−1 : X∗ → X exists and is bounded. Moreover, it is continuous
and satisfies condition (S+).

On the other hand, notice by Lemma 3.5 the operator S is bounded, quasimonotone and continuous.
Hence, equation (4.1) is equivalent to the abstract Hammerstein equation

u = Gv and v + S ◦ Gv = 0. (4.2)

To solve the equations (4.2), we will employ the Berkovits topological degree seen in section above. For
this, let us consider the set

B :=
{
v ∈ (X∗ \ v + tS ◦ Gv = 0 for some t ∈ [0, 1]

}
.

First, we show that the set B is bounded in X∗.
Let v ∈ B and take u := Gv. According to (A2), (f1) and by the Young’s inequality, we obtain

‖Gv‖γ =

∫

Ω

(|u|p(x) + |∇u|p(x) )dx

≤

∫

Ω

|u|p(x)dx+
1

α
M

( ∫

Ω

(A(x,∇u) +
1

p(x)
|u|p(x)) dx

) [ ∫

Ω

a(x,∇u)∇u+

∫

Ω

|∇u|p(x)
]

=

∫

Ω

|u|p(x)dx+
1

α
〈Tu, u〉

=

∫

Ω

|u|p(x)dx+
1

α
〈v,Gv〉 ≤

∫

Ω

|u|p(x)dx+
t

α
|〈S ◦ Gv,Gv〉|

≤

∫

Ω

|u|p(x)dx+
t

α

∫

Ω

|λf(x, u,∇u)u|dx

≤

∫

Ω

|u|p(x)dx+ Cp′

∫

Ω

|f(x, u,∇u)|p
′(x)dx+ Cp

∫

Ω

|u|p(x)dx

≤ (1 + C2,p)

∫

Ω

|u|p(x)dx+ C1,p

∫

Ω

|f(x, u,∇u)|p
′(x)dx

≤ C1‖u‖γ + C2(‖u‖γ + 1).

≤ (C1 + C2)‖u‖γ + C2

≤ CT

(
1 + ‖u‖γ

)
.

Therefore
{
Gv \ v ∈ B

}
is bounded.

As the operator S is bounded and from (4.2), it follows that the set B is bounded in X∗. Then there
exists a positive constant R such that

‖v‖X∗ < R for all v ∈ B.

Thus
v + tS ◦ Gv 6= 0 for all v ∈ ∂BR(0) and all t ∈ [0, 1].
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By Lemma 2.14, we get

I + S ◦ G ∈ FT (BR(0)) and I = T ◦ G ∈ FT (BR(0)).

Let us define an affine homotopy Λ from [0, 1] × BR(0) into X∗ by

Λ(t, v) := v + S ◦ Gv for (t, v) ∈ [0, 1] × BR(0).

Using the homotopy invariance and normalization property of the degree d stated in Theorem 2.17, we
have

d(I + S ◦ G,BR(0), 0) = d(I,BR(0), 0) = 1,

consequently, we can find a point v ∈ BR(0) such that

v + S ◦ Gv = 0.

it follows that u = Gv is a weak solution of (1.1). This ends the proof.
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