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Variable Exponent p(·)-Kirchhoff Type Problem with Convection in Variable Exponent

Sobolev Spaces

Hasnae El Hammar, Mohamed El Ouaarabi, Chakir Allalou and Said Melliani

abstract: We establish the existence of weak solution for a class of p(x)-Kirchhoff type problem for the
p(x)-Laplacian-like operator with Dirichlet boundary condition and with gradient dependence (convection) in
the reaction term. Our result is obtained using the topological degree for a class of demicontinuous operators
of generalized (S+) type and the theory of the variable exponent Sobolev spaces. Our results extend and
generalize several corresponding results from the existing literature.
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1. Introduction and motivation

Let Ω be a bounded domain in R
N(N > 1) with smooth boundary denoted by ∂Ω, and let θ, µ and

λ be three real parameters and p(·), δ(·) ∈ C+(Ω).
In this research, We consider the following nonlinear p(x)-Kirchhoff type problem with Dirichlet

boundary condition and with a reaction term depending also on the gradient (convection) and on three
real parameters





−K

(
A(u)

)(
∆l

p(x)u− |u|p(x)−2u
)

+ θ |u|δ(x)−2u = µB(x, u) + λC(x, u,∇u) in Ω,

u = 0 on ∂Ω,

(1.1)

where

A(u) :=

∫

Ω

1

p(x)

(
|∇u|p(x) +

√
1 + |∇u|2p(x) + |u|p(x)

)
dx,

and

∆l
p(x)u := div

(
|∇u|p(x)−2∇u+

|∇u|2p(x)−2∇u√
1 + |∇u|2p(x)

)

is the p(x)-Laplacian-like operators, B : Ω ×R → R and C : Ω ×R×R
N → R are Carathéodory functions

that satisfy the growth assumption, and K(t) : R+ → R
+ is a continuous function.

The study of differential equations and variational problems with nonstandard p(x)-growth conditions
(or nonstandard (p(x), q(x))−growth conditions) is an attractive topic and has been the object of con-
siderable attention in recent years (see [16,22]). One of the motivations for studying (1.1) comes from
the application of similar models in physics to represent the behavior of elasticity [25] and electrorheo-
logical fluids (see [20,23]), which have the ability to modify their mechanical properties when exposed
to an electric field (see [1,2,22,17,18,19]), specifically the phenomenon of capillarity, which depends on
solid-liquid interfacial characteristics as surface tension, contact angle, and solid surface geometry.
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Problems related to (1.1) have been studied by many scholars, for example, Ni and Serrin [10,11]
considered the following equation

−div
( ∇u√

1 + |∇u|2
)

= f(u) in R
N . (1.2)

The operator −div
( ∇u√

1 + |∇u|2
)

is most often denoted by the specified mean curvature operator and

∇u√
1+|∇u|2

is the Kirchhoff stress term.

In case K

(
A(u)

)
≡ 1, µ = θ = 0, λ > 0, C independent of ∇u and without the term |u|p(x)−2u, we

know that the problem (1.1) has a nontrivial solutions from [21].

Note that, in case A(u) =

∫

Ω

|∇u|p(x)

p(x)
dx, µ = θ = 0, λ = 1, C independent of ∇u and without the

term |u|p(x)−2u, then we obtain the following problem




−K

( ∫

Ω

|∇u|p(x)

p(x)
dx

)
div(|∇u|p(x)−2∇u) = C(x, u) in Ω,

u = 0 on ∂Ω,

(1.3)

which is called the p(x)-Kirchhoff type problem. In this case, Dai et al. [4], by a direct variational ap-
proach, established conditions ensuring the existence and multiplicity of solutions to (1.3). Furthermore,
the problem (1.3) is a generalization of the stationary problem of a model introduced by Kirchhoff [7] of
the following form:

ρ
∂2u

∂t2
−

(ρ0

h
+

E

2L

∫ L

0

∣∣∣∂u
∂x

∣∣∣
2

dx
)∂2u

∂x2
= 0, (1.4)

where ρ, ρ0, h, E, L are all constants, which extends the classical D’Alembert’s wave equation, by consid-
ering the effect of the changing in the length of the string during the vibration.

Lapa et al. [9] showed, by using a Fredholm-type result for a couple of nonlinear operators, and the
theory of variable exponent Sobolev spaces, the existence of weak solutions for the problem (1.1), under
no-flux boundary conditions, in case µ = θ = 0, λ = 1 and C independent of ∇u.

The remainder of the paper is organized as follows. In Section 2, we review some fundamental
preliminaries about the functional framework where we will treat our problem. In Section 3, we introduce
some classes of operators of generalized (S+) type, as well as the Berkovits topological degrees. Finaly, in
Section 4, we give our basic assumptions, some technical lemmas, and we will state and prove the main
result of the paper.

2. Preliminaries

In the analysis of problem (1.1), we will use the theory of the generalized Lebesgue-Sobolev spaces

Lp(x)(Ω) and W
1,p(x)
0 (Ω). For convenience, we only recall some basic facts with will be used later, we

refer to [5,8,12,13,14,15] for more details.
Let Ω be a smooth bounded domain in R

N (N > 1), with a Lipschitz boundary denoted by ∂Ω. Set

C+(Ω) =
{
p : p ∈ C(Ω) such that p(x) > 1 for any x ∈ Ω

}
.

For each p ∈ C+(Ω), we define

p+ := max
{
p(x), x ∈ Ω

}
and p− := min

{
p(x), x ∈ Ω

}
.

For every p ∈ C+(Ω), we define

Lp(x)(Ω) =
{
u : Ω → R is measurable such that

∫

Ω

|u(x)|p(x)dx < +∞
}
,
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equipped with the Luxemburg norm

|u|p(x) = inf
{
λ > 0 : ρp(x)

(u
λ

)
≤ 1

}
,

where

ρp(x)(u) =

∫

Ω

|u(x)|p(x)dx, ∀ u ∈ Lp(x)(Ω).

Proposition 2.1. [5] Let (un) and u ∈ Lp(·)(Ω), then

|u|p(x) < 1 (resp. = 1;> 1) ⇔ ρp(x)(u) < 1 (resp. = 1;> 1) , (2.1)

|u|p(x) > 1 ⇒ |u|p
−

p(x) ≤ ρp(x)(u) ≤ |u|p
+

p(x), (2.2)

|u|p(x) < 1 ⇒ |u|p
+

p(x) ≤ ρp(x)(u) ≤ |u|p
−

p(x), (2.3)

lim
n→∞

|un − u|p(x) = 0 ⇔ lim
n→∞

ρp(x) (un − u) = 0. (2.4)

Remark 2.2. According to (2.2) and (2.3), we have

|u|p(x) ≤ ρp(x)(u) + 1, (2.5)

ρp(x)(u) ≤ |u|p
−

p(x) + |u|p
+

p(x). (2.6)

Proposition 2.3. [8] The spaces
(
Lp(x)(Ω), | · |p(x)

)
is a separable and reflexive Banach space.

Proposition 2.4. [8] The conjugate space of Lp(x)(Ω) is Lp′(x)(Ω) where 1
p(x) + 1

p′(x) = 1 for all x ∈ Ω.

For any u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω), we have the following Hölder-type inequality

∣∣∣
∫

Ω

uv dx
∣∣∣ ≤

(
1

p− +
1

p
′−

)
|u|p(x)|v|p′(x) ≤ 2|u|p(x)|v|p′(x). (2.7)

Remark 2.5. If p1, p2 ∈ C+(Ω) with p1(x) ≤ p2(x) for any x ∈ Ω, then there exists the continuous
embedding Lp2(x)(Ω) →֒ Lp1(x)(Ω).

Now, let p ∈ C+(Ω) and we define W 1,p(x)(Ω) as

W 1,p(x)(Ω) =
{
u ∈ Lp(x)(Ω) such that |∇u| ∈ Lp(x)(Ω)

}
,

equipped with the norm
||u|| = |u|p(x) + |∇u|p(x).

We also define W
1,p(·)
0 (Ω) as the subspace of W 1,p(·)(Ω), which is the closure of C∞

0 (Ω) with respect to
the norm || · ||.

Proposition 2.6. [5] If the exponent p(·) satisfies the log-Hölder continuity condition, i.e. there is a > 0

such that for every x, y ∈ Ω, x 6= y with |x− y| ≤ 1

2
one has

|p(x) − p(y)| ≤ a

− log |x− y| , (2.8)

then, there exists C > 0 depending only on Ω and the function p such that

|u|p(x) ≤ C|∇u|p(x), ∀ u ∈ W
1,p(·)
0 (Ω). (2.9)



4 H. El Hammar, M. El Ouaarabi, C. Allalou and S. Melliani

In this paper we will use the following equivalent norm on W
1,p(·)
0 (Ω)

|u|1,p(x) = |∇u|p(x),

which is equivalent to || · ||.
Furthermore, we have the compact embedding W

1,p(·)
0 (Ω) →֒ Lp(·)(Ω)(see [8]).

Proposition 2.7. [5,8] The spaces
(
W 1,p(x)(Ω), | · |1,p(x)

)
and

(
W

1,p(x)
0 (Ω), | · |1,p(x)

)
are separable and

reflexive Banach spaces.

Remark 2.8. The dual space of W
1,p(x)
0 (Ω) denoted W−1,p′(x)(Ω), is equipped with the norm

|u|−1,p′(x) = inf
{

|u0|p′(x) +
N∑

i=1

|ui|p′(x)

}
,

where the infinimum is taken on all possible decompositions u = u0 − divF with u0 ∈ Lp′(x)(Ω) and
F = (u1, . . . , uN) ∈ (Lp′(x)(Ω))N .

3. A review on topological degree theory

Now, we give some results and properties from the theory of topological degree. The readers can find
more information about the history of this theory in [3,6].

In what follows, let X be a real separable reflexive Banach space and X∗ be its dual space with dual
pairing 〈 · , · 〉 and given a nonempty subset Ω of X . Strong (weak) convergence is represented by the
symbol → (⇀).

Definition 3.1. Let Y be real Banach space. A operator F : Ω ⊂ X → Y is said to be :

1. bounded, if it takes any bounded set into a bounded set.

2. demicontinuous, if for any sequence (un) ⊂ Ω, un → u implies that F (un) ⇀ F (u).

3. compact, if it is continuous and the image of any bounded set is relatively compact.

Definition 3.2. A mapping F : Ω ⊂ X → X∗ is said to be :

1. of class (S+), if for any sequence (un) ⊂ Ω with un ⇀ u and lim sup
n→∞

〈Fun, un − u〉 ≤ 0, we have

un → u.

2. quasimonotone, if for any sequence (un) ⊂ Ω with un ⇀ u, we have
lim sup

n→∞
〈Fun, un − u〉 ≥ 0.

Definition 3.3. Let T : Ω1 ⊂ X → X∗ be a bounded operator such that Ω ⊂ Ω1. For any operator F :
Ω ⊂ X → X, we say that

1. F of class (S+)T , if for any sequence (un) ⊂ Ω with un ⇀ u, yn := Tun ⇀ y and lim sup
n→∞

〈Fun, yn−
y〉 ≤ 0, we have un → u.

2. F has the property (QM)T , if for any sequence (un) ⊂ Ω with un ⇀ u, yn := Tun ⇀ y, we have
lim sup

n→∞
〈Fun, y − yn〉 ≥ 0.

In the sequel, we consider the following classes of operators:

F1(Ω) :=
{
F : Ω → X∗ : F is bounded, demicontinuous and of class (S+)

}
,

FT,B(Ω) :=
{
F : Ω → X : F is bounded, demicontinuous and of class (S+)T

}
,

FT (Ω) :=
{
F : Ω → X : F is demicontinuous and of class (S+)T

}
,
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for any Ω ⊂ D(F ), where D(F ) denotes the domain of F , and any T ∈ F1(Ω).
Now, let O be the collection of all bounded open set in X and we define

F(X) :=
{
F ∈ FT (E) : E ∈ O, T ∈ F1(E)

}
,

where T ∈ F1(E) is called an essential inner map to F .

Lemma 3.4. [6, Lemma 2.3] Let S : D(S) ⊂ X∗ → X be demicontinuous and T ∈ F1(E) be continuous
such that T (E) ⊂ D(S), where E is a bounded open set in a real reflexive Banach space X. Then the
following statements are true:

1. If S is quasimonotone, then I + S ◦ T ∈ FT (E), where I denotes the identity operator.

2. If S is of class (S+), then S ◦ T ∈ FT (E).

Definition 3.5. Suppose that E is bounded open subset of a real reflexive Banach space X, T ∈ F1(E)
is continuous and F, S ∈ FT (E). The affine homotopy H : [0, 1] × E → X defined by

H(t, u) := (1 − t)Fu+ tSu, for all (t, u) ∈ [0, 1] × E

is called an admissible affine homotopy with the common continuous essential inner map T .

Remark 3.6. [6, Lemma 2.5] The above affine homotopy is of class (S+)T .

Next, as in [6] we give the topological degree for the class F(X).

Theorem 3.7. Let

M :=
{

(F,E, h) : E ∈ O, T ∈ F1(E), F ∈ FT,B(E), h 6∈ F (∂E)
}
.

Then, there exists a unique degree function d : M −→ Z that satisfies the following properties:

1. (Normalization) For any h ∈ E, we have d(I, E, h) = 1.

2. (Additivity) Let F ∈ FT,B(E). If E1 and E2 are two disjoint open subsets of E such that h 6∈
F (E\(E1 ∪ E2)), then we have

d(F,E, h) = d(F,E1, h) + d(F,E2, h).

3. (Homotopy invariance) If H : [0, 1] × E → X is a bounded admissible affine homotopy with a
common continuous essential inner map and h: [0, 1] → X is a continuous path in X such that
h(t) 6∈ H(t, ∂E) for all t ∈ [0, 1], then

d(H(t, ·), E, h(t)) = const for all t ∈ [0, 1].

4. (Existence) If d(F,E, h) 6= 0, then the equation Fu = h has a solution in E.

Definition 3.8. [6, Definition 3.3] The above degree is defined as follows:

d(F,E, h) := dB(F |
E0
, E0, h),

where dB is the Berkovits degree [3] and E0 is any open subset of E with F−1(h) ⊂ E0 and F is bounded
on E0.
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4. Existence result

In this section, we will discuss the existence of weak solutions of (1.1). We assume that Ω ⊂ R
N (N >

1) is a bounded domain with a Lipschitz boundary ∂Ω, p ∈ C+(Ω) satisfy the log-Hölder continuity
condition (2.8), δ ∈ C+(Ω) with 2 ≤ δ− ≤ δ(x) ≤ δ+ < p−, K : R

+ → R
+ , B : Ω × R → R and

C : Ω × R × R
N → R are functions such that:

(A0) K(t) : [0,+∞) → (m0,+∞) is a continuous and increasing function with m0 > 0.

(A1) C is a Carathéodory function.

(A2) There exists C1 > 0 and γ ∈ Lp′(x)(Ω) such that

|C(x, ζ, ξ)| ≤ C1(γ(x) + |ζ|q(x)−1 + |ξ|q(x)−1).

(A3) B is a Carathéodory function.

(A4) There are C2 > 0 and ν ∈ Lp′(x)(Ω) such that

|B(x, ζ)| ≤ C2(ν(x) + |ζ|s(x)−1),

for a.e. x ∈ Ω and all (ζ, ξ) ∈ R × R
N , where q, s ∈ C+(Ω) with 2 ≤ q− ≤ q(x) ≤ q+ < p− and

2 ≤ s− ≤ s(x) ≤ s+ < p−.

Remark 4.1. • Note that, for all u, ϑ ∈ W
1,p(x)
0 (Ω)

K

(
A(u)

) ∫

Ω

((
|∇u|p(x)−2∇u+

|∇u|2p(x)−2∇u√
1 + |∇u|2p(x)

)
∇ϑ+ |u|p(x)−2u ϑ

)
dx

is well defined (see [9]).

• θ |u|δ(x)−2u ∈ Lp′(x)(Ω), µB(x, u) ∈ Lp′(x)(Ω) and λC(x, u,∇u) ∈ Lp′(x)(Ω) under u ∈ W
1,p(x)
0 (Ω),

the assumptions (A2) and (A4) and the given hypotheses about the exponents p, δ, q and s because:
r(x) = (q(x) − 1)p′(x) ∈ C+(Ω) with r(x) < p(x), β(x) = (δ(x) − 1)p′(x) ∈ C+(Ω) with β(x) < p(x)
and κ(x) = (s(x) − 1)p′(x) ∈ C+(Ω) with κ(x) < p(x).
Then, by Remark 2.5 we can conclude that

Lp(x) →֒ Lr(x), Lp(x) →֒ Lβ(x) and Lp(x) →֒ Lκ(x).

Hence, since ϑ ∈ Lp(x)(Ω), we have
(

− θ |u|δ(x)−2u+ µB(x, u) + λC(x, u,∇u)
)
ϑ ∈ L1(Ω).

This implies that, the integral
∫

Ω

(
− θ |u|δ(x)−2u+ µB(x, u) + λC(x, u,∇u)

)
ϑdx

exist.

Then, we shall use the definition of weak solution for problem (1.1) in the following sense:

Definition 4.2. We say that a function u ∈ W
1,p(x)
0 (Ω) is a weak solution of (1.1), if for any ϑ ∈

W
1,p(x)
0 (Ω), it satisfies the following:

K

(
A(u)

) ∫

Ω

((
|∇u|p(x)−2∇u+

|∇u|2p(x)−2∇u√
1 + |∇u|2p(x)

)
∇ϑ+ |u|p(x)−2u ϑ

)
dx

=

∫

Ω

(
− θ |u|δ(x)−2u+ µB(x, u) + λC(x, u,∇u)

)
ϑdx.
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Before giving our main result we first give two lemmas that will be used later.
First, let us consider the following functional:

J(u) := K̂

(
A(u)

)
, where K̂(s) =

∫ s

0

K(τ )dτ ,

such that K(τ ) satisfies the assumption (A0).
From [9], it is obvious that J is a continuously Gâteaux differentiable and T := J′(u) ∈ W−1,p′(x)(Ω) such
that

〈Tu, ϑ〉 = K

(
A(u)

) ∫

Ω

((
|∇u|p(x)−2∇u+

|∇u|2p(x)−2∇u√
1 + |∇u|2p(x)

)
∇ϑ+ |u|p(x)−2u ϑ

)
dx,

for all u, ϑ ∈ W
1,p(x)
0 (Ω) where 〈·, ·〉 the duality pairing between W−1,p′(x)(Ω) and W

1,p(x)
0 (Ω). In

addition, the following lemma summarizes the properties of the operator T (see [9]).

Lemma 4.3. If (A0) holds, then T : W
1,p(x)
0 (Ω) → W−1,p′(x)(Ω) is a continuous, bounded and strictly

monotone operator, and is a mapping of class (S+).

Lemma 4.4. Assume that the assumptions (A1) − (A4) hold, then the operator

S : W
1,p(x)
0 (Ω) → W−1,p′(x)(Ω)

〈Su, ϑ〉 = −
∫

Ω

(
− θ |u|δ(x)−2u+ µB(x, u) + λC(x, u,∇u)

)
ϑdx,

for all u, ϑ ∈ W
1,p(x)
0 (Ω), is compact.

Proof. In order to prove this lemma, we proceed in four steps.

Step 1 : Let Υ : W
1,p(x)
0 (Ω) → Lp′(x)(Ω) be an operator defined by

Υu(x) := −µB(x, u).

In this step, we prove that the operator Υ is bounded and continuous.

First, let u ∈ W
1,p(x)
0 (Ω), bearing (A4) in mind and using (2.5) and (2.6), we infer

|Υu|p′(x) ≤ ρp′(x)(Υu) + 1

=

∫

Ω

|µB(x, u(x))|p′(x)dx+ 1

=

∫

Ω

|µ|p′(x)|B(x, u(x)|p′(x)dx+ 1

≤
(

|µ|p′−

+ |µ|p′+
) ∫

Ω

|C2

(
ν(x) + |u|s(x)−1

)
|p′(x)dx+ 1

≤ const
(

|µ|p′−

+ |µ|p′+
) ∫

Ω

(
|ν(x)|p′(x) + |u|κ(x)

)
dx+ 1

≤ const
(

|µ|p′−

+ |µ|p′+
)(
ρp′(x)(ν) + ρκ(x)(u)

)
+ 1

≤ const
(

|ν|p
′+

p(x) + |u|κ+

κ(x) + |u|κ−

κ(x)

)
+ 1.

Then, we deduce from (2.9) and Lp(x) →֒ Lκ(x), that

|Υu|p′(x) ≤ const
(

|ν|p
′+

p(x) + |u|κ+

1,p(x) + |u|κ−

1,p(x)

)
+ 1,

that means Υ is bounded on W
1,p(x)
0 (Ω).

Second, we show that the operator Υ is continuous. To this purpose let un → u in W
1,p(x)
0 (Ω). We need
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to show that Υun → Υu in Lp′(x)(Ω). We will apply the Lebesgue’s theorem.

Note that if un → u in W
1,p(x)
0 (Ω), then un → u in Lp(x)(Ω). Hence there exist a subsequence (uk) of

(un) and φ in Lp(x)(Ω) such that

uk(x) → u(x) and |uk(x)| ≤ φ(x), (4.1)

for a.e. x ∈ Ω and all k ∈ N.
Hence, from (A2) and (4.1), we have

|B(x, uk(x))| ≤ C2(ν(x) + |φ(x)|s(x)−1),

for a.e. x ∈ Ω and for all k ∈ N.
On the other hand, thanks to (A3) and (4.1), we get, as k −→ ∞

B(x, uk(x)) → B(x, u(x)) a.e. x ∈ Ω.

Seeing that

ν + |φ|s(x)−1 ∈ Lp′(x)(Ω) and ρp′(x)(Υuk − Υu) =

∫

Ω

|B(x, uk(x)) − B(x, u(x))|p′(x)dx,

then, from the Lebesgue’s theorem and the equivalence (2.4), we have

Υuk → Υu in Lp′(x)(Ω),

and consequently
Υun → Υu in Lp′(x)(Ω),

that is, Υ is continuous.

Step 2 : We define the operator Ψ : W
1,p(x)
0 (Ω) → Lp′(x)(Ω) by

Ψu(x) := θ |u(x)|δ(x)−2u(x).

We will prove that Ψ is bounded and continuous.
It is clear that Ψ is continuous. Next we show that Ψ is bounded.
Let u ∈ W

1,p(x)
0 (Ω) and using (2.5) and (2.6), we obtain

|Ψu|p′(x) ≤ ρp′(x)(Ψu) + 1

=

∫

Ω

|θ|u|δ(x)−2u|p′(x)dx+ 1

=

∫

Ω

|θ|p′(x)|u|(δ(x)−1)p′(x)dx+ 1

≤
(

|θ|p′−

+ |θ|p′+
) ∫

Ω

|u|β(x)dx+ 1

=
(

|θ|p′−

+ |θ|p′+
)
ρβ(x)(u) + 1

≤
(

|θ|p′−

+ |θ|p′+
)(

|u|β
−

β(x) + |u|β
+

β(x)

)
+ 1.

Hence, we deduce from Lp(x) →֒ Lβ(x) and (2.9) that

|Ψu|p′(x) ≤ const
(

|u|β
−

1,p(x) + |u|β
+

1,p(x)

)
+ 1,

and consequently, Ψ is bounded on W
1,p(x)
0 (Ω).

Step 3 : Let us define the operator Φ : W
1,p(x)
0 (Ω) → Lp′(x)(Ω) by

Φu(x) := −λC(x, u(x),∇u(x)).
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We will show that Φ is bounded and continuous.
Let u ∈ W

1,p(x)
0 (Ω). According to (A2) and the inequalities (2.5) and (2.6), we obtain

|Φu|p′(x) ≤ ρp′(x)(Φu) + 1

=

∫

Ω

|λC(x, u(x),∇u(x))|p′(x)dx+ 1

=

∫

Ω

|λ|p′(x)|C(x, u(x),∇u(x))|p′(x)dx+ 1

≤
(

|λ|p′−

+ |λ|p′+
) ∫

Ω

|C1

(
γ(x) + |u|q(x)−1 + |∇u|q(x)−1

)
|p′(x)dx+ 1

≤ const
(

|λ|p′−

+ |λ|p′+
) ∫

Ω

(
|γ(x)|p′(x) + |u|r(x) + |∇u|r(x)

)
dx+ 1

≤ const
(

|λ|p′−

+ |λ|p′+
)(
ρp′(x)(γ) + ρr(x)(u) + ρr(x)(∇u)

)
+ 1

≤ const
(

|γ|p
′+

p(x) + |u|r+

r(x) + |u|r−

r(x) + |∇u|r+

r(x) + |∇u|r−

r(x)

)
+ 1.

Taking into account that Lp(x) →֒ Lr(x) and (2.9), we have then

|Φu|p′(x) ≤ const
(

|γ|p
′+

p(x) + |u|r+

1,p(x) + |u|r−

1,p(x)

)
+ 1,

and consequently Φ is bounded on W
1,p(x)
0 (Ω).

It remains to show that Φ is continuous. Let un → u in W
1,p(x)
0 (Ω), we need to show that Φun → Φu in

Lp′(x)(Ω). We will apply the Lebesgue’s theorem.

Note that if un → u in W
1,p(x)
0 (Ω), then un → u in Lp(x)(Ω) and ∇un → ∇u in (Lp(x)(Ω))N . Hence,

there exist a subsequence (uk) and φ in Lp(x)(Ω) and ψ in (Lp(x)(Ω))N such that

uk(x) → u(x) and ∇uk(x) → ∇u(x), (4.2)

|uk(x)| ≤ φ(x) and |∇uk(x)| ≤ |ψ(x)|, (4.3)

for a.e. x ∈ Ω and all k ∈ N.
Hence, thanks to (A1) and (4.2), we get, as k −→ ∞

C(x, uk(x),∇uk(x)) → C(x, u(x),∇u(x)) a.e. x ∈ Ω.

On the other hand, from (A2) and (4.3), we can deduce the estimate

|C(x, uk(x),∇uk(x))| ≤ C1(γ(x) + |φ(x)|q(x)−1 + |ψ(x)|q(x)−1),

for a.e. x ∈ Ω and for all k ∈ N.
Seeing that

γ + |φ|q(x)−1 + |ψ(x)|q(x)−1 ∈ Lp′(x)(Ω),

and taking into account the equality

ρp′(x)(Φuk − Φu) =

∫

Ω

|C(x, uk(x),∇uk(x)) − C(x, u(x),∇u(x))|p′(x)dx,

then, we conclude from the Lebesgue’s theorem and (2.4) that

Φuk → Φu in Lp′(x)(Ω)

and consequently
Φun → Φu in Lp′(x)(Ω),
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and then Φ is continuous.
Step 4: Let I∗ : Lp′(x)(Ω) → W−1,p′(x)(Ω) be the adjoint operator of the operator I : W

1,p(x)
0 (Ω) →

Lp(x)(Ω). We then define

I∗ ◦ Υ : W
1,p(x)
0 (Ω) → W−1,p′(x)(Ω),

I∗ ◦ Ψ : W
1,p(x)
0 (Ω) → W−1,p′(x)(Ω),

and
I∗ ◦ Φ : W

1,p(x)
0 (Ω) → W−1,p′(x)(Ω).

On another side, taking into account that I is compact, then I∗ is compact. Thus, the compositions
I∗ ◦ Υ, I∗ ◦ Ψ and I∗oΦ are compact, that means S = I∗ ◦ Υ + I∗ ◦ Ψ + I∗ ◦ Φ is compact. With this last
step the proof of Lemma 4.4 is completed.
Consequently, we establish the following existence result.

Theorem 4.5. If hypotheses (A0), (A1), (A2), (A3) and (A4) hold, then problem (1.1) admits at least a

weak solution u in W
1,p(x)
0 (Ω).

Proof.

We will reduce the problem (1.1) to a new one governed by a Hammerstein equation, and we will apply
the theory of topological degree introduced in Section 3.

For all u, ϑ ∈ W
1,p(x)
0 (Ω), we define the operators T and S by

T : W
1,p(x)
0 (Ω) −→ W−1,p′(x)(Ω)

〈Tu, ϑ〉 = K

(
A(u)

) ∫

Ω

((
|∇u|p(x)−2∇u+

|∇u|2p(x)−2∇u√
1 + |∇u|2p(x)

)
∇ϑ+ |u|p(x)−2u ϑ

)
dx,

and
S : W

1,p(x)
0 (Ω) −→ W−1,p′(x)(Ω)

〈Su, ϑ〉 = −
∫

Ω

(
− θ |u|δ(x)−2u+ µB(x, u) + λC(x, u,∇u)

)
ϑdx.

Consequently, the problem (1.1) is equivalent to the equation

Tu+ Su = 0, u ∈ W
1,p(x)
0 (Ω). (4.4)

Taking into account that, by Lemma 4.3, the operator T is a continuous, bounded, strictly monotone and
of class (S+), then, by [24, Theorem 26 A], the inverse operator

L := T−1 : W−1,p′(x)(Ω) → W
1,p(x)
0 (Ω),

is also bounded, continuous, strictly monotone and of class (S+).
On another side, according to Lemma 4.4, we have that the operator S is bounded, continuous and quasi-
monotone.
Consequently, following Zeidler’s terminology [24], the equation (4.4) is equivalent to the following ab-
stract Hammerstein equation

u = Lϑ and ϑ+ S ◦ Lϑ = 0, u ∈ W
1,p(x)
0 (Ω) and ϑ ∈ W−1,p′(x)(Ω). (4.5)

Seeing that (4.4) is equivalent to (4.5), then to solve (4.4) it is thus enough to solve (4.5). In order to
solve (4.5), we will apply the Berkovits topological degree introduced in Section 3.
First, let us set

E :=
{
ϑ ∈ W−1,p′(x)(Ω) : ∃ t ∈ [0, 1] such that ϑ+ tS ◦ Lϑ = 0

}
.

Next, we show that E is bounded in ∈ W−1,p′(x)(Ω).
Let us put u := Lϑ for all ϑ ∈ E. Taking into account that |Lϑ|1,p(x) = |∇u|p(x), then we have the
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following two cases:

First case : If |∇u|p(x) ≤ 1. Then |Lϑ|1,p(x) ≤ 1, that means
{
Lϑ : ϑ ∈ E

}
is bounded.

Second case : If |∇u|p(x) > 1. Then, we deduce from (2.2), (A2) and (A4), the inequalities (2.7) and
(2.6) and the Young’s inequality that

|Lϑ|p
−

1,p(x) = |∇u|p−
p(x)

≤ ρp(x)(∇u)

≤ 〈Tu, u〉
= 〈ϑ, Lϑ〉
= −t〈S ◦ Lϑ, Lϑ〉

= t

∫

Ω

(
− θ |u|δ(x)−2u+ µB(x, u) + λC(x, u,∇u)

)
udx

≤ tmax(|θ|, C2|µ|, C1|λ|)
( ∫

Ω

|u|δ(x)dx+

∫

Ω

|ν(x)u(x)|dx +

∫

Ω

|u(x)|s(x)dx

+

∫

Ω

|γ(x)u(x)|dx +

∫

Ω

|u(x)|q(x)dx+

∫

Ω

|∇u|q(x)−1|u|dx
)

= tmax(|θ|, C2|µ|, C1|λ|)
(
ρδ(x)(u) +

∫

Ω

|ν(x)u(x)|dx +

∫

Ω

|γ(x)u(x)|dx

+ ρs(x)(u) + ρq(x)(u) +

∫

Ω

|∇u|q(x)−1|u|dx
)

≤ const
(

|u|δ−

δ(x) + |u|δ+

δ(x) + |ν|p′(x)|u|p(x) + |γ|p′(x)|u|p(x) + |u|s+

s(x) + |u|s−

s(x)

+ |u|q
+

q(x) + |u|q
−

q(x) +
1

q′−
ρq(x)(∇u) +

1

q−
ρq(x)(u)

)

≤ const
(

|u|δ−

δ(x) + |u|δ+

δ(x) + |u|p(x) + |u|s+

s(x) + |u|s−

s(x) + |u|q
+

q(x) + |u|q
−

q(x)

+ |∇u|q
+

q(x)

)
.

Then, according to Lp(x) →֒ Lδ(x), Lp(x) →֒ Ls(x) and Lp(x) →֒ Lq(x), we get

|Lϑ|p
−

1,p(x) ≤ const
(

|Lϑ|δ+

1,p(x) + |Lϑ|1,p(x) + |Lϑ|s+

1,p(x) + |Lϑ|q
+

1,p(x)

)
,

what implies that
{
Lϑ : ϑ ∈ E

}
is bounded.

On the other hand, we have that the operator is S is bounded, then S ◦ Lϑ is bounded. Thus, thanks to
(4.5), we have that E is bounded in W−1,p′(x)(Ω).
However, ∃ a > 0 such that

|ϑ|−1,p′(x) < a for all ϑ ∈ E,

which leads to
ϑ+ tSoLϑ 6= 0, ϑ ∈ ∂Ea(0) and t ∈ [0, 1],

where Ea(0) is the ball of center 0 and radius a in W−1,p′(x)(Ω).
Moreover, by Lemma 3.4, we conclude that

I + SoL ∈ FL(Ea(0)) and I = T ◦ L ∈ FL(Ea(0)).

On another side, taking into account that I, S and L are bounded, then I + S ◦L is bounded. Hence, we
infer that

I + SoL ∈ FL,B(Ea(0)) and I = T ◦ L ∈ FL,B(Ea(0)).

Now, we define the homotopy H : [0, 1] × Ea(0) → W−1,p′(x)(Ω) by

H(t, ϑ) := ϑ+ tS ◦ Lϑ.
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Applying the homotopy invariance and normalization property of the degree d seen in Theorem 3.7, we
have

d
(
I + SoL,Ea(0), 0

)
= d

(
I,Ea(0), 0

)
= 1 6= 0.

Since d
(
I + S ◦ L,Ea(0), 0

)
6= 0, then by the existence property of the degree d stated in Theorem 3.7,

we conclude that there exists ϑ ∈ Ea(0) which verifies

(
I + S ◦ L

)
(ϑ) = 0 ⇔ ϑ+ S ◦ Lϑ = 0 ⇔ ToLϑ+ S ◦ Lϑ = 0.

Finally, we infer that u = Lϑ is a weak solutions of (1.1). The proof is completed.
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8. O. Kováčik and J. Rákosńık, On spaces Lp(x) and W 1,p(x), Czechoslovak Math. J. 41(4) (1991) 592–618.

9. E.C. Lapa, V.P. Rivera and J.Q. Broncano, No-flux boundary problems involving p(x)-Laplacian-like operators, Elec-
tron. J. Diff. Equ. 2015(219) (2015) 1–10.

10. W.M. Ni and J. Serrin, Non-existence theorems for quasilinear partial differential equations, Rend. Circ. Mat. Palermo
(2) Suppl. 8 (1985) 171–185.

11. W.M. Ni and J. Serrin, Existence and non-existence theorems for ground states for quasilinear partial differential
equations, Att. Conveg. Lincei. 77 (1986) 231–257.

12. M.E. Ouaarabi, A. Abbassi and C. Allalou, Existence result for a Dirichlet problem governed by nonlinear degenerate
elliptic equation in weighted Sobolev spaces, J. Elliptic Parabol Equ. 7(1) (2021) 221–242.

13. M.E. Ouaarabi, C. Allalou and A. Abbassi, On the Dirichlet problem for some nonlinear degenerated elliptic equations
with weight, 2021 7th International Conference on Optimization and Applications (ICOA). (2021) 1–6.

14. M.E. Ouaarabi, A. Abbassi and C. Allalou, Existence result for a general nonlinear degenerate elliptic problems with
measure datum in weighted Sobolev spaces, International Journal On Optimization and Applications 1(2) (2021) 1–9.

15. M. E. Ouaarabi, A. Abbassi and C. Allalou, Existence and uniqueness of weak solution in weighted Sobolev spaces for
a class of nonlinear degenerate elliptic problems with measure data, International Journal of Nonlinear Analysis and
Applications, 13(1) (2021) 2635–2653.
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20. K.R. Rajagopal and M. Ru̇žička, Mathematical modeling of electrorheological materials, Contin. Mech. Thermodyn.
13(1) (2001) 59–78.

21. M.M. Rodrigues, Multiplicity of solutions on a nonlinear eigenvalue problem for p(x)-Laplacian-like operators, Mediterr.
J. Math. 9 (2012) 211–223.

22. Maria Alessandra Ragusa and Atsushi Tachikawa. Regularity for minimizers for functionals of double phase with variable
exponents. Advances in Nonlinear Analysis, 9(1):710-728, 2020
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